/** @file | |
Long (arbitrary precision) integer object implementation. | |
Copyright (c) 2011, Intel Corporation. All rights reserved.<BR> | |
This program and the accompanying materials are licensed and made available under | |
the terms and conditions of the BSD License that accompanies this distribution. | |
The full text of the license may be found at | |
http://opensource.org/licenses/bsd-license. | |
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
**/ | |
/* XXX The functional organization of this file is terrible */ | |
#include "Python.h" | |
#include "longintrepr.h" | |
#include "structseq.h" | |
#include <float.h> | |
#include <ctype.h> | |
#include <stddef.h> | |
/* For long multiplication, use the O(N**2) school algorithm unless | |
* both operands contain more than KARATSUBA_CUTOFF digits (this | |
* being an internal Python long digit, in base PyLong_BASE). | |
*/ | |
#define KARATSUBA_CUTOFF 70 | |
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF) | |
/* For exponentiation, use the binary left-to-right algorithm | |
* unless the exponent contains more than FIVEARY_CUTOFF digits. | |
* In that case, do 5 bits at a time. The potential drawback is that | |
* a table of 2**5 intermediate results is computed. | |
*/ | |
#define FIVEARY_CUTOFF 8 | |
#ifndef ABS | |
#define ABS(x) ((x) < 0 ? -(x) : (x)) | |
#endif | |
#ifndef MAX | |
#define MAX(x, y) ((x) < (y) ? (y) : (x)) | |
#endif | |
#ifndef MIN | |
#define MIN(x, y) ((x) > (y) ? (y) : (x)) | |
#endif | |
#define SIGCHECK(PyTryBlock) \ | |
do { \ | |
if (--_Py_Ticker < 0) { \ | |
_Py_Ticker = _Py_CheckInterval; \ | |
if (PyErr_CheckSignals()) PyTryBlock \ | |
} \ | |
} while(0) | |
/* Normalize (remove leading zeros from) a long int object. | |
Doesn't attempt to free the storage--in most cases, due to the nature | |
of the algorithms used, this could save at most be one word anyway. */ | |
static PyLongObject * | |
long_normalize(register PyLongObject *v) | |
{ | |
Py_ssize_t j = ABS(Py_SIZE(v)); | |
Py_ssize_t i = j; | |
while (i > 0 && v->ob_digit[i-1] == 0) | |
--i; | |
if (i != j) | |
Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i; | |
return v; | |
} | |
/* Allocate a new long int object with size digits. | |
Return NULL and set exception if we run out of memory. */ | |
#define MAX_LONG_DIGITS \ | |
((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit)) | |
PyLongObject * | |
_PyLong_New(Py_ssize_t size) | |
{ | |
if (size > (Py_ssize_t)MAX_LONG_DIGITS) { | |
PyErr_SetString(PyExc_OverflowError, | |
"too many digits in integer"); | |
return NULL; | |
} | |
/* coverity[ampersand_in_size] */ | |
/* XXX(nnorwitz): PyObject_NEW_VAR / _PyObject_VAR_SIZE need to detect | |
overflow */ | |
return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size); | |
} | |
PyObject * | |
_PyLong_Copy(PyLongObject *src) | |
{ | |
PyLongObject *result; | |
Py_ssize_t i; | |
assert(src != NULL); | |
i = src->ob_size; | |
if (i < 0) | |
i = -(i); | |
result = _PyLong_New(i); | |
if (result != NULL) { | |
result->ob_size = src->ob_size; | |
while (--i >= 0) | |
result->ob_digit[i] = src->ob_digit[i]; | |
} | |
return (PyObject *)result; | |
} | |
/* Create a new long int object from a C long int */ | |
PyObject * | |
PyLong_FromLong(long ival) | |
{ | |
PyLongObject *v; | |
unsigned long abs_ival; | |
unsigned long t; /* unsigned so >> doesn't propagate sign bit */ | |
int ndigits = 0; | |
int negative = 0; | |
if (ival < 0) { | |
/* if LONG_MIN == -LONG_MAX-1 (true on most platforms) then | |
ANSI C says that the result of -ival is undefined when ival | |
== LONG_MIN. Hence the following workaround. */ | |
abs_ival = (unsigned long)(-1-ival) + 1; | |
negative = 1; | |
} | |
else { | |
abs_ival = (unsigned long)ival; | |
} | |
/* Count the number of Python digits. | |
We used to pick 5 ("big enough for anything"), but that's a | |
waste of time and space given that 5*15 = 75 bits are rarely | |
needed. */ | |
t = abs_ival; | |
while (t) { | |
++ndigits; | |
t >>= PyLong_SHIFT; | |
} | |
v = _PyLong_New(ndigits); | |
if (v != NULL) { | |
digit *p = v->ob_digit; | |
v->ob_size = negative ? -ndigits : ndigits; | |
t = abs_ival; | |
while (t) { | |
*p++ = (digit)(t & PyLong_MASK); | |
t >>= PyLong_SHIFT; | |
} | |
} | |
return (PyObject *)v; | |
} | |
/* Create a new long int object from a C unsigned long int */ | |
PyObject * | |
PyLong_FromUnsignedLong(unsigned long ival) | |
{ | |
PyLongObject *v; | |
unsigned long t; | |
int ndigits = 0; | |
/* Count the number of Python digits. */ | |
t = (unsigned long)ival; | |
while (t) { | |
++ndigits; | |
t >>= PyLong_SHIFT; | |
} | |
v = _PyLong_New(ndigits); | |
if (v != NULL) { | |
digit *p = v->ob_digit; | |
Py_SIZE(v) = ndigits; | |
while (ival) { | |
*p++ = (digit)(ival & PyLong_MASK); | |
ival >>= PyLong_SHIFT; | |
} | |
} | |
return (PyObject *)v; | |
} | |
/* Create a new long int object from a C double */ | |
PyObject * | |
PyLong_FromDouble(double dval) | |
{ | |
PyLongObject *v; | |
double frac; | |
int i, ndig, expo, neg; | |
neg = 0; | |
if (Py_IS_INFINITY(dval)) { | |
PyErr_SetString(PyExc_OverflowError, | |
"cannot convert float infinity to integer"); | |
return NULL; | |
} | |
if (Py_IS_NAN(dval)) { | |
PyErr_SetString(PyExc_ValueError, | |
"cannot convert float NaN to integer"); | |
return NULL; | |
} | |
if (dval < 0.0) { | |
neg = 1; | |
dval = -dval; | |
} | |
frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ | |
if (expo <= 0) | |
return PyLong_FromLong(0L); | |
ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */ | |
v = _PyLong_New(ndig); | |
if (v == NULL) | |
return NULL; | |
frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1); | |
for (i = ndig; --i >= 0; ) { | |
digit bits = (digit)frac; | |
v->ob_digit[i] = bits; | |
frac = frac - (double)bits; | |
frac = ldexp(frac, PyLong_SHIFT); | |
} | |
if (neg) | |
Py_SIZE(v) = -(Py_SIZE(v)); | |
return (PyObject *)v; | |
} | |
/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define | |
* anything about what happens when a signed integer operation overflows, | |
* and some compilers think they're doing you a favor by being "clever" | |
* then. The bit pattern for the largest postive signed long is | |
* (unsigned long)LONG_MAX, and for the smallest negative signed long | |
* it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN. | |
* However, some other compilers warn about applying unary minus to an | |
* unsigned operand. Hence the weird "0-". | |
*/ | |
#define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN) | |
#define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN) | |
/* Get a C long int from a Python long or Python int object. | |
On overflow, returns -1 and sets *overflow to 1 or -1 depending | |
on the sign of the result. Otherwise *overflow is 0. | |
For other errors (e.g., type error), returns -1 and sets an error | |
condition. | |
*/ | |
long | |
PyLong_AsLongAndOverflow(PyObject *vv, int *overflow) | |
{ | |
/* This version by Tim Peters */ | |
register PyLongObject *v; | |
unsigned long x, prev; | |
long res; | |
Py_ssize_t i; | |
int sign; | |
int do_decref = 0; /* if nb_int was called */ | |
*overflow = 0; | |
if (vv == NULL) { | |
PyErr_BadInternalCall(); | |
return -1; | |
} | |
if(PyInt_Check(vv)) | |
return PyInt_AsLong(vv); | |
if (!PyLong_Check(vv)) { | |
PyNumberMethods *nb; | |
nb = vv->ob_type->tp_as_number; | |
if (nb == NULL || nb->nb_int == NULL) { | |
PyErr_SetString(PyExc_TypeError, | |
"an integer is required"); | |
return -1; | |
} | |
vv = (*nb->nb_int) (vv); | |
if (vv == NULL) | |
return -1; | |
do_decref = 1; | |
if(PyInt_Check(vv)) { | |
res = PyInt_AsLong(vv); | |
goto exit; | |
} | |
if (!PyLong_Check(vv)) { | |
Py_DECREF(vv); | |
PyErr_SetString(PyExc_TypeError, | |
"nb_int should return int object"); | |
return -1; | |
} | |
} | |
res = -1; | |
v = (PyLongObject *)vv; | |
i = Py_SIZE(v); | |
switch (i) { | |
case -1: | |
res = -(sdigit)v->ob_digit[0]; | |
break; | |
case 0: | |
res = 0; | |
break; | |
case 1: | |
res = v->ob_digit[0]; | |
break; | |
default: | |
sign = 1; | |
x = 0; | |
if (i < 0) { | |
sign = -1; | |
i = -(i); | |
} | |
while (--i >= 0) { | |
prev = x; | |
x = (x << PyLong_SHIFT) + v->ob_digit[i]; | |
if ((x >> PyLong_SHIFT) != prev) { | |
*overflow = sign; | |
goto exit; | |
} | |
} | |
/* Haven't lost any bits, but casting to long requires extra | |
