blob: 91b8c1265e81df6d5007ccf11b1229a3f187f3cc [file] [log] [blame]
/*
* Synaptics DSX touchscreen driver
*
* Copyright (C) 2012 Synaptics Incorporated
*
* Copyright (C) 2012 Alexandra Chin <alexandra.chin@tw.synaptics.com>
* Copyright (C) 2012 Scott Lin <scott.lin@tw.synaptics.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/firmware.h>
#include <linux/platform_device.h>
#include <linux/input/synaptics_dsx_new.h>
#include "synaptics_dsx_core.h"
#define FW_IMAGE_NAME "synaptics/startup_fw_update.img"
#define FORCE_UPDATE false
#define DO_LOCKDOWN false
#define MAX_IMAGE_NAME_LEN 256
#define MAX_FIRMWARE_ID_LEN 10
#define LOCKDOWN_OFFSET 0xb0
#define IMAGE_AREA_OFFSET 0x100
#define BOOTLOADER_ID_OFFSET 0
#define BLOCK_NUMBER_OFFSET 0
#define V5_PROPERTIES_OFFSET 2
#define V5_BLOCK_SIZE_OFFSET 3
#define V5_BLOCK_COUNT_OFFSET 5
#define V5_BLOCK_DATA_OFFSET 2
#define V6_PROPERTIES_OFFSET 1
#define V6_BLOCK_SIZE_OFFSET 2
#define V6_BLOCK_COUNT_OFFSET 3
#define V6_BLOCK_DATA_OFFSET 1
#define V6_FLASH_COMMAND_OFFSET 2
#define V6_FLASH_STATUS_OFFSET 3
#define LOCKDOWN_BLOCK_COUNT 5
#define REG_MAP (1 << 0)
#define UNLOCKED (1 << 1)
#define HAS_CONFIG_ID (1 << 2)
#define HAS_PERM_CONFIG (1 << 3)
#define HAS_BL_CONFIG (1 << 4)
#define HAS_DISP_CONFIG (1 << 5)
#define HAS_CTRL1 (1 << 6)
#define UI_CONFIG_AREA 0x00
#define PERM_CONFIG_AREA 0x01
#define BL_CONFIG_AREA 0x02
#define DISP_CONFIG_AREA 0x03
#define CMD_WRITE_FW_BLOCK 0x2
#define CMD_ERASE_ALL 0x3
#define CMD_WRITE_LOCKDOWN_BLOCK 0x4
#define CMD_READ_CONFIG_BLOCK 0x5
#define CMD_WRITE_CONFIG_BLOCK 0x6
#define CMD_ERASE_CONFIG 0x7
#define CMD_ERASE_BL_CONFIG 0x9
#define CMD_ERASE_DISP_CONFIG 0xa
#define CMD_ENABLE_FLASH_PROG 0xf
#define SLEEP_MODE_NORMAL (0x00)
#define SLEEP_MODE_SENSOR_SLEEP (0x01)
#define SLEEP_MODE_RESERVED0 (0x02)
#define SLEEP_MODE_RESERVED1 (0x03)
#define ENABLE_WAIT_MS (1 * 1000)
#define WRITE_WAIT_MS (3 * 1000)
#define ERASE_WAIT_MS (5 * 1000)
#define MIN_SLEEP_TIME_US 50
#define MAX_SLEEP_TIME_US 100
#define INT_DISABLE_WAIT_MS 20
#define ENTER_FLASH_PROG_WAIT_MS 20
static int fwu_do_reflash(void);
static int fwu_do_write_config(void);
static ssize_t fwu_sysfs_show_image(struct file *data_file,
struct kobject *kobj, struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count);
static ssize_t fwu_sysfs_store_image(struct file *data_file,
struct kobject *kobj, struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count);
static ssize_t fwu_sysfs_do_reflash_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_write_config_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_read_config_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_config_area_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_image_name_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_image_size_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t fwu_sysfs_block_size_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t fwu_sysfs_firmware_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t fwu_sysfs_configuration_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t fwu_sysfs_perm_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t fwu_sysfs_bl_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t fwu_sysfs_disp_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf);
enum bl_version {
V5 = 5,
V6 = 6,
};
enum flash_area {
NONE,
UI_FIRMWARE,
CONFIG_AREA,
};
enum update_mode {
NORMAL = 1,
FORCE = 2,
LOCKDOWN = 8,
};
struct image_header {
/* 0x00 - 0x0f */
unsigned char checksum[4];
unsigned char reserved_04;
unsigned char reserved_05;
unsigned char options_firmware_id:1;
unsigned char options_bootloader:1;
unsigned char options_reserved:6;
unsigned char bootloader_version;
unsigned char firmware_size[4];
unsigned char config_size[4];
/* 0x10 - 0x1f */
unsigned char product_id[SYNAPTICS_RMI4_PRODUCT_ID_SIZE];
unsigned char package_id[2];
unsigned char package_id_revision[2];
unsigned char product_info[SYNAPTICS_RMI4_PRODUCT_INFO_SIZE];
/* 0x20 - 0x2f */
unsigned char bootloader_addr[4];
unsigned char bootloader_size[4];
unsigned char ui_addr[4];
unsigned char ui_size[4];
/* 0x30 - 0x3f */
unsigned char ds_id[16];
/* 0x40 - 0x4f */
unsigned char disp_config_addr[4];
unsigned char disp_config_size[4];
unsigned char reserved_48_4f[8];
/* 0x50 - 0x53 */
unsigned char firmware_id[4];
};
struct image_header_data {
bool contains_firmware_id;
bool contains_bootloader;
bool contains_disp_config;
unsigned int firmware_id;
unsigned int checksum;
unsigned int firmware_size;
unsigned int config_size;
unsigned int bootloader_size;
unsigned int disp_config_offset;
unsigned int disp_config_size;
unsigned char bootloader_version;
unsigned char product_id[SYNAPTICS_RMI4_PRODUCT_ID_SIZE + 1];
unsigned char product_info[SYNAPTICS_RMI4_PRODUCT_INFO_SIZE];
};
struct pdt_properties {
union {
struct {
unsigned char reserved_1:6;
unsigned char has_bsr:1;
unsigned char reserved_2:1;
} __packed;
unsigned char data[1];
};
};
struct f01_device_status {
union {
struct {
unsigned char status_code:4;
unsigned char reserved:2;