* care (see comment above). | |
*/ | |
if (x <= (unsigned long)LONG_MAX) { | |
res = (long)x * sign; | |
} | |
else if (sign < 0 && x == PY_ABS_LONG_MIN) { | |
res = LONG_MIN; | |
} | |
else { | |
*overflow = sign; | |
/* res is already set to -1 */ | |
} | |
} | |
exit: | |
if (do_decref) { | |
Py_DECREF(vv); | |
} | |
return res; | |
} | |
/* Get a C long int from a long int object. | |
Returns -1 and sets an error condition if overflow occurs. */ | |
long | |
PyLong_AsLong(PyObject *obj) | |
{ | |
int overflow; | |
long result = PyLong_AsLongAndOverflow(obj, &overflow); | |
if (overflow) { | |
/* XXX: could be cute and give a different | |
message for overflow == -1 */ | |
PyErr_SetString(PyExc_OverflowError, | |
"Python int too large to convert to C long"); | |
} | |
return result; | |
} | |
/* Get a Py_ssize_t from a long int object. | |
Returns -1 and sets an error condition if overflow occurs. */ | |
Py_ssize_t | |
PyLong_AsSsize_t(PyObject *vv) { | |
register PyLongObject *v; | |
size_t x, prev; | |
Py_ssize_t i; | |
int sign; | |
if (vv == NULL || !PyLong_Check(vv)) { | |
PyErr_BadInternalCall(); | |
return -1; | |
} | |
v = (PyLongObject *)vv; | |
i = v->ob_size; | |
sign = 1; | |
x = 0; | |
if (i < 0) { | |
sign = -1; | |
i = -(i); | |
} | |
while (--i >= 0) { | |
prev = x; | |
x = (x << PyLong_SHIFT) | v->ob_digit[i]; | |
if ((x >> PyLong_SHIFT) != prev) | |
goto overflow; | |
} | |
/* Haven't lost any bits, but casting to a signed type requires | |
* extra care (see comment above). | |
*/ | |
if (x <= (size_t)PY_SSIZE_T_MAX) { | |
return (Py_ssize_t)x * sign; | |
} | |
else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) { | |
return PY_SSIZE_T_MIN; | |
} | |
/* else overflow */ | |
overflow: | |
PyErr_SetString(PyExc_OverflowError, | |
"long int too large to convert to int"); | |
return -1; | |
} | |
/* Get a C unsigned long int from a long int object. | |
Returns -1 and sets an error condition if overflow occurs. */ | |
unsigned long | |
PyLong_AsUnsignedLong(PyObject *vv) | |
{ | |
register PyLongObject *v; | |
unsigned long x, prev; | |
Py_ssize_t i; | |
if (vv == NULL || !PyLong_Check(vv)) { | |
if (vv != NULL && PyInt_Check(vv)) { | |
long val = PyInt_AsLong(vv); | |
if (val < 0) { | |
PyErr_SetString(PyExc_OverflowError, | |
"can't convert negative value " | |
"to unsigned long"); | |
return (unsigned long) -1; | |
} | |
return val; | |
} | |
PyErr_BadInternalCall(); | |
return (unsigned long) -1; | |
} | |
v = (PyLongObject *)vv; | |
i = Py_SIZE(v); | |
x = 0; | |
if (i < 0) { | |
PyErr_SetString(PyExc_OverflowError, | |
"can't convert negative value to unsigned long"); | |
return (unsigned long) -1; | |
} | |
while (--i >= 0) { | |
prev = x; | |
x = (x << PyLong_SHIFT) | v->ob_digit[i]; | |
if ((x >> PyLong_SHIFT) != prev) { | |
PyErr_SetString(PyExc_OverflowError, | |
"long int too large to convert"); | |
return (unsigned long) -1; | |
} | |
} | |
return x; | |
} | |
/* Get a C unsigned long int from a long int object, ignoring the high bits. | |
Returns -1 and sets an error condition if an error occurs. */ | |
unsigned long | |
PyLong_AsUnsignedLongMask(PyObject *vv) | |
{ | |
register PyLongObject *v; | |
unsigned long x; | |
Py_ssize_t i; | |
int sign; | |
if (vv == NULL || !PyLong_Check(vv)) { | |
if (vv != NULL && PyInt_Check(vv)) | |
return PyInt_AsUnsignedLongMask(vv); | |
PyErr_BadInternalCall(); | |
return (unsigned long) -1; | |
} | |
v = (PyLongObject *)vv; | |
i = v->ob_size; | |
sign = 1; | |
x = 0; | |
if (i < 0) { | |
sign = -1; | |
i = -i; | |
} | |
while (--i >= 0) { | |
x = (x << PyLong_SHIFT) | v->ob_digit[i]; | |
} | |
return x * sign; | |
} | |
int | |
_PyLong_Sign(PyObject *vv) | |
{ | |
PyLongObject *v = (PyLongObject *)vv; | |
assert(v != NULL); | |
assert(PyLong_Check(v)); | |
return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1); | |
} | |
size_t | |
_PyLong_NumBits(PyObject *vv) | |
{ | |
PyLongObject *v = (PyLongObject *)vv; | |
size_t result = 0; | |
Py_ssize_t ndigits; | |
assert(v != NULL); | |
assert(PyLong_Check(v)); | |
ndigits = ABS(Py_SIZE(v)); | |
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); | |
if (ndigits > 0) { | |
digit msd = v->ob_digit[ndigits - 1]; | |
result = (ndigits - 1) * PyLong_SHIFT; | |
if (result / PyLong_SHIFT != (size_t)(ndigits - 1)) | |
goto Overflow; | |
do { | |
++result; | |
if (result == 0) | |
goto Overflow; | |
msd >>= 1; | |
} while (msd); | |
} | |
return result; | |
Overflow: | |
PyErr_SetString(PyExc_OverflowError, "long has too many bits " | |
"to express in a platform size_t"); | |
return (size_t)-1; | |
} | |
PyObject * | |
_PyLong_FromByteArray(const unsigned char* bytes, size_t n, | |
int little_endian, int is_signed) | |
{ | |
const unsigned char* pstartbyte; /* LSB of bytes */ | |
int incr; /* direction to move pstartbyte */ | |
const unsigned char* pendbyte; /* MSB of bytes */ | |
size_t numsignificantbytes; /* number of bytes that matter */ | |
Py_ssize_t ndigits; /* number of Python long digits */ | |
PyLongObject* v; /* result */ | |
Py_ssize_t idigit = 0; /* next free index in v->ob_digit */ | |
if (n == 0) | |
return PyLong_FromLong(0L); | |
if (little_endian) { | |
pstartbyte = bytes; | |
pendbyte = bytes + n - 1; | |
incr = 1; | |
} | |
else { | |
pstartbyte = bytes + n - 1; | |
pendbyte = bytes; | |
incr = -1; | |
} | |
if (is_signed) | |
is_signed = *pendbyte >= 0x80; | |
/* Compute numsignificantbytes. This consists of finding the most | |
significant byte. Leading 0 bytes are insignificant if the number | |
is positive, and leading 0xff bytes if negative. */ | |
{ | |
size_t i; | |
const unsigned char* p = pendbyte; | |
const int pincr = -incr; /* search MSB to LSB */ | |
const unsigned char insignficant = is_signed ? 0xff : 0x00; | |
for (i = 0; i < n; ++i, p += pincr) { | |
if (*p != insignficant) | |
break; | |
} | |
numsignificantbytes = n - i; | |
/* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so | |
actually has 2 significant bytes. OTOH, 0xff0001 == | |
-0x00ffff, so we wouldn't *need* to bump it there; but we | |
do for 0xffff = -0x0001. To be safe without bothering to | |
check every case, bump it regardless. */ | |
if (is_signed && numsignificantbytes < n) | |
++numsignificantbytes; | |
} | |
/* How many Python long digits do we need? We have | |
8*numsignificantbytes bits, and each Python long digit has | |
PyLong_SHIFT bits, so it's the ceiling of the quotient. */ | |
/* catch overflow before it happens */ | |
if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) { | |
PyErr_SetString(PyExc_OverflowError, | |
"byte array too long to convert to int"); | |
return NULL; | |
} | |
ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT; | |
v = _PyLong_New(ndigits); | |
if (v == NULL) | |
return NULL; | |
/* Copy the bits over. The tricky parts are computing 2's-comp on | |
the fly for signed numbers, and dealing with the mismatch between | |
8-bit bytes and (probably) 15-bit Python digits.*/ | |
{ | |
size_t i; | |
twodigits carry = 1; /* for 2's-comp calculation */ | |
twodigits accum = 0; /* sliding register */ | |
unsigned int accumbits = 0; /* number of bits in accum */ | |
const unsigned char* p = pstartbyte; | |
for (i = 0; i < numsignificantbytes; ++i, p += incr) { | |
twodigits thisbyte = *p; | |
/* Compute correction for 2's comp, if needed. */ | |
if (is_signed) { | |
thisbyte = (0xff ^ thisbyte) + carry; | |
carry = thisbyte >> 8; | |
thisbyte &= 0xff; | |
} | |
/* Because we're going LSB to MSB, thisbyte is | |
more significant than what's already in accum, | |
so needs to be prepended to accum. */ | |
accum |= (twodigits)thisbyte << accumbits; | |
accumbits += 8; | |
if (accumbits >= PyLong_SHIFT) { | |
/* There's enough to fill a Python digit. */ | |
assert(idigit < ndigits); | |
v->ob_digit[idigit] = (digit)(accum & PyLong_MASK); | |
++idigit; | |
accum >>= PyLong_SHIFT; | |
accumbits -= PyLong_SHIFT; | |
assert(accumbits < PyLong_SHIFT); | |
} | |
} | |
assert(accumbits < PyLong_SHIFT); | |
if (accumbits) { | |
assert(idigit < ndigits); | |
v->ob_digit[idigit] = (digit)accum; | |
++idigit; | |
} | |
} | |
Py_SIZE(v) = is_signed ? -idigit : idigit; | |
return (PyObject *)long_normalize(v); | |
} | |
int | |
_PyLong_AsByteArray(PyLongObject* v, | |
unsigned char* bytes, size_t n, | |
int little_endian, int is_signed) | |
{ | |
Py_ssize_t i; /* index into v->ob_digit */ | |