unsigned char flash_prog:1;
unsigned char unconfigured:1;
} __packed;
unsigned char data[1];
};
};
struct f01_device_control {
union {
struct {
unsigned char sleep_mode:2;
unsigned char nosleep:1;
unsigned char reserved:2;
unsigned char charger_connected:1;
unsigned char report_rate:1;
unsigned char configured:1;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_fwu_handle {
enum bl_version bl_version;
bool initialized;
bool program_enabled;
bool has_perm_config;
bool has_bl_config;
bool has_disp_config;
bool force_update;
bool in_flash_prog_mode;
bool do_lockdown;
unsigned int data_pos;
unsigned int image_size;
unsigned char *image_name;
unsigned char *ext_data_source;
unsigned char *read_config_buf;
unsigned char intr_mask;
unsigned char command;
unsigned char bootloader_id[2];
unsigned char flash_properties;
unsigned char flash_status;
unsigned char productinfo1;
unsigned char productinfo2;
unsigned char properties_off;
unsigned char blk_size_off;
unsigned char blk_count_off;
unsigned char blk_data_off;
unsigned char flash_cmd_off;
unsigned char flash_status_off;
unsigned short block_size;
unsigned short fw_block_count;
unsigned short config_block_count;
unsigned short lockdown_block_count;
unsigned short perm_config_block_count;
unsigned short bl_config_block_count;
unsigned short disp_config_block_count;
unsigned short config_size;
unsigned short config_area;
char product_id[SYNAPTICS_RMI4_PRODUCT_ID_SIZE + 1];
const unsigned char *firmware_data;
const unsigned char *config_data;
const unsigned char *disp_config_data;
const unsigned char *lockdown_data;
struct workqueue_struct *fwu_workqueue;
struct work_struct fwu_work;
struct synaptics_rmi4_fn_desc f34_fd;
struct synaptics_rmi4_data *rmi4_data;
};
static struct bin_attribute dev_attr_data = {
.attr = {
.name = "data",
.mode = (S_IRUGO | S_IWUGO),
},
.size = 0,
.read = fwu_sysfs_show_image,
.write = fwu_sysfs_store_image,
};
static struct device_attribute attrs[] = {
__ATTR(doreflash, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_do_reflash_store),
__ATTR(writeconfig, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_write_config_store),
__ATTR(readconfig, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_read_config_store),
__ATTR(configarea, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_config_area_store),
__ATTR(imagename, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_image_name_store),
__ATTR(imagesize, S_IWUGO,
synaptics_rmi4_show_error,
fwu_sysfs_image_size_store),
__ATTR(blocksize, S_IRUGO,
fwu_sysfs_block_size_show,
synaptics_rmi4_store_error),
__ATTR(fwblockcount, S_IRUGO,
fwu_sysfs_firmware_block_count_show,
synaptics_rmi4_store_error),
__ATTR(configblockcount, S_IRUGO,
fwu_sysfs_configuration_block_count_show,
synaptics_rmi4_store_error),
__ATTR(permconfigblockcount, S_IRUGO,
fwu_sysfs_perm_config_block_count_show,
synaptics_rmi4_store_error),
__ATTR(blconfigblockcount, S_IRUGO,
fwu_sysfs_bl_config_block_count_show,
synaptics_rmi4_store_error),
__ATTR(dispconfigblockcount, S_IRUGO,
fwu_sysfs_disp_config_block_count_show,
synaptics_rmi4_store_error),
};
static struct synaptics_rmi4_fwu_handle *fwu;
DECLARE_COMPLETION(fwu_remove_complete);
static unsigned int le_to_uint(const unsigned char *ptr)
{
return (unsigned int)ptr[0] +
(unsigned int)ptr[1] * 0x100 +
(unsigned int)ptr[2] * 0x10000 +
(unsigned int)ptr[3] * 0x1000000;
}
static unsigned int be_to_uint(const unsigned char *ptr)
{
return (unsigned int)ptr[3] +
(unsigned int)ptr[2] * 0x100 +
(unsigned int)ptr[1] * 0x10000 +
(unsigned int)ptr[0] * 0x1000000;
}
static void parse_header(struct image_header_data *header,
const unsigned char *fw_image)
{
struct image_header *data = (struct image_header *)fw_image;
header->checksum = le_to_uint(data->checksum);
header->bootloader_version = data->bootloader_version;
header->firmware_size = le_to_uint(data->firmware_size);
header->config_size = le_to_uint(data->config_size);
memcpy(header->product_id, data->product_id, sizeof(data->product_id));
header->product_id[sizeof(data->product_id)] = 0;
memcpy(header->product_info, data->product_info,
sizeof(data->product_info));
header->contains_firmware_id = data->options_firmware_id;
if (header->contains_firmware_id)
header->firmware_id = le_to_uint(data->firmware_id);
header->contains_bootloader = data->options_bootloader;
if (header->contains_bootloader)
header->bootloader_size = le_to_uint(data->bootloader_size);
if ((header->bootloader_version == V5) && header->contains_bootloader) {
header->contains_disp_config = true;
header->disp_config_offset = le_to_uint(data->disp_config_addr);
header->disp_config_size = le_to_uint(data->disp_config_size);
} else {
header->contains_disp_config = false;
}
return;
}
static int fwu_read_f01_device_status(struct f01_device_status *status)
{
int retval;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_data_base_addr,
status->data,
sizeof(status->data));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read F01 device status\n",
__func__);
return retval;
}
return 0;
}
static int fwu_read_f34_queries(void)
{
int retval;
unsigned char count;
unsigned char buf[10];
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
retval = synaptics_rmi4_reg_read(rmi4_data,
fwu->f34_fd.query_base_addr + BOOTLOADER_ID_OFFSET,
fwu->bootloader_id,
sizeof(fwu->bootloader_id));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read bootloader ID\n",
__func__);
return retval;
}
if (fwu->bootloader_id[1] == '5') {
fwu->bl_version = V5;
} else if (fwu->bootloader_id[1] == '6') {
fwu->bl_version = V6;
} else {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Unrecognized bootloader version\n",
__func__);
return -EINVAL;
}
if (fwu->bl_version == V5) {
fwu->properties_off = V5_PROPERTIES_OFFSET;
fwu->blk_size_off = V5_BLOCK_SIZE_OFFSET;
fwu->blk_count_off = V5_BLOCK_COUNT_OFFSET;
fwu->blk_data_off = V5_BLOCK_DATA_OFFSET;
} else if (fwu->bl_version == V6) {
fwu->properties_off = V6_PROPERTIES_OFFSET;
fwu->blk_size_off = V6_BLOCK_SIZE_OFFSET;
fwu->blk_count_off = V6_BLOCK_COUNT_OFFSET;
fwu->blk_data_off = V6_BLOCK_DATA_OFFSET;
}
retval = synaptics_rmi4_reg_read(rmi4_data,
fwu->f34_fd.query_base_addr + fwu->properties_off,
&fwu->flash_properties,
sizeof(fwu->flash_properties));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read flash properties\n",
__func__);
return retval;
}
count = 4;
if (fwu->flash_properties & HAS_PERM_CONFIG) {
fwu->has_perm_config = 1;
count += 2;
}
if (fwu->flash_properties & HAS_BL_CONFIG) {
fwu->has_bl_config = 1;
count += 2;
}
if (fwu->flash_properties & HAS_DISP_CONFIG) {
fwu->has_disp_config = 1;
count += 2;
}
retval = synaptics_rmi4_reg_read(rmi4_data,
fwu->f34_fd.query_base_addr + fwu->blk_size_off,
buf,
2);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read block size info\n",
__func__);
return retval;
}
batohs(&fwu->block_size, &(buf[0]));
if (fwu->bl_version == V5) {
fwu->flash_cmd_off = fwu->blk_data_off + fwu->block_size;
fwu->flash_status_off = fwu->flash_cmd_off;
} else if (fwu->bl_version == V6) {
fwu->flash_cmd_off = V6_FLASH_COMMAND_OFFSET;
fwu->flash_status_off = V6_FLASH_STATUS_OFFSET;
}
retval = synaptics_rmi4_reg_read(rmi4_data,
fwu->f34_fd.query_base_addr + fwu->blk_count_off,
buf,
count);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read block count info\n",
__func__);
return retval;
}
batohs(&fwu->fw_block_count, &(buf[0]));
batohs(&fwu->config_block_count, &(buf[2]));
count = 4;
if (fwu->has_perm_config) {
batohs(&fwu->perm_config_block_count, &(buf[count]));
count += 2;
}
if (fwu->has_bl_config) {
batohs(&fwu->bl_config_block_count, &(buf[count]));
count += 2;
}
if (fwu->has_disp_config)
batohs(&fwu->disp_config_block_count, &(buf[count]));
return 0;
}
static int fwu_read_f34_flash_status(void)
{
int retval;
unsigned char status;
unsigned char command;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
retval = synaptics_rmi4_reg_read(rmi4_data,
fwu->f34_fd.data_base_addr + fwu->flash_status_off,
&status,
sizeof(status));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read flash status\n",
__func__);
return retval;
}
fwu->program_enabled = status >> 7;
if (fwu->bl_version == V5)
fwu->flash_status = (status >> 4) & MASK_3BIT;
else if (fwu->bl_version == V6)
fwu->flash_status = status & MASK_3BIT;
retval = synaptics_rmi4_reg_read(rmi4_data,
fwu->f34_fd.data_base_addr + fwu->flash_cmd_off,
&command,
sizeof(command));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read flash command\n",
__func__);
return retval;
}
fwu->command = command & MASK_4BIT;
return 0;
}
static int fwu_write_f34_command(unsigned char cmd)
{
int retval;
unsigned char command = cmd & MASK_4BIT;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
fwu->command = cmd;
retval = synaptics_rmi4_reg_write(rmi4_data,
fwu->f34_fd.data_base_addr + fwu->flash_cmd_off,
&command,
sizeof(command));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to write command 0x%02x\n",
__func__, command);
return retval;
}
return 0;
}
static int fwu_wait_for_idle(int timeout_ms)
{
int count = 0;
int timeout_count = ((timeout_ms * 1000) / MAX_SLEEP_TIME_US) + 1;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
do {
usleep_range(MIN_SLEEP_TIME_US, MAX_SLEEP_TIME_US);
count++;
if (count == timeout_count)
fwu_read_f34_flash_status();
if ((fwu->command == 0x00) && (fwu->flash_status == 0x00))
return 0;
} while (count < timeout_count);
dev_err(rmi4_data->pdev->dev.parent,
"%s: Timed out waiting for idle status\n",
__func__);
return -ETIMEDOUT;
}
static enum flash_area fwu_go_nogo(struct image_header_data *header)
{
int retval;
enum flash_area flash_area = NONE;
unsigned char index = 0;
unsigned char config_id[4];
unsigned int device_config_id;
unsigned int image_config_id;
unsigned int device_fw_id;
unsigned long image_fw_id;
char *strptr;
char *firmware_id;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
bool update_ui = false;
bool update_config = false;
if (fwu->force_update) {
flash_area = UI_FIRMWARE;
goto exit;
}
/* Update both UI and config if device is in bootloader mode */
if (fwu->in_flash_prog_mode) {
flash_area = UI_FIRMWARE;
goto exit;
}