Py_ssize_t ndigits; /* |v->ob_size| */ | |
twodigits accum; /* sliding register */ | |
unsigned int accumbits; /* # bits in accum */ | |
int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */ | |
digit carry; /* for computing 2's-comp */ | |
size_t j; /* # bytes filled */ | |
unsigned char* p; /* pointer to next byte in bytes */ | |
int pincr; /* direction to move p */ | |
assert(v != NULL && PyLong_Check(v)); | |
if (Py_SIZE(v) < 0) { | |
ndigits = -(Py_SIZE(v)); | |
if (!is_signed) { | |
PyErr_SetString(PyExc_OverflowError, | |
"can't convert negative long to unsigned"); | |
return -1; | |
} | |
do_twos_comp = 1; | |
} | |
else { | |
ndigits = Py_SIZE(v); | |
do_twos_comp = 0; | |
} | |
if (little_endian) { | |
p = bytes; | |
pincr = 1; | |
} | |
else { | |
p = bytes + n - 1; | |
pincr = -1; | |
} | |
/* Copy over all the Python digits. | |
It's crucial that every Python digit except for the MSD contribute | |
exactly PyLong_SHIFT bits to the total, so first assert that the long is | |
normalized. */ | |
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); | |
j = 0; | |
accum = 0; | |
accumbits = 0; | |
carry = do_twos_comp ? 1 : 0; | |
for (i = 0; i < ndigits; ++i) { | |
digit thisdigit = v->ob_digit[i]; | |
if (do_twos_comp) { | |
thisdigit = (thisdigit ^ PyLong_MASK) + carry; | |
carry = thisdigit >> PyLong_SHIFT; | |
thisdigit &= PyLong_MASK; | |
} | |
/* Because we're going LSB to MSB, thisdigit is more | |
significant than what's already in accum, so needs to be | |
prepended to accum. */ | |
accum |= (twodigits)thisdigit << accumbits; | |
/* The most-significant digit may be (probably is) at least | |
partly empty. */ | |
if (i == ndigits - 1) { | |
/* Count # of sign bits -- they needn't be stored, | |
* although for signed conversion we need later to | |
* make sure at least one sign bit gets stored. */ | |
digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit; | |
while (s != 0) { | |
s >>= 1; | |
accumbits++; | |
} | |
} | |
else | |
accumbits += PyLong_SHIFT; | |
/* Store as many bytes as possible. */ | |
while (accumbits >= 8) { | |
if (j >= n) | |
goto Overflow; | |
++j; | |
*p = (unsigned char)(accum & 0xff); | |
p += pincr; | |
accumbits -= 8; | |
accum >>= 8; | |
} | |
} | |
/* Store the straggler (if any). */ | |
assert(accumbits < 8); | |
assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */ | |
if (accumbits > 0) { | |
if (j >= n) | |
goto Overflow; | |
++j; | |
if (do_twos_comp) { | |
/* Fill leading bits of the byte with sign bits | |
(appropriately pretending that the long had an | |
infinite supply of sign bits). */ | |
accum |= (~(twodigits)0) << accumbits; | |
} | |
*p = (unsigned char)(accum & 0xff); | |
p += pincr; | |
} | |
else if (j == n && n > 0 && is_signed) { | |
/* The main loop filled the byte array exactly, so the code | |
just above didn't get to ensure there's a sign bit, and the | |
loop below wouldn't add one either. Make sure a sign bit | |
exists. */ | |
unsigned char msb = *(p - pincr); | |
int sign_bit_set = msb >= 0x80; | |
assert(accumbits == 0); | |
if (sign_bit_set == do_twos_comp) | |
return 0; | |
else | |
goto Overflow; | |
} | |
/* Fill remaining bytes with copies of the sign bit. */ | |
{ | |
unsigned char signbyte = do_twos_comp ? 0xffU : 0U; | |
for ( ; j < n; ++j, p += pincr) | |
*p = signbyte; | |
} | |
return 0; | |
Overflow: | |
PyErr_SetString(PyExc_OverflowError, "long too big to convert"); | |
return -1; | |
} | |
/* Create a new long (or int) object from a C pointer */ | |
PyObject * | |
PyLong_FromVoidPtr(void *p) | |
{ | |
#if SIZEOF_VOID_P <= SIZEOF_LONG | |
if ((long)p < 0) | |
return PyLong_FromUnsignedLong((unsigned long)p); | |
return PyInt_FromLong((long)p); | |
#else | |
#ifndef HAVE_LONG_LONG | |
# error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long" | |
#endif | |
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P | |
# error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" | |
#endif | |
/* optimize null pointers */ | |
if (p == NULL) | |
return PyInt_FromLong(0); | |
return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)p); | |
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ | |
} | |
/* Get a C pointer from a long object (or an int object in some cases) */ | |
void * | |
PyLong_AsVoidPtr(PyObject *vv) | |
{ | |
/* This function will allow int or long objects. If vv is neither, | |
then the PyLong_AsLong*() functions will raise the exception: | |
PyExc_SystemError, "bad argument to internal function" | |
*/ | |
#if SIZEOF_VOID_P <= SIZEOF_LONG | |
long x; | |
if (PyInt_Check(vv)) | |
x = PyInt_AS_LONG(vv); | |
else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) | |
x = PyLong_AsLong(vv); | |
else | |
x = PyLong_AsUnsignedLong(vv); | |
#else | |
#ifndef HAVE_LONG_LONG | |
# error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long" | |
#endif | |
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P | |
# error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" | |
#endif | |
PY_LONG_LONG x; | |
if (PyInt_Check(vv)) | |
x = PyInt_AS_LONG(vv); | |
else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) | |
x = PyLong_AsLongLong(vv); | |
else | |
x = PyLong_AsUnsignedLongLong(vv); | |
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ | |
if (x == -1 && PyErr_Occurred()) | |
return NULL; | |
return (void *)x; | |
} | |
#ifdef HAVE_LONG_LONG | |
/* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later | |
* rewritten to use the newer PyLong_{As,From}ByteArray API. | |
*/ | |
#define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one | |
#define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN) | |
/* Create a new long int object from a C PY_LONG_LONG int. */ | |
PyObject * | |
PyLong_FromLongLong(PY_LONG_LONG ival) | |
{ | |
PyLongObject *v; | |
unsigned PY_LONG_LONG abs_ival; | |
unsigned PY_LONG_LONG t; /* unsigned so >> doesn't propagate sign bit */ | |
int ndigits = 0; | |
int negative = 0; | |
if (ival < 0) { | |
/* avoid signed overflow on negation; see comments | |
in PyLong_FromLong above. */ | |
abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1; | |
negative = 1; | |
} | |
else { | |
abs_ival = (unsigned PY_LONG_LONG)ival; | |
} | |
/* Count the number of Python digits. | |
We used to pick 5 ("big enough for anything"), but that's a | |
waste of time and space given that 5*15 = 75 bits are rarely | |
needed. */ | |
t = abs_ival; | |
while (t) { | |
++ndigits; | |
t >>= PyLong_SHIFT; | |
} | |
v = _PyLong_New(ndigits); | |
if (v != NULL) { | |
digit *p = v->ob_digit; | |
Py_SIZE(v) = negative ? -ndigits : ndigits; | |
t = abs_ival; | |
while (t) { | |
*p++ = (digit)(t & PyLong_MASK); | |
t >>= PyLong_SHIFT; | |
} | |
} | |
return (PyObject *)v; | |
} | |
/* Create a new long int object from a C unsigned PY_LONG_LONG int. */ | |
PyObject * | |
PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival) | |
{ | |
PyLongObject *v; | |
unsigned PY_LONG_LONG t; | |
int ndigits = 0; | |
/* Count the number of Python digits. */ | |
t = (unsigned PY_LONG_LONG)ival; | |
while (t) { | |
++ndigits; | |
t >>= PyLong_SHIFT; | |
} | |
v = _PyLong_New(ndigits); | |
if (v != NULL) { | |
digit *p = v->ob_digit; | |
Py_SIZE(v) = ndigits; | |
while (ival) { | |
*p++ = (digit)(ival & PyLong_MASK); | |
ival >>= PyLong_SHIFT; | |
} | |
} | |
return (PyObject *)v; | |
} | |
/* Create a new long int object from a C Py_ssize_t. */ | |
PyObject * | |
PyLong_FromSsize_t(Py_ssize_t ival) | |
{ | |
Py_ssize_t bytes = ival; | |
int one = 1; | |
return _PyLong_FromByteArray((unsigned char *)&bytes, | |
SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 1); | |
} | |
/* Create a new long int object from a C size_t. */ | |
PyObject * | |
PyLong_FromSize_t(size_t ival) | |
{ | |
size_t bytes = ival; | |
int one = 1; | |
return _PyLong_FromByteArray((unsigned char *)&bytes, | |
SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 0); | |
} | |
/* Get a C PY_LONG_LONG int from a long int object. | |
Return -1 and set an error if overflow occurs. */ | |
PY_LONG_LONG | |
PyLong_AsLongLong(PyObject *vv) | |
{ | |
PY_LONG_LONG bytes; | |
int one = 1; | |
int res; | |
if (vv == NULL) { | |
PyErr_BadInternalCall(); | |
return -1; | |
} | |
if (!PyLong_Check(vv)) { | |
PyNumberMethods *nb; | |
PyObject *io; | |
if (PyInt_Check(vv)) | |
return (PY_LONG_LONG)PyInt_AsLong(vv); | |