/* Get device firmware ID */
device_fw_id = rmi4_data->firmware_id;
dev_info(rmi4_data->pdev->dev.parent,
"%s: Device firmware ID = %d\n",
__func__, device_fw_id);
/* Get image firmware ID */
if (header->contains_firmware_id) {
image_fw_id = header->firmware_id;
} else {
strptr = strstr(fwu->image_name, "PR");
if (!strptr) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: No valid PR number (PRxxxxxxx) "
"found in image file name (%s)\n",
__func__, fwu->image_name);
flash_area = NONE;
goto exit;
}
strptr += 2;
firmware_id = kzalloc(MAX_FIRMWARE_ID_LEN, GFP_KERNEL);
while (strptr[index] >= '0' && strptr[index] <= '9') {
firmware_id[index] = strptr[index];
index++;
}
retval = sstrtoul(firmware_id, 10, &image_fw_id);
kfree(firmware_id);
if (retval) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to obtain image firmware ID\n",
__func__);
flash_area = NONE;
goto exit;
}
}
dev_info(rmi4_data->pdev->dev.parent,
"%s: Image firmware ID = %d\n",
__func__, (unsigned int)image_fw_id);
if (image_fw_id != device_fw_id) {
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Image firmware ID %s Device firmware ID\n",
__func__, image_fw_id > device_fw_id ? ">" : "<");
update_ui = true;
}
/* Get device config ID */
retval = synaptics_rmi4_reg_read(rmi4_data,
fwu->f34_fd.ctrl_base_addr,
config_id,
sizeof(config_id));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read device config ID\n",
__func__);
flash_area = NONE;
goto exit;
}
device_config_id = be_to_uint(config_id);
dev_info(rmi4_data->pdev->dev.parent,
"%s: Device config ID = 0x%02x 0x%02x 0x%02x 0x%02x\n",
__func__,
config_id[0],
config_id[1],
config_id[2],
config_id[3]);
/* Get image config ID */
image_config_id = be_to_uint(fwu->config_data);
dev_info(rmi4_data->pdev->dev.parent,
"%s: Image config ID = 0x%02x 0x%02x 0x%02x 0x%02x\n",
__func__,
fwu->config_data[0],
fwu->config_data[1],
fwu->config_data[2],
fwu->config_data[3]);
if (image_config_id != device_config_id) {
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Image config ID %s Device config ID\n",
__func__,
image_config_id > device_config_id ? ">" : "<");
update_config = true;
}
if (update_ui)
flash_area = UI_FIRMWARE;
else if (update_config)
flash_area = CONFIG_AREA;
else
flash_area = NONE;
exit:
if (flash_area == NONE) {
dev_info(rmi4_data->pdev->dev.parent,
"%s: No need to do reflash\n",
__func__);
} else {
dev_info(rmi4_data->pdev->dev.parent,
"%s: Updating %s\n",
__func__,
flash_area == UI_FIRMWARE ?
"UI firmware" :
"config only");
}
return flash_area;
}
static int fwu_scan_pdt(void)
{
int retval;
unsigned char ii;
unsigned char intr_count = 0;
unsigned char intr_off;
unsigned char intr_src;
unsigned short addr;
bool f01found = false;
bool f34found = false;
struct synaptics_rmi4_fn_desc rmi_fd;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
for (addr = PDT_START; addr > PDT_END; addr -= PDT_ENTRY_SIZE) {
retval = synaptics_rmi4_reg_read(rmi4_data,
addr,
(unsigned char *)&rmi_fd,
sizeof(rmi_fd));
if (retval < 0)
return retval;
if (rmi_fd.fn_number) {
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Found F%02x\n",
__func__, rmi_fd.fn_number);
switch (rmi_fd.fn_number) {
case SYNAPTICS_RMI4_F01:
f01found = true;
rmi4_data->f01_query_base_addr =
rmi_fd.query_base_addr;
rmi4_data->f01_ctrl_base_addr =
rmi_fd.ctrl_base_addr;
rmi4_data->f01_data_base_addr =
rmi_fd.data_base_addr;
rmi4_data->f01_cmd_base_addr =
rmi_fd.cmd_base_addr;
break;
case SYNAPTICS_RMI4_F34:
f34found = true;
fwu->f34_fd.query_base_addr =
rmi_fd.query_base_addr;
fwu->f34_fd.ctrl_base_addr =
rmi_fd.ctrl_base_addr;
fwu->f34_fd.data_base_addr =
rmi_fd.data_base_addr;
fwu->intr_mask = 0;
intr_src = rmi_fd.intr_src_count;
intr_off = intr_count % 8;
for (ii = intr_off;
ii < ((intr_src & MASK_3BIT) +
intr_off);
ii++) {
fwu->intr_mask |= 1 << ii;
}
break;
}
} else {
break;
}
intr_count += (rmi_fd.intr_src_count & MASK_3BIT);
}
if (!f01found || !f34found) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to find both F01 and F34\n",
__func__);
return -EINVAL;
}
return 0;
}
static int fwu_write_blocks(unsigned char *block_ptr, unsigned short block_cnt,
unsigned char command)
{
int retval;
unsigned char block_offset[] = {0, 0};
unsigned short block_num;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
block_offset[1] |= (fwu->config_area << 5);
retval = synaptics_rmi4_reg_write(rmi4_data,
fwu->f34_fd.data_base_addr + BLOCK_NUMBER_OFFSET,
block_offset,
sizeof(block_offset));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to write to block number registers\n",
__func__);
return retval;
}
for (block_num = 0; block_num < block_cnt; block_num++) {
retval = synaptics_rmi4_reg_write(rmi4_data,
fwu->f34_fd.data_base_addr + fwu->blk_data_off,
block_ptr,
fwu->block_size);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to write block data (block %d)\n",
__func__, block_num);
return retval;
}
retval = fwu_write_f34_command(command);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to write command for block %d\n",
__func__, block_num);
return retval;
}