if ((nb = vv->ob_type->tp_as_number) == NULL || | |
nb->nb_int == NULL) { | |
PyErr_SetString(PyExc_TypeError, "an integer is required"); | |
return -1; | |
} | |
io = (*nb->nb_int) (vv); | |
if (io == NULL) | |
return -1; | |
if (PyInt_Check(io)) { | |
bytes = PyInt_AsLong(io); | |
Py_DECREF(io); | |
return bytes; | |
} | |
if (PyLong_Check(io)) { | |
bytes = PyLong_AsLongLong(io); | |
Py_DECREF(io); | |
return bytes; | |
} | |
Py_DECREF(io); | |
PyErr_SetString(PyExc_TypeError, "integer conversion failed"); | |
return -1; | |
} | |
res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes, | |
SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); | |
/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ | |
if (res < 0) | |
return (PY_LONG_LONG)-1; | |
else | |
return bytes; | |
} | |
/* Get a C unsigned PY_LONG_LONG int from a long int object. | |
Return -1 and set an error if overflow occurs. */ | |
unsigned PY_LONG_LONG | |
PyLong_AsUnsignedLongLong(PyObject *vv) | |
{ | |
unsigned PY_LONG_LONG bytes; | |
int one = 1; | |
int res; | |
if (vv == NULL || !PyLong_Check(vv)) { | |
PyErr_BadInternalCall(); | |
return (unsigned PY_LONG_LONG)-1; | |
} | |
res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes, | |
SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); | |
/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ | |
if (res < 0) | |
return (unsigned PY_LONG_LONG)res; | |
else | |
return bytes; | |
} | |
/* Get a C unsigned long int from a long int object, ignoring the high bits. | |
Returns -1 and sets an error condition if an error occurs. */ | |
unsigned PY_LONG_LONG | |
PyLong_AsUnsignedLongLongMask(PyObject *vv) | |
{ | |
register PyLongObject *v; | |
unsigned PY_LONG_LONG x; | |
Py_ssize_t i; | |
int sign; | |
if (vv == NULL || !PyLong_Check(vv)) { | |
PyErr_BadInternalCall(); | |
return (unsigned long) -1; | |
} | |
v = (PyLongObject *)vv; | |
i = v->ob_size; | |
sign = 1; | |
x = 0; | |
if (i < 0) { | |
sign = -1; | |
i = -i; | |
} | |
while (--i >= 0) { | |
x = (x << PyLong_SHIFT) | v->ob_digit[i]; | |
} | |
return x * sign; | |
} | |
/* Get a C long long int from a Python long or Python int object. | |
On overflow, returns -1 and sets *overflow to 1 or -1 depending | |
on the sign of the result. Otherwise *overflow is 0. | |
For other errors (e.g., type error), returns -1 and sets an error | |
condition. | |
*/ | |
PY_LONG_LONG | |
PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow) | |
{ | |
/* This version by Tim Peters */ | |
register PyLongObject *v; | |
unsigned PY_LONG_LONG x, prev; | |
PY_LONG_LONG res; | |
Py_ssize_t i; | |
int sign; | |
int do_decref = 0; /* if nb_int was called */ | |
*overflow = 0; | |
if (vv == NULL) { | |
PyErr_BadInternalCall(); | |
return -1; | |
} | |
if (PyInt_Check(vv)) | |
return PyInt_AsLong(vv); | |
if (!PyLong_Check(vv)) { | |
PyNumberMethods *nb; | |
nb = vv->ob_type->tp_as_number; | |
if (nb == NULL || nb->nb_int == NULL) { | |
PyErr_SetString(PyExc_TypeError, | |
"an integer is required"); | |
return -1; | |
} | |
vv = (*nb->nb_int) (vv); | |
if (vv == NULL) | |
return -1; | |
do_decref = 1; | |
if(PyInt_Check(vv)) { | |
res = PyInt_AsLong(vv); | |
goto exit; | |
} | |
if (!PyLong_Check(vv)) { | |
Py_DECREF(vv); | |
PyErr_SetString(PyExc_TypeError, | |
"nb_int should return int object"); | |
return -1; | |
} | |
} | |
res = -1; | |
v = (PyLongObject *)vv; | |
i = Py_SIZE(v); | |
switch (i) { | |
case -1: | |
res = -(sdigit)v->ob_digit[0]; | |
break; | |
case 0: | |
res = 0; | |
break; | |
case 1: | |
res = v->ob_digit[0]; | |
break; | |
default: | |
sign = 1; | |
x = 0; | |
if (i < 0) { | |
sign = -1; | |
i = -(i); | |
} | |
while (--i >= 0) { | |
prev = x; | |
x = (x << PyLong_SHIFT) + v->ob_digit[i]; | |
if ((x >> PyLong_SHIFT) != prev) { | |
*overflow = sign; | |
goto exit; | |
} | |
} | |
/* Haven't lost any bits, but casting to long requires extra | |
* care (see comment above). | |
*/ | |
if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) { | |
res = (PY_LONG_LONG)x * sign; | |
} | |
else if (sign < 0 && x == PY_ABS_LLONG_MIN) { | |
res = PY_LLONG_MIN; | |
} | |
else { | |
*overflow = sign; | |
/* res is already set to -1 */ | |
} | |
} | |
exit: | |
if (do_decref) { | |
Py_DECREF(vv); | |
} | |
return res; | |
} | |
#undef IS_LITTLE_ENDIAN | |
#endif /* HAVE_LONG_LONG */ | |
static int | |
convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) { | |
if (PyLong_Check(v)) { | |
*a = (PyLongObject *) v; | |
Py_INCREF(v); | |
} | |
else if (PyInt_Check(v)) { | |
*a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v)); | |
} | |
else { | |
return 0; | |
} | |
if (PyLong_Check(w)) { | |
*b = (PyLongObject *) w; | |
Py_INCREF(w); | |
} | |
else if (PyInt_Check(w)) { | |
*b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w)); | |
} | |
else { | |
Py_DECREF(*a); | |
return 0; | |
} | |
return 1; | |
} | |
#define CONVERT_BINOP(v, w, a, b) \ | |
do { \ | |
if (!convert_binop(v, w, a, b)) { \ | |
Py_INCREF(Py_NotImplemented); \ | |
return Py_NotImplemented; \ | |
} \ | |
} while(0) \ | |
/* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d < | |
2**k if d is nonzero, else 0. */ | |
static const unsigned char BitLengthTable[32] = { | |
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, | |
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 | |
}; | |
static int | |
bits_in_digit(digit d) | |
{ | |
int d_bits = 0; | |
while (d >= 32) { | |
d_bits += 6; | |
d >>= 6; | |
} | |
d_bits += (int)BitLengthTable[d]; | |
return d_bits; | |
} | |
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] | |
* is modified in place, by adding y to it. Carries are propagated as far as | |
* x[m-1], and the remaining carry (0 or 1) is returned. | |
*/ | |
static digit | |
v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) | |
{ | |
Py_ssize_t i; | |
digit carry = 0; | |
assert(m >= n); | |
for (i = 0; i < n; ++i) { | |
carry += x[i] + y[i]; | |
x[i] = carry & PyLong_MASK; | |
carry >>= PyLong_SHIFT; | |
assert((carry & 1) == carry); | |
} | |
for (; carry && i < m; ++i) { | |
carry += x[i]; | |
x[i] = carry & PyLong_MASK; | |
carry >>= PyLong_SHIFT; | |
assert((carry & 1) == carry); | |
} | |
return carry; | |
} | |
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] | |
* is modified in place, by subtracting y from it. Borrows are propagated as | |
* far as x[m-1], and the remaining borrow (0 or 1) is returned. | |
*/ | |
static digit | |
v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) | |
{ | |
Py_ssize_t i; | |
digit borrow = 0; | |
assert(m >= n); | |
for (i = 0; i < n; ++i) { | |
borrow = x[i] - y[i] - borrow; | |
x[i] = borrow & PyLong_MASK; | |
borrow >>= PyLong_SHIFT; | |
borrow &= 1; /* keep only 1 sign bit */ | |
} | |
for (; borrow && i < m; ++i) { | |
borrow = x[i] - borrow; | |
x[i] = borrow & PyLong_MASK; | |
borrow >>= PyLong_SHIFT; | |
borrow &= 1; | |
} | |
return borrow; | |
} | |
/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put | |
* result in z[0:m], and return the d bits shifted out of the top. | |
*/ | |
static digit | |
v_lshift(digit *z, digit *a, Py_ssize_t m, int d) | |
{ | |
Py_ssize_t i; | |
digit carry = 0; | |
assert(0 <= d && d < PyLong_SHIFT); | |
for (i=0; i < m; i++) { | |
twodigits acc = (twodigits)a[i] << d | carry; | |
z[i] = (digit)acc & PyLong_MASK; | |
carry = (digit)(acc >> PyLong_SHIFT); | |
} | |
return carry; | |
} | |
/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put | |
* result in z[0:m], and return the d bits shifted out of the bottom. | |
*/ | |
static digit | |
v_rshift(digit *z, digit *a, Py_ssize_t m, int d) | |
{ | |
Py_ssize_t i; | |
digit carry = 0; | |
digit mask = ((digit)1 << d) - 1U; | |
assert(0 <= d && d < PyLong_SHIFT); | |
for (i=m; i-- > 0;) { | |
twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i]; | |
carry = (digit)acc & mask; | |
z[i] = (digit)(acc >> d); | |
} | |
return carry; | |
} | |
/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient | |
in pout, and returning the remainder. pin and pout point at the LSD. | |
It's OK for pin == pout on entry, which saves oodles of mallocs/frees in | |
_PyLong_Format, but that should be done with great care since longs are | |
immutable. */ | |
static digit | |
inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n) | |
{ | |
twodigits rem = 0; | |
assert(n > 0 && n <= PyLong_MASK); | |
pin += size; | |
pout += size; | |
while (--size >= 0) { | |
digit hi; | |
rem = (rem << PyLong_SHIFT) | *--pin; | |
*--pout = hi = (digit)(rem / n); | |
rem -= (twodigits)hi * n; | |
} | |
return (digit)rem; | |
} | |
/* Divide a long integer by a digit, returning both the quotient | |
(as function result) and the remainder (through *prem). | |
The sign of a is ignored; n should not be zero. */ | |
static PyLongObject * | |
divrem1(PyLongObject *a, digit n, digit *prem) | |
{ | |
const Py_ssize_t size = ABS(Py_SIZE(a)); | |
PyLongObject *z; | |
assert(n > 0 && n <= PyLong_MASK); | |
z = _PyLong_New(size); | |
if (z == NULL) | |
return NULL; | |
*prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n); | |
return long_normalize(z); | |
} | |
/* Convert a long integer to a base 10 string. Returns a new non-shared | |
string. (Return value is non-shared so that callers can modify the | |
returned value if necessary.) */ | |
static PyObject * | |
long_to_decimal_string(PyObject *aa, int addL) | |
{ | |
PyLongObject *scratch, *a; | |
PyObject *str; | |
Py_ssize_t size, strlen, size_a, i, j; | |
digit *pout, *pin, rem, tenpow; | |
char *p; | |
int negative; | |
a = (PyLongObject *)aa; | |
if (a == NULL || !PyLong_Check(a)) { | |
PyErr_BadInternalCall(); | |
return NULL; | |
} | |
size_a = ABS(Py_SIZE(a)); | |
negative = Py_SIZE(a) < 0; | |
/* quick and dirty upper bound for the number of digits | |
required to express a in base _PyLong_DECIMAL_BASE: | |
#digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE)) | |
But log2(a) < size_a * PyLong_SHIFT, and | |
log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT | |
> 3 * _PyLong_DECIMAL_SHIFT | |
*/ | |
if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) { | |
PyErr_SetString(PyExc_OverflowError, | |
"long is too large to format"); | |
return NULL; | |
} | |
/* the expression size_a * PyLong_SHIFT is now safe from overflow */ | |
size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT); | |
scratch = _PyLong_New(size); | |
if (scratch == NULL) | |
return NULL; | |
/* convert array of base _PyLong_BASE digits in pin to an array of | |
base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP, | |
Volume 2 (3rd edn), section 4.4, Method 1b). */ | |
pin = a->ob_digit; | |
pout = scratch->ob_digit; | |
size = 0; | |
for (i = size_a; --i >= 0; ) { | |
digit hi = pin[i]; | |
for (j = 0; j < size; j++) { | |
twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi; | |
hi = (digit)(z / _PyLong_DECIMAL_BASE); | |
pout[j] = (digit)(z - (twodigits)hi * | |
_PyLong_DECIMAL_BASE); | |
} | |
while (hi) { | |
pout[size++] = hi % _PyLong_DECIMAL_BASE; | |
hi /= _PyLong_DECIMAL_BASE; | |
} | |
/* check for keyboard interrupt */ | |
SIGCHECK({ | |
Py_DECREF(scratch); | |
return NULL; | |
}); | |
} | |
/* pout should have at least one digit, so that the case when a = 0 | |
works correctly */ | |
if (size == 0) | |
pout[size++] = 0; | |
/* calculate exact length of output string, and allocate */ | |
strlen = (addL != 0) + negative + | |
1 + (size - 1) * _PyLong_DECIMAL_SHIFT; | |
tenpow = 10; | |
rem = pout[size-1]; | |
while (rem >= tenpow) { | |
tenpow *= 10; | |
strlen++; | |
} | |
str = PyString_FromStringAndSize(NULL, strlen); | |
if (str == NULL) { | |
Py_DECREF(scratch); | |
return NULL; | |
} | |
/* fill the string right-to-left */ | |
p = PyString_AS_STRING(str) + strlen; | |
*p = '\0'; | |
if (addL) | |
*--p = 'L'; | |
/* pout[0] through pout[size-2] contribute exactly | |
_PyLong_DECIMAL_SHIFT digits each */ | |
for (i=0; i < size - 1; i++) { | |
rem = pout[i]; | |
for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { | |
*--p = '0' + rem % 10; | |
rem /= 10; | |
} | |
} | |
/* pout[size-1]: always produce at least one decimal digit */ | |
rem = pout[i]; | |
do { | |
*--p = '0' + rem % 10; | |
rem /= 10; | |
} while (rem != 0); | |
/* and sign */ | |
if (negative) | |
*--p = '-'; | |
/* check we've counted correctly */ | |
assert(p == PyString_AS_STRING(str)); | |
Py_DECREF(scratch); | |
return (PyObject *)str; | |
} | |
/* Convert the long to a string object with given base, | |
appending a base prefix of 0[box] if base is 2, 8 or 16. | |
Add a trailing "L" if addL is non-zero. | |
If newstyle is zero, then use the pre-2.6 behavior of octal having | |
a leading "0", instead of the prefix "0o" */ | |
PyAPI_FUNC(PyObject *) | |
_PyLong_Format(PyObject *aa, int base, int addL, int newstyle) | |
{ | |
register PyLongObject *a = (PyLongObject *)aa; | |
PyStringObject *str; | |
Py_ssize_t i, sz; | |
Py_ssize_t size_a; | |
char *p; | |
int bits; | |
char sign = '\0'; | |
if (base == 10) | |
return long_to_decimal_string((PyObject *)a, addL); | |
if (a == NULL || !PyLong_Check(a)) { | |
PyErr_BadInternalCall(); | |
return NULL; | |
} | |
assert(base >= 2 && base <= 36); | |
size_a = ABS(Py_SIZE(a)); | |
/* Compute a rough upper bound for the length of the string */ | |
i = base; | |
bits = 0; | |
while (i > 1) { | |
++bits; | |
i >>= 1; | |
} | |
i = 5 + (addL ? 1 : 0); | |
/* ensure we don't get signed overflow in sz calculation */ | |
if (size_a > (PY_SSIZE_T_MAX - i) / PyLong_SHIFT) { | |
PyErr_SetString(PyExc_OverflowError, | |
"long is too large to format"); | |
return NULL; | |
} | |
sz = i + 1 + (size_a * PyLong_SHIFT - 1) / bits; | |
assert(sz >= 0); | |
str = (PyStringObject *) PyString_FromStringAndSize((char *)0, sz); | |
if (str == NULL) | |
return NULL; | |
p = PyString_AS_STRING(str) + sz; | |
*p = '\0'; | |
if (addL) | |
*--p = 'L'; | |
if (a->ob_size < 0) | |
sign = '-'; | |
if (a->ob_size == 0) { | |
*--p = '0'; | |
} | |
else if ((base & (base - 1)) == 0) { | |
/* JRH: special case for power-of-2 bases */ | |
twodigits accum = 0; | |
int accumbits = 0; /* # of bits in accum */ | |
int basebits = 1; /* # of bits in base-1 */ | |
i = base; | |
while ((i >>= 1) > 1) | |
++basebits; | |
for (i = 0; i < size_a; ++i) { | |
accum |= (twodigits)a->ob_digit[i] << accumbits; | |
accumbits += PyLong_SHIFT; | |
assert(accumbits >= basebits); | |
do { | |
char cdigit = (char)(accum & (base - 1)); | |
cdigit += (cdigit < 10) ? '0' : 'a'-10; | |
assert(p > PyString_AS_STRING(str)); | |
*--p = cdigit; | |
accumbits -= basebits; | |
accum >>= basebits; | |
} while (i < size_a-1 ? accumbits >= basebits : accum > 0); | |
} | |
} | |
else { | |
/* Not 0, and base not a power of 2. Divide repeatedly by | |
base, but for speed use the highest power of base that | |
fits in a digit. */ | |
Py_ssize_t size = size_a; | |
digit *pin = a->ob_digit; | |
PyLongObject *scratch; | |
/* powbasw <- largest power of base that fits in a digit. */ | |
digit powbase = base; /* powbase == base ** power */ | |
int power = 1; | |
for (;;) { | |
twodigits newpow = powbase * (twodigits)base; | |
if (newpow >> PyLong_SHIFT) | |
/* doesn't fit in a digit */ | |
break; | |
powbase = (digit)newpow; | |
++power; | |
} | |
/* Get a scratch area for repeated division. */ | |
scratch = _PyLong_New(size); | |
if (scratch == NULL) { | |
Py_DECREF(str); | |
return NULL; | |
} | |
/* Repeatedly divide by powbase. */ | |
do { | |
int ntostore = power; | |
digit rem = inplace_divrem1(scratch->ob_digit, | |
pin, size, powbase); | |
pin = scratch->ob_digit; /* no need to use a again */ | |
if (pin[size - 1] == 0) | |
--size; | |
SIGCHECK({ | |
Py_DECREF(scratch); | |
Py_DECREF(str); | |
return NULL; | |
}); | |
/* Break rem into digits. */ | |
assert(ntostore > 0); | |
do { | |
digit nextrem = (digit)(rem / base); | |
char c = (char)(rem - nextrem * base); | |
assert(p > PyString_AS_STRING(str)); | |
c += (c < 10) ? '0' : 'a'-10; | |
*--p = c; | |
rem = nextrem; | |
--ntostore; | |
/* Termination is a bit delicate: must not | |
store leading zeroes, so must get out if | |
remaining quotient and rem are both 0. */ | |
} while (ntostore && (size || rem)); | |
} while (size != 0); | |
Py_DECREF(scratch); | |
} | |
if (base == 2) { | |
*--p = 'b'; | |
*--p = '0'; | |
} | |
else if (base == 8) { | |
if (newstyle) { | |
*--p = 'o'; | |
*--p = '0'; | |
} | |
else | |
if (size_a != 0) | |
*--p = '0'; | |
} | |
else if (base == 16) { | |
*--p = 'x'; | |
*--p = '0'; | |
} | |
else if (base != 10) { | |
*--p = '#'; | |
*--p = '0' + base%10; | |
if (base > 10) | |
*--p = '0' + base/10; | |
} | |
if (sign) | |
*--p = sign; | |
if (p != PyString_AS_STRING(str)) { | |
char *q = PyString_AS_STRING(str); | |
assert(p > q); | |
do { | |