retval = fwu_wait_for_idle(WRITE_WAIT_MS);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to wait for idle status (block %d)\n",
__func__, block_num);
return retval;
}
block_ptr += fwu->block_size;
}
return 0;
}
static int fwu_write_firmware(void)
{
return fwu_write_blocks((unsigned char *)fwu->firmware_data,
fwu->fw_block_count, CMD_WRITE_FW_BLOCK);
}
static int fwu_write_configuration(void)
{
return fwu_write_blocks((unsigned char *)fwu->config_data,
fwu->config_block_count, CMD_WRITE_CONFIG_BLOCK);
}
static int fwu_write_disp_configuration(void)
{
fwu->config_area = DISP_CONFIG_AREA;
fwu->config_data = fwu->disp_config_data;
fwu->config_block_count = fwu->disp_config_block_count;
return fwu_do_write_config();
}
static int fwu_write_lockdown(void)
{
return fwu_write_blocks((unsigned char *)fwu->lockdown_data,
fwu->lockdown_block_count, CMD_WRITE_LOCKDOWN_BLOCK);
}
static int fwu_write_bootloader_id(void)
{
int retval;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
retval = synaptics_rmi4_reg_write(rmi4_data,
fwu->f34_fd.data_base_addr + fwu->blk_data_off,
fwu->bootloader_id,
sizeof(fwu->bootloader_id));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to write bootloader ID\n",
__func__);
return retval;
}
return 0;
}
static int fwu_enter_flash_prog(void)
{
int retval;
struct f01_device_status f01_device_status;
struct f01_device_control f01_device_control;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
retval = rmi4_data->irq_enable(rmi4_data, false, true);
if (retval < 0)
return retval;
msleep(INT_DISABLE_WAIT_MS);
retval = fwu_write_bootloader_id();
if (retval < 0)
return retval;
retval = fwu_write_f34_command(CMD_ENABLE_FLASH_PROG);
if (retval < 0)
return retval;
retval = fwu_wait_for_idle(ENABLE_WAIT_MS);
if (retval < 0)
return retval;
if (!fwu->program_enabled) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Program enabled bit not set\n",
__func__);
return -EINVAL;
}
if (rmi4_data->hw_if->bl_hw_init) {
retval = rmi4_data->hw_if->bl_hw_init(rmi4_data);
if (retval < 0)
return retval;
}
retval = fwu_scan_pdt();
if (retval < 0)
return retval;
retval = fwu_read_f01_device_status(&f01_device_status);
if (retval < 0)
return retval;
if (!f01_device_status.flash_prog) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Not in flash prog mode\n",
__func__);
return -EINVAL;
}
retval = fwu_read_f34_queries();
if (retval < 0)
return retval;
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
f01_device_control.data,
sizeof(f01_device_control.data));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read F01 device control\n",
__func__);
return retval;
}
f01_device_control.nosleep = true;
f01_device_control.sleep_mode = SLEEP_MODE_NORMAL;
retval = synaptics_rmi4_reg_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
f01_device_control.data,
sizeof(f01_device_control.data));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to write F01 device control\n",
__func__);
return retval;
}
msleep(ENTER_FLASH_PROG_WAIT_MS);
return retval;
}
static int fwu_do_reflash(void)
{
int retval;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
retval = fwu_write_bootloader_id();
if (retval < 0)
return retval;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Bootloader ID written\n",
__func__);
retval = fwu_write_f34_command(CMD_ERASE_ALL);
if (retval < 0)
return retval;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Erase all command written\n",
__func__);
retval = fwu_wait_for_idle(ERASE_WAIT_MS);
if (retval < 0)
return retval;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Idle status detected\n",
__func__);
if (fwu->firmware_data) {
retval = fwu_write_firmware();
if (retval < 0)
return retval;
pr_notice("%s: Firmware programmed\n", __func__);
}
if (fwu->config_data) {
retval = fwu_write_configuration();
if (retval < 0)
return retval;
pr_notice("%s: Configuration programmed\n", __func__);
}
if (fwu->disp_config_data) {
retval = fwu_write_disp_configuration();
if (retval < 0)
return retval;
pr_notice("%s: Display configuration programmed\n", __func__);
}
return retval;
}
static int fwu_do_write_config(void)
{
int retval;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (fwu->config_area == PERM_CONFIG_AREA) {
fwu->config_block_count = fwu->perm_config_block_count;
goto write_config;
}
retval = fwu_write_bootloader_id();
if (retval < 0)
return retval;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Bootloader ID written\n",
__func__);
switch (fwu->config_area) {
case UI_CONFIG_AREA:
retval = fwu_write_f34_command(CMD_ERASE_CONFIG);
break;
case BL_CONFIG_AREA:
retval = fwu_write_f34_command(CMD_ERASE_BL_CONFIG);
fwu->config_block_count = fwu->bl_config_block_count;
break;
case DISP_CONFIG_AREA:
retval = fwu_write_f34_command(CMD_ERASE_DISP_CONFIG);
fwu->config_block_count = fwu->disp_config_block_count;
break;
}
if (retval < 0)
return retval;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Erase command written\n",
__func__);
retval = fwu_wait_for_idle(ERASE_WAIT_MS);
if (retval < 0)
return retval;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Idle status detected\n",