} while ((*q++ = *p++) != '\0'); | |
q--; | |
_PyString_Resize((PyObject **)&str, | |
(Py_ssize_t) (q - PyString_AS_STRING(str))); | |
} | |
return (PyObject *)str; | |
} | |
/* Table of digit values for 8-bit string -> integer conversion. | |
* '0' maps to 0, ..., '9' maps to 9. | |
* 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35. | |
* All other indices map to 37. | |
* Note that when converting a base B string, a char c is a legitimate | |
* base B digit iff _PyLong_DigitValue[Py_CHARMASK(c)] < B. | |
*/ | |
int _PyLong_DigitValue[256] = { | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37, | |
37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, | |
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, | |
37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, | |
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, | |
}; | |
/* *str points to the first digit in a string of base `base` digits. base | |
* is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first | |
* non-digit (which may be *str!). A normalized long is returned. | |
* The point to this routine is that it takes time linear in the number of | |
* string characters. | |
*/ | |
static PyLongObject * | |
long_from_binary_base(char **str, int base) | |
{ | |
char *p = *str; | |
char *start = p; | |
int bits_per_char; | |
Py_ssize_t n; | |
PyLongObject *z; | |
twodigits accum; | |
int bits_in_accum; | |
digit *pdigit; | |
assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); | |
n = base; | |
for (bits_per_char = -1; n; ++bits_per_char) | |
n >>= 1; | |
/* n <- total # of bits needed, while setting p to end-of-string */ | |
while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base) | |
++p; | |
*str = p; | |
/* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */ | |
n = (p - start) * bits_per_char + PyLong_SHIFT - 1; | |
if (n / bits_per_char < p - start) { | |
PyErr_SetString(PyExc_ValueError, | |
"long string too large to convert"); | |
return NULL; | |
} | |
n = n / PyLong_SHIFT; | |
z = _PyLong_New(n); | |
if (z == NULL) | |
return NULL; | |
/* Read string from right, and fill in long from left; i.e., | |
* from least to most significant in both. | |
*/ | |
accum = 0; | |
bits_in_accum = 0; | |
pdigit = z->ob_digit; | |
while (--p >= start) { | |
int k = _PyLong_DigitValue[Py_CHARMASK(*p)]; | |
assert(k >= 0 && k < base); | |
accum |= (twodigits)k << bits_in_accum; | |
bits_in_accum += bits_per_char; | |
if (bits_in_accum >= PyLong_SHIFT) { | |
*pdigit++ = (digit)(accum & PyLong_MASK); | |
assert(pdigit - z->ob_digit <= n); | |
accum >>= PyLong_SHIFT; | |
bits_in_accum -= PyLong_SHIFT; | |
assert(bits_in_accum < PyLong_SHIFT); | |
} | |
} | |
if (bits_in_accum) { | |
assert(bits_in_accum <= PyLong_SHIFT); | |
*pdigit++ = (digit)accum; | |
assert(pdigit - z->ob_digit <= n); | |
} | |
while (pdigit - z->ob_digit < n) | |
*pdigit++ = 0; | |
return long_normalize(z); | |
} | |
PyObject * | |
PyLong_FromString(char *str, char **pend, int base) | |
{ | |
int sign = 1; | |
char *start, *orig_str = str; | |
PyLongObject *z; | |
PyObject *strobj, *strrepr; | |
Py_ssize_t slen; | |
if ((base != 0 && base < 2) || base > 36) { | |
PyErr_SetString(PyExc_ValueError, | |
"long() arg 2 must be >= 2 and <= 36"); | |
return NULL; | |
} | |
while (*str != '\0' && isspace(Py_CHARMASK(*str))) | |
str++; | |
if (*str == '+') | |
++str; | |
else if (*str == '-') { | |
++str; | |
sign = -1; | |
} | |
while (*str != '\0' && isspace(Py_CHARMASK(*str))) | |
str++; | |
if (base == 0) { | |
/* No base given. Deduce the base from the contents | |
of the string */ | |
if (str[0] != '0') | |
base = 10; | |
else if (str[1] == 'x' || str[1] == 'X') | |
base = 16; | |
else if (str[1] == 'o' || str[1] == 'O') | |
base = 8; | |
else if (str[1] == 'b' || str[1] == 'B') | |
base = 2; | |
else | |
/* "old" (C-style) octal literal, still valid in | |
2.x, although illegal in 3.x */ | |
base = 8; | |
} | |
/* Whether or not we were deducing the base, skip leading chars | |
as needed */ | |
if (str[0] == '0' && | |
((base == 16 && (str[1] == 'x' || str[1] == 'X')) || | |
(base == 8 && (str[1] == 'o' || str[1] == 'O')) || | |
(base == 2 && (str[1] == 'b' || str[1] == 'B')))) | |
str += 2; | |
start = str; | |
if ((base & (base - 1)) == 0) | |
z = long_from_binary_base(&str, base); | |
else { | |
/*** | |
Binary bases can be converted in time linear in the number of digits, because | |
Python's representation base is binary. Other bases (including decimal!) use | |
the simple quadratic-time algorithm below, complicated by some speed tricks. | |
First some math: the largest integer that can be expressed in N base-B digits | |
is B**N-1. Consequently, if we have an N-digit input in base B, the worst- | |
case number of Python digits needed to hold it is the smallest integer n s.t. | |
PyLong_BASE**n-1 >= B**N-1 [or, adding 1 to both sides] | |
PyLong_BASE**n >= B**N [taking logs to base PyLong_BASE] | |
n >= log(B**N)/log(PyLong_BASE) = N * log(B)/log(PyLong_BASE) | |
The static array log_base_PyLong_BASE[base] == log(base)/log(PyLong_BASE) so | |
we can compute this quickly. A Python long with that much space is reserved | |
near the start, and the result is computed into it. | |
The input string is actually treated as being in base base**i (i.e., i digits | |
are processed at a time), where two more static arrays hold: | |
convwidth_base[base] = the largest integer i such that | |
base**i <= PyLong_BASE | |
convmultmax_base[base] = base ** convwidth_base[base] | |
The first of these is the largest i such that i consecutive input digits | |
must fit in a single Python digit. The second is effectively the input | |
base we're really using. | |
Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base | |
convmultmax_base[base], the result is "simply" | |
(((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1 | |
where B = convmultmax_base[base]. | |
Error analysis: as above, the number of Python digits `n` needed is worst- | |
case | |
n >= N * log(B)/log(PyLong_BASE) | |
where `N` is the number of input digits in base `B`. This is computed via | |
size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1; | |
below. Two numeric concerns are how much space this can waste, and whether | |
the computed result can be too small. To be concrete, assume PyLong_BASE = | |
2**15, which is the default (and it's unlikely anyone changes that). | |
Waste isn't a problem: provided the first input digit isn't 0, the difference | |
between the worst-case input with N digits and the smallest input with N | |
digits is about a factor of B, but B is small compared to PyLong_BASE so at | |
most one allocated Python digit can remain unused on that count. If | |
N*log(B)/log(PyLong_BASE) is mathematically an exact integer, then truncating | |
that and adding 1 returns a result 1 larger than necessary. However, that | |
can't happen: whenever B is a power of 2, long_from_binary_base() is called | |
instead, and it's impossible for B**i to be an integer power of 2**15 when B | |
is not a power of 2 (i.e., it's impossible for N*log(B)/log(PyLong_BASE) to be | |
an exact integer when B is not a power of 2, since B**i has a prime factor | |
other than 2 in that case, but (2**15)**j's only prime factor is 2). | |
The computed result can be too small if the true value of | |
N*log(B)/log(PyLong_BASE) is a little bit larger than an exact integer, but | |
due to roundoff errors (in computing log(B), log(PyLong_BASE), their quotient, | |
and/or multiplying that by N) yields a numeric result a little less than that | |
integer. Unfortunately, "how close can a transcendental function get to an | |
integer over some range?" questions are generally theoretically intractable. | |
Computer analysis via continued fractions is practical: expand | |
log(B)/log(PyLong_BASE) via continued fractions, giving a sequence i/j of "the | |
best" rational approximations. Then j*log(B)/log(PyLong_BASE) is | |
approximately equal to (the integer) i. This shows that we can get very close | |
to being in trouble, but very rarely. For example, 76573 is a denominator in | |
one of the continued-fraction approximations to log(10)/log(2**15), and | |
indeed: | |
>>> log(10)/log(2**15)*76573 | |
16958.000000654003 | |
is very close to an integer. If we were working with IEEE single-precision, | |