__func__);
write_config:
retval = fwu_write_configuration();
if (retval < 0)
return retval;
pr_notice("%s: Config written\n", __func__);
return retval;
}
static int fwu_start_write_config(void)
{
int retval;
unsigned short block_count;
struct image_header_data header;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
switch (fwu->config_area) {
case UI_CONFIG_AREA:
block_count = fwu->config_block_count;
break;
case PERM_CONFIG_AREA:
if (!fwu->has_perm_config)
return -EINVAL;
block_count = fwu->perm_config_block_count;
break;
case BL_CONFIG_AREA:
if (!fwu->has_bl_config)
return -EINVAL;
block_count = fwu->bl_config_block_count;
break;
case DISP_CONFIG_AREA:
if (!fwu->has_disp_config)
return -EINVAL;
block_count = fwu->disp_config_block_count;
break;
default:
return -EINVAL;
}
if (fwu->ext_data_source)
fwu->config_data = fwu->ext_data_source;
else
return -EINVAL;
fwu->config_size = fwu->block_size * block_count;
/* Jump to the config area if given a packrat image */
if ((fwu->config_area == UI_CONFIG_AREA) &&
(fwu->config_size != fwu->image_size)) {
parse_header(&header, fwu->ext_data_source);
if (header.config_size) {
fwu->config_data = fwu->ext_data_source +
IMAGE_AREA_OFFSET +
header.firmware_size;
if (header.contains_bootloader)
fwu->config_data += header.bootloader_size;
} else {
return -EINVAL;
}
}
pr_notice("%s: Start of write config process\n", __func__);
retval = fwu_enter_flash_prog();
if (retval < 0)
goto exit;
retval = fwu_do_write_config();
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to write config\n",
__func__);
}
exit:
rmi4_data->reset_device(rmi4_data);
pr_notice("%s: End of write config process\n", __func__);
return retval;
}
static int fwu_do_read_config(void)
{
int retval;
unsigned char block_offset[] = {0, 0};
unsigned short block_num;
unsigned short block_count;
unsigned short index = 0;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
retval = fwu_enter_flash_prog();
if (retval < 0)
goto exit;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Entered flash prog mode\n",
__func__);
switch (fwu->config_area) {
case UI_CONFIG_AREA:
block_count = fwu->config_block_count;
break;
case PERM_CONFIG_AREA:
if (!fwu->has_perm_config) {
retval = -EINVAL;
goto exit;
}
block_count = fwu->perm_config_block_count;
break;
case BL_CONFIG_AREA:
if (!fwu->has_bl_config) {
retval = -EINVAL;
goto exit;
}
block_count = fwu->bl_config_block_count;
break;
case DISP_CONFIG_AREA:
if (!fwu->has_disp_config) {
retval = -EINVAL;
goto exit;
}
block_count = fwu->disp_config_block_count;
break;
default:
retval = -EINVAL;
goto exit;
}
fwu->config_size = fwu->block_size * block_count;
kfree(fwu->read_config_buf);
fwu->read_config_buf = kzalloc(fwu->config_size, GFP_KERNEL);
block_offset[1] |= (fwu->config_area << 5);
retval = synaptics_rmi4_reg_write(rmi4_data,
fwu->f34_fd.data_base_addr + BLOCK_NUMBER_OFFSET,
block_offset,
sizeof(block_offset));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to write to block number registers\n",
__func__);
goto exit;
}
for (block_num = 0; block_num < block_count; block_num++) {
retval = fwu_write_f34_command(CMD_READ_CONFIG_BLOCK);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to write read config command\n",
__func__);
goto exit;
}
retval = fwu_wait_for_idle(WRITE_WAIT_MS);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to wait for idle status\n",
__func__);
goto exit;
}
retval = synaptics_rmi4_reg_read(rmi4_data,
fwu->f34_fd.data_base_addr + fwu->blk_data_off,
&fwu->read_config_buf[index],
fwu->block_size);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read block data (block %d)\n",
__func__, block_num);
goto exit;
}
index += fwu->block_size;
}
exit:
rmi4_data->reset_device(rmi4_data);
return retval;
}
static int fwu_do_lockdown(void)
{
int retval;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
retval = fwu_enter_flash_prog();
if (retval < 0)
return retval;
retval = synaptics_rmi4_reg_read(rmi4_data,
fwu->f34_fd.query_base_addr + fwu->properties_off,
&fwu->flash_properties,
sizeof(fwu->flash_properties));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read flash properties\n",
__func__);
return retval;
}
if ((fwu->flash_properties & UNLOCKED) == 0) {
dev_info(rmi4_data->pdev->dev.parent,
"%s: Device already locked down\n",
__func__);
return retval;
}
retval = fwu_write_lockdown();
if (retval < 0)
return retval;
pr_notice("%s: Lockdown programmed\n", __func__);
return retval;
}
static int fwu_start_reflash(void)
{
int retval = 0;
enum flash_area flash_area;
struct image_header_data header;
struct f01_device_status f01_device_status;
const unsigned char *fw_image;
const struct firmware *fw_entry = NULL;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (rmi4_data->sensor_sleep) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Sensor sleeping\n",
__func__);
return -ENODEV;
}
rmi4_data->stay_awake = true;
pr_notice("%s: Start of reflash process\n", __func__);
if (fwu->ext_data_source) {
fw_image = fwu->ext_data_source;
} else {
const char *fw_name = rmi4_data->hw_if->board_data->fw_name ?