rounding errors could kill us. Finding worst cases in IEEE double-precision | |
requires better-than-double-precision log() functions, and Tim didn't bother. | |
Instead the code checks to see whether the allocated space is enough as each | |
new Python digit is added, and copies the whole thing to a larger long if not. | |
This should happen extremely rarely, and in fact I don't have a test case | |
that triggers it(!). Instead the code was tested by artificially allocating | |
just 1 digit at the start, so that the copying code was exercised for every | |
digit beyond the first. | |
***/ | |
register twodigits c; /* current input character */ | |
Py_ssize_t size_z; | |
int i; | |
int convwidth; | |
twodigits convmultmax, convmult; | |
digit *pz, *pzstop; | |
char* scan; | |
static double log_base_PyLong_BASE[37] = {0.0e0,}; | |
static int convwidth_base[37] = {0,}; | |
static twodigits convmultmax_base[37] = {0,}; | |
if (log_base_PyLong_BASE[base] == 0.0) { | |
twodigits convmax = base; | |
int i = 1; | |
log_base_PyLong_BASE[base] = (log((double)base) / | |
log((double)PyLong_BASE)); | |
for (;;) { | |
twodigits next = convmax * base; | |
if (next > PyLong_BASE) | |
break; | |
convmax = next; | |
++i; | |
} | |
convmultmax_base[base] = convmax; | |
assert(i > 0); | |
convwidth_base[base] = i; | |
} | |
/* Find length of the string of numeric characters. */ | |
scan = str; | |
while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base) | |
++scan; | |
/* Create a long object that can contain the largest possible | |
* integer with this base and length. Note that there's no | |
* need to initialize z->ob_digit -- no slot is read up before | |
* being stored into. | |
*/ | |
size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1; | |
/* Uncomment next line to test exceedingly rare copy code */ | |
/* size_z = 1; */ | |
assert(size_z > 0); | |
z = _PyLong_New(size_z); | |
if (z == NULL) | |
return NULL; | |
Py_SIZE(z) = 0; | |
/* `convwidth` consecutive input digits are treated as a single | |
* digit in base `convmultmax`. | |
*/ | |
convwidth = convwidth_base[base]; | |
convmultmax = convmultmax_base[base]; | |
/* Work ;-) */ | |
while (str < scan) { | |
/* grab up to convwidth digits from the input string */ | |
c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)]; | |
for (i = 1; i < convwidth && str != scan; ++i, ++str) { | |
c = (twodigits)(c * base + | |
_PyLong_DigitValue[Py_CHARMASK(*str)]); | |
assert(c < PyLong_BASE); | |
} | |
convmult = convmultmax; | |
/* Calculate the shift only if we couldn't get | |
* convwidth digits. | |
*/ | |
if (i != convwidth) { | |
convmult = base; | |
for ( ; i > 1; --i) | |
convmult *= base; | |
} | |
/* Multiply z by convmult, and add c. */ | |
pz = z->ob_digit; | |
pzstop = pz + Py_SIZE(z); | |
for (; pz < pzstop; ++pz) { | |
c += (twodigits)*pz * convmult; | |
*pz = (digit)(c & PyLong_MASK); | |
c >>= PyLong_SHIFT; | |
} | |
/* carry off the current end? */ | |
if (c) { | |
assert(c < PyLong_BASE); | |
if (Py_SIZE(z) < size_z) { | |
*pz = (digit)c; | |
++Py_SIZE(z); | |
} | |
else { | |
PyLongObject *tmp; | |
/* Extremely rare. Get more space. */ | |
assert(Py_SIZE(z) == size_z); | |
tmp = _PyLong_New(size_z + 1); | |
if (tmp == NULL) { | |
Py_DECREF(z); | |
return NULL; | |
} | |
memcpy(tmp->ob_digit, | |
z->ob_digit, | |
sizeof(digit) * size_z); | |
Py_DECREF(z); | |
z = tmp; | |
z->ob_digit[size_z] = (digit)c; | |
++size_z; | |
} | |
} | |
} | |
} | |
if (z == NULL) | |
return NULL; | |
if (str == start) | |
goto onError; | |
if (sign < 0) | |
Py_SIZE(z) = -(Py_SIZE(z)); | |
if (*str == 'L' || *str == 'l') | |
str++; | |
while (*str && isspace(Py_CHARMASK(*str))) | |
str++; | |
if (*str != '\0') | |
goto onError; | |
if (pend) | |
*pend = str; | |
return (PyObject *) z; | |
onError: | |
Py_XDECREF(z); | |
slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200; | |
strobj = PyString_FromStringAndSize(orig_str, slen); | |
if (strobj == NULL) | |
return NULL; | |
strrepr = PyObject_Repr(strobj); | |
Py_DECREF(strobj); | |
if (strrepr == NULL) | |
return NULL; | |
PyErr_Format(PyExc_ValueError, | |
"invalid literal for long() with base %d: %s", | |
base, PyString_AS_STRING(strrepr)); | |
Py_DECREF(strrepr); | |
return NULL; | |
} | |
#ifdef Py_USING_UNICODE | |
PyObject * | |
PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base) | |
{ | |
PyObject *result; | |
char *buffer = (char *)PyMem_MALLOC(length+1); | |
if (buffer == NULL) | |
return NULL; | |
if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) { | |
PyMem_FREE(buffer); | |
return NULL; | |
} | |
result = PyLong_FromString(buffer, NULL, base); | |
PyMem_FREE(buffer); | |
return result; | |
} | |
#endif | |
/* forward */ | |
static PyLongObject *x_divrem | |
(PyLongObject *, PyLongObject *, PyLongObject **); | |
static PyObject *long_long(PyObject *v); | |
/* Long division with remainder, top-level routine */ | |
static int | |
long_divrem(PyLongObject *a, PyLongObject *b, | |
PyLongObject **pdiv, PyLongObject **prem) | |
{ | |
Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); | |
PyLongObject *z; | |
if (size_b == 0) { | |
PyErr_SetString(PyExc_ZeroDivisionError, | |
"long division or modulo by zero"); | |
return -1; | |
} | |
if (size_a < size_b || | |
(size_a == size_b && | |
a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) { | |
/* |a| < |b|. */ | |
*pdiv = _PyLong_New(0); | |
if (*pdiv == NULL) | |
return -1; | |
Py_INCREF(a); | |
*prem = (PyLongObject *) a; | |
return 0; | |
} | |
if (size_b == 1) { | |
digit rem = 0; | |
z = divrem1(a, b->ob_digit[0], &rem); | |
if (z == NULL) | |
return -1; | |
*prem = (PyLongObject *) PyLong_FromLong((long)rem); | |
if (*prem == NULL) { | |
Py_DECREF(z); | |
return -1; | |
} | |
} | |
else { | |
z = x_divrem(a, b, prem); | |
if (z == NULL) | |
return -1; | |
} | |
/* Set the signs. | |
The quotient z has the sign of a*b; | |
the remainder r has the sign of a, | |
so a = b*z + r. */ | |
if ((a->ob_size < 0) != (b->ob_size < 0)) | |
z->ob_size = -(z->ob_size); | |
if (a->ob_size < 0 && (*prem)->ob_size != 0) | |
(*prem)->ob_size = -((*prem)->ob_size); | |
*pdiv = z; | |
return 0; | |
} | |
/* Unsigned long division with remainder -- the algorithm. The arguments v1 | |
and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */ | |
static PyLongObject * | |
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) | |
{ | |
PyLongObject *v, *w, *a; | |
Py_ssize_t i, k, size_v, size_w; | |
int d; | |
digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak; | |
twodigits vv; | |
sdigit zhi; | |
stwodigits z; | |
/* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd | |
edn.), section 4.3.1, Algorithm D], except that we don't explicitly | |
handle the special case when the initial estimate q for a quotient | |
digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and | |
that won't overflow a digit. */ | |
/* allocate space; w will also be used to hold the final remainder */ | |
size_v = ABS(Py_SIZE(v1)); | |
size_w = ABS(Py_SIZE(w1)); | |
assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */ | |
v = _PyLong_New(size_v+1); | |
if (v == NULL) { | |
*prem = NULL; | |
return NULL; | |
} | |
w = _PyLong_New(size_w); | |
if (w == NULL) { | |
Py_DECREF(v); | |
*prem = NULL; | |
return NULL; | |
} | |
/* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2. | |
shift v1 left by the same amount. Results go into w and v. */ | |
d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]); | |
carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d); | |
assert(carry == 0); | |
carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d); | |
if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) { | |
v->ob_digit[size_v] = carry; | |
size_v++; | |
} | |
/* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has | |
at most (and usually exactly) k = size_v - size_w digits. */ | |
k = size_v - size_w; | |
assert(k >= 0); | |
a = _PyLong_New(k); | |
if (a == NULL) { | |
Py_DECREF(w); | |
Py_DECREF(v); | |
*prem = NULL; | |
return NULL; | |
} | |
v0 = v->ob_digit; | |
w0 = w->ob_digit; | |
wm1 = w0[size_w-1]; | |
wm2 = w0[size_w-2]; | |
for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) { | |
/* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving | |
single-digit quotient q, remainder in vk[0:size_w]. */ | |
SIGCHECK({ | |
Py_DECREF(a); | |
Py_DECREF(w); | |