rmi4_data->hw_if->board_data->fw_name :
FW_IMAGE_NAME;
strncpy(fwu->image_name, fw_name, MAX_IMAGE_NAME_LEN);
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Requesting firmware image %s\n",
__func__, fwu->image_name);
retval = request_firmware(&fw_entry, fwu->image_name,
rmi4_data->pdev->dev.parent);
if (retval != 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Firmware image %s not available\n",
__func__, fwu->image_name);
retval = -EINVAL;
goto exit;
}
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Firmware image size = %d\n",
__func__, fw_entry->size);
fw_image = fw_entry->data;
}
parse_header(&header, fw_image);
if (fwu->bl_version != header.bootloader_version) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Bootloader version mismatch\n",
__func__);
retval = -EINVAL;
goto exit;
}
retval = fwu_read_f01_device_status(&f01_device_status);
if (retval < 0)
goto exit;
if (f01_device_status.flash_prog) {
dev_info(rmi4_data->pdev->dev.parent,
"%s: In flash prog mode\n",
__func__);
fwu->in_flash_prog_mode = true;
} else {
fwu->in_flash_prog_mode = false;
}
if (fwu->do_lockdown) {
switch (fwu->bl_version) {
case V5:
case V6:
fwu->lockdown_data = fw_image + LOCKDOWN_OFFSET;
fwu->lockdown_block_count = LOCKDOWN_BLOCK_COUNT;
retval = fwu_do_lockdown();
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to do lockdown\n",
__func__);
}
default:
break;
}
}
if (header.firmware_size)
fwu->firmware_data = fw_image + IMAGE_AREA_OFFSET;
else
fwu->firmware_data = NULL;
if (header.config_size)
fwu->config_data = fw_image + IMAGE_AREA_OFFSET +
header.firmware_size;
else
fwu->config_data = NULL;
if (header.contains_bootloader) {
if (header.firmware_size)
fwu->firmware_data += header.bootloader_size;
if (header.config_size)
fwu->config_data += header.bootloader_size;
}
if (header.contains_disp_config)
fwu->disp_config_data = fw_image + header.disp_config_offset;
else
fwu->disp_config_data = NULL;
flash_area = fwu_go_nogo(&header);
if (flash_area != NONE) {
retval = fwu_enter_flash_prog();
if (retval < 0)
goto exit;
}
switch (flash_area) {
case UI_FIRMWARE:
retval = fwu_do_reflash();
break;
case CONFIG_AREA:
retval = fwu_do_write_config();
break;
case NONE:
default:
goto exit;
}
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to do reflash\n",
__func__);
}
exit:
rmi4_data->reset_device(rmi4_data);
if (fw_entry)
release_firmware(fw_entry);
pr_notice("%s: End of reflash process\n", __func__);
rmi4_data->stay_awake = false;
return retval;
}
int synaptics_fw_updater(unsigned char *fw_data)
{
int retval;
if (!fwu)
return -ENODEV;
if (!fwu->initialized)
return -ENODEV;
fwu->ext_data_source = fw_data;
fwu->config_area = UI_CONFIG_AREA;
retval = fwu_start_reflash();
return retval;
}
EXPORT_SYMBOL(synaptics_fw_updater);
static void fwu_startup_fw_update_work(struct work_struct *work)
{
synaptics_fw_updater(NULL);
return;
}
static ssize_t fwu_sysfs_show_image(struct file *data_file,
struct kobject *kobj, struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count)
{
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (count < fwu->config_size) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Not enough space (%d bytes) in buffer\n",
__func__, count);
return -EINVAL;
}
memcpy(buf, fwu->read_config_buf, fwu->config_size);
return fwu->config_size;
}
static ssize_t fwu_sysfs_store_image(struct file *data_file,
struct kobject *kobj, struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count)
{
memcpy((void *)(&fwu->ext_data_source[fwu->data_pos]),
(const void *)buf,
count);
fwu->data_pos += count;
return count;
}
static ssize_t fwu_sysfs_do_reflash_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (sscanf(buf, "%u", &input) != 1) {
retval = -EINVAL;
goto exit;
}
if (input & LOCKDOWN) {
fwu->do_lockdown = true;
input &= ~LOCKDOWN;
}
if ((input != NORMAL) && (input != FORCE)) {
retval = -EINVAL;
goto exit;
}
if (input == FORCE)
fwu->force_update = true;
retval = synaptics_fw_updater(fwu->ext_data_source);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to do reflash\n",
__func__);
goto exit;
}
retval = count;
exit:
kfree(fwu->ext_data_source);
fwu->ext_data_source = NULL;
fwu->force_update = FORCE_UPDATE;
fwu->do_lockdown = DO_LOCKDOWN;
return retval;
}
static ssize_t fwu_sysfs_write_config_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (sscanf(buf, "%u", &input) != 1) {
retval = -EINVAL;
goto exit;
}
if (input != 1) {
retval = -EINVAL;
goto exit;
}
retval = fwu_start_write_config();
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to write config\n",
__func__);
goto exit;
}
retval = count;
exit:
kfree(fwu->ext_data_source);
fwu->ext_data_source = NULL;
return retval;
}
static ssize_t fwu_sysfs_read_config_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
if (input != 1)
return -EINVAL;
retval = fwu_do_read_config();
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read config\n",
__func__);
return retval;
}
return count;
}
static ssize_t fwu_sysfs_config_area_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned long config_area;
retval = sstrtoul(buf, 10, &config_area);
if (retval)
return retval;
fwu->config_area = config_area;
return count;
}
static ssize_t fwu_sysfs_image_name_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
memcpy(fwu->image_name, buf, count);
return count;
}
static ssize_t fwu_sysfs_image_size_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned long size;
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
retval = sstrtoul(buf, 10, &size);
if (retval)
return retval;
fwu->image_size = size;
fwu->data_pos = 0;
kfree(fwu->ext_data_source);
fwu->ext_data_source = kzalloc(fwu->image_size, GFP_KERNEL);
if (!fwu->ext_data_source) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc mem for image data\n",
__func__);
return -ENOMEM;
}
return count;
}
static ssize_t fwu_sysfs_block_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->block_size);
}
static ssize_t fwu_sysfs_firmware_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->fw_block_count);
}
static ssize_t fwu_sysfs_configuration_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->config_block_count);
}
static ssize_t fwu_sysfs_perm_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->perm_config_block_count);
}
static ssize_t fwu_sysfs_bl_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->bl_config_block_count);
}
static ssize_t fwu_sysfs_disp_config_block_count_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", fwu->disp_config_block_count);
}
static void synaptics_rmi4_fwu_attn(struct synaptics_rmi4_data *rmi4_data,
unsigned char intr_mask)
{
if (!fwu)
return;
if (fwu->intr_mask & intr_mask)
fwu_read_f34_flash_status();
return;
}
static int synaptics_rmi4_fwu_init(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char attr_count;
struct pdt_properties pdt_props;
fwu = kzalloc(sizeof(*fwu), GFP_KERNEL);
if (!fwu) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc mem for fwu\n",
__func__);
retval = -ENOMEM;
goto exit;
}
fwu->image_name = kzalloc(MAX_IMAGE_NAME_LEN, GFP_KERNEL);
if (!fwu->image_name) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc mem for image name\n",
__func__);
retval = -ENOMEM;
goto exit_free_fwu;
}
fwu->rmi4_data = rmi4_data;
retval = synaptics_rmi4_reg_read(rmi4_data,
PDT_PROPS,
pdt_props.data,
sizeof(pdt_props.data));
if (retval < 0) {
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Failed to read PDT properties, assuming 0x00\n",
__func__);
} else if (pdt_props.has_bsr) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Reflash for LTS not currently supported\n",
__func__);
retval = -ENODEV;
goto exit_free_mem;
}
retval = fwu_scan_pdt();
if (retval < 0)
goto exit_free_mem;
fwu->productinfo1 = rmi4_data->rmi4_mod_info.product_info[0];
fwu->productinfo2 = rmi4_data->rmi4_mod_info.product_info[1];
memcpy(fwu->product_id, rmi4_data->rmi4_mod_info.product_id_string,
SYNAPTICS_RMI4_PRODUCT_ID_SIZE);
fwu->product_id[SYNAPTICS_RMI4_PRODUCT_ID_SIZE] = 0;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: F01 product info: 0x%04x 0x%04x\n",
__func__, fwu->productinfo1, fwu->productinfo2);
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: F01 product ID: %s\n",
__func__, fwu->product_id);
retval = fwu_read_f34_queries();
if (retval < 0)
goto exit_free_mem;
fwu->force_update = FORCE_UPDATE;
fwu->do_lockdown = DO_LOCKDOWN;
fwu->initialized = true;
retval = sysfs_create_bin_file(&rmi4_data->input_dev->dev.kobj,
&dev_attr_data);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to create sysfs bin file\n",
__func__);
goto exit_free_mem;
}
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
retval = sysfs_create_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to create sysfs attributes\n",
__func__);
retval = -ENODEV;
goto exit_remove_attrs;
}
}
if (rmi4_data->hw_if->board_data->fw_name) {
fwu->fwu_workqueue =
create_singlethread_workqueue("fwu_workqueue");
INIT_WORK(&fwu->fwu_work, fwu_startup_fw_update_work);
queue_work(fwu->fwu_workqueue,
&fwu->fwu_work);
}
return 0;
exit_remove_attrs:
for (attr_count--; attr_count >= 0; attr_count--) {
sysfs_remove_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
}
sysfs_remove_bin_file(&rmi4_data->input_dev->dev.kobj, &dev_attr_data);
exit_free_mem:
kfree(fwu->image_name);
exit_free_fwu:
kfree(fwu);
fwu = NULL;
exit:
return retval;
}
static void synaptics_rmi4_fwu_remove(struct synaptics_rmi4_data *rmi4_data)
{
unsigned char attr_count;
if (!fwu)
goto exit;
if (rmi4_data->hw_if->board_data->fw_name) {
cancel_work_sync(&fwu->fwu_work);
flush_workqueue(fwu->fwu_workqueue);
destroy_workqueue(fwu->fwu_workqueue);
}
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
sysfs_remove_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
}
sysfs_remove_bin_file(&rmi4_data->input_dev->dev.kobj, &dev_attr_data);
kfree(fwu->read_config_buf);
kfree(fwu->image_name);
kfree(fwu);
fwu = NULL;
exit:
complete(&fwu_remove_complete);
return;
}
static struct synaptics_rmi4_exp_fn fwu_module = {
.fn_type = RMI_FW_UPDATER,
.init = synaptics_rmi4_fwu_init,
.remove = synaptics_rmi4_fwu_remove,
.reset = NULL,
.reinit = NULL,
.early_suspend = NULL,
.suspend = NULL,
.resume = NULL,
.late_resume = NULL,
.attn = synaptics_rmi4_fwu_attn,
};
static int __init rmi4_fw_update_module_init(void)
{
synaptics_rmi4_new_function(&fwu_module, true);
return 0;
}
static void __exit rmi4_fw_update_module_exit(void)
{
synaptics_rmi4_new_function(&fwu_module, false);
wait_for_completion(&fwu_remove_complete);
return;
}
module_init(rmi4_fw_update_module_init);
module_exit(rmi4_fw_update_module_exit);
MODULE_AUTHOR("Synaptics, Inc.");
MODULE_DESCRIPTION("Synaptics DSX FW Update Module");
MODULE_LICENSE("GPL v2");