Py_DECREF(v); | |
*prem = NULL; | |
return NULL; | |
}); | |
/* estimate quotient digit q; may overestimate by 1 (rare) */ | |
vtop = vk[size_w]; | |
assert(vtop <= wm1); | |
vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1]; | |
q = (digit)(vv / wm1); | |
r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */ | |
while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT) | |
| vk[size_w-2])) { | |
--q; | |
r += wm1; | |
if (r >= PyLong_BASE) | |
break; | |
} | |
assert(q <= PyLong_BASE); | |
/* subtract q*w0[0:size_w] from vk[0:size_w+1] */ | |
zhi = 0; | |
for (i = 0; i < size_w; ++i) { | |
/* invariants: -PyLong_BASE <= -q <= zhi <= 0; | |
-PyLong_BASE * q <= z < PyLong_BASE */ | |
z = (sdigit)vk[i] + zhi - | |
(stwodigits)q * (stwodigits)w0[i]; | |
vk[i] = (digit)z & PyLong_MASK; | |
zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits, | |
z, PyLong_SHIFT); | |
} | |
/* add w back if q was too large (this branch taken rarely) */ | |
assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0); | |
if ((sdigit)vtop + zhi < 0) { | |
carry = 0; | |
for (i = 0; i < size_w; ++i) { | |
carry += vk[i] + w0[i]; | |
vk[i] = carry & PyLong_MASK; | |
carry >>= PyLong_SHIFT; | |
} | |
--q; | |
} | |
/* store quotient digit */ | |
assert(q < PyLong_BASE); | |
*--ak = q; | |
} | |
/* unshift remainder; we reuse w to store the result */ | |
carry = v_rshift(w0, v0, size_w, d); | |
assert(carry==0); | |
Py_DECREF(v); | |
*prem = long_normalize(w); | |
return long_normalize(a); | |
} | |
/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <= | |
abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is | |
rounded to DBL_MANT_DIG significant bits using round-half-to-even. | |
If a == 0, return 0.0 and set *e = 0. If the resulting exponent | |
e is larger than PY_SSIZE_T_MAX, raise OverflowError and return | |
-1.0. */ | |
/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */ | |
#if DBL_MANT_DIG == 53 | |
#define EXP2_DBL_MANT_DIG 9007199254740992.0 | |
#else | |
#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG)) | |
#endif | |
double | |
_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e) | |
{ | |
Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size; | |
/* See below for why x_digits is always large enough. */ | |
digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT]; | |
double dx; | |
/* Correction term for round-half-to-even rounding. For a digit x, | |
"x + half_even_correction[x & 7]" gives x rounded to the nearest | |
multiple of 4, rounding ties to a multiple of 8. */ | |
static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1}; | |
a_size = ABS(Py_SIZE(a)); | |
if (a_size == 0) { | |
/* Special case for 0: significand 0.0, exponent 0. */ | |
*e = 0; | |
return 0.0; | |
} | |
a_bits = bits_in_digit(a->ob_digit[a_size-1]); | |
/* The following is an overflow-free version of the check | |
"if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */ | |
if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 && | |
(a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 || | |
a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1)) | |
goto overflow; | |
a_bits = (a_size - 1) * PyLong_SHIFT + a_bits; | |
/* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size] | |
(shifting left if a_bits <= DBL_MANT_DIG + 2). | |
Number of digits needed for result: write // for floor division. | |
Then if shifting left, we end up using | |
1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT | |
digits. If shifting right, we use | |
a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT | |
digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with | |
the inequalities | |
m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT | |
m // PyLong_SHIFT - n // PyLong_SHIFT <= | |
1 + (m - n - 1) // PyLong_SHIFT, | |
valid for any integers m and n, we find that x_size satisfies | |
x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT | |
in both cases. | |
*/ | |
if (a_bits <= DBL_MANT_DIG + 2) { | |
shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT; | |
shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT; | |
x_size = 0; | |
while (x_size < shift_digits) | |
x_digits[x_size++] = 0; | |
rem = v_lshift(x_digits + x_size, a->ob_digit, a_size, | |
(int)shift_bits); | |
x_size += a_size; | |
x_digits[x_size++] = rem; | |
} | |
else { | |
shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT; | |
shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT; | |
rem = v_rshift(x_digits, a->ob_digit + shift_digits, | |
a_size - shift_digits, (int)shift_bits); | |
x_size = a_size - shift_digits; | |
/* For correct rounding below, we need the least significant | |
bit of x to be 'sticky' for this shift: if any of the bits | |
shifted out was nonzero, we set the least significant bit | |
of x. */ | |
if (rem) | |
x_digits[0] |= 1; | |
else | |
while (shift_digits > 0) | |
if (a->ob_digit[--shift_digits]) { | |
x_digits[0] |= 1; | |
break; | |
} | |
} | |
assert(1 <= x_size && | |
x_size <= (Py_ssize_t)(sizeof(x_digits)/sizeof(digit))); | |
/* Round, and convert to double. */ | |
x_digits[0] += half_even_correction[x_digits[0] & 7]; | |
dx = x_digits[--x_size]; | |
while (x_size > 0) | |
dx = dx * PyLong_BASE + x_digits[--x_size]; | |
/* Rescale; make correction if result is 1.0. */ | |
dx /= 4.0 * EXP2_DBL_MANT_DIG; | |
if (dx == 1.0) { | |
if (a_bits == PY_SSIZE_T_MAX) | |
goto overflow; | |
dx = 0.5; | |
a_bits += 1; | |
} | |
*e = a_bits; | |
return Py_SIZE(a) < 0 ? -dx : dx; | |
overflow: | |
/* exponent > PY_SSIZE_T_MAX */ | |
PyErr_SetString(PyExc_OverflowError, | |
"huge integer: number of bits overflows a Py_ssize_t"); | |
*e = 0; | |
return -1.0; | |
} | |
/* Get a C double from a long int object. Rounds to the nearest double, | |
using the round-half-to-even rule in the case of a tie. */ | |
double | |
PyLong_AsDouble(PyObject *v) | |
{ | |
Py_ssize_t exponent; | |
double x; | |
if (v == NULL || !PyLong_Check(v)) { | |
PyErr_BadInternalCall(); | |
return -1.0; | |
} | |
x = _PyLong_Frexp((PyLongObject *)v, &exponent); | |
if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) { | |
PyErr_SetString(PyExc_OverflowError, | |
"long int too large to convert to float"); | |
return -1.0; | |
} | |
return ldexp(x, (int)exponent); | |
} | |
/* Methods */ | |
static void | |
long_dealloc(PyObject *v) | |
{ | |
Py_TYPE(v)->tp_free(v); | |
} | |
static PyObject * | |
long_repr(PyObject *v) | |
{ | |
return _PyLong_Format(v, 10, 1, 0); | |
} | |
static PyObject * | |
long_str(PyObject *v) | |
{ | |
return _PyLong_Format(v, 10, 0, 0); | |
} | |
static int | |
long_compare(PyLongObject *a, PyLongObject *b) | |
{ | |
Py_ssize_t sign; | |
if (Py_SIZE(a) != Py_SIZE(b)) { | |
sign = Py_SIZE(a) - Py_SIZE(b); | |
} | |
else { | |
Py_ssize_t i = ABS(Py_SIZE(a)); | |
while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) | |
; | |
if (i < 0) | |
sign = 0; | |
else { | |
sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i]; | |
if (Py_SIZE(a) < 0) | |
sign = -sign; | |
} | |
} | |
return sign < 0 ? -1 : sign > 0 ? 1 : 0; | |
} | |
static long | |
long_hash(PyLongObject *v) | |
{ | |
unsigned long x; | |
Py_ssize_t i; | |
int sign; | |
/* This is designed so that Python ints and longs with the | |
same value hash to the same value, otherwise comparisons | |
of mapping keys will turn out weird */ | |
i = v->ob_size; | |
sign = 1; | |
x = 0; | |
if (i < 0) { | |
sign = -1; | |
i = -(i); | |
} | |
/* The following loop produces a C unsigned long x such that x is | |
congruent to the absolute value of v modulo ULONG_MAX. The | |
resulting x is nonzero if and only if v is. */ | |
while (--i >= 0) { | |
/* Force a native long #-bits (32 or 64) circular shift */ | |
x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT); | |
x += v->ob_digit[i]; | |
/* If the addition above overflowed we compensate by | |
incrementing. This preserves the value modulo | |
ULONG_MAX. */ | |
if (x < v->ob_digit[i]) | |
x++; | |
} | |
x = x * sign; | |
if (x == (unsigned long)-1) | |
x = (unsigned long)-2; | |
return (long)x; | |
} | |
/* Add the absolute values of two long integers. */ | |
static PyLongObject * | |
x_add(PyLongObject *a, PyLongObject *b) | |
{ | |
Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); | |
PyLongObject *z; | |
Py_ssize_t i; | |
digit carry = 0; | |
/* Ensure a is the larger of the two: */ | |
if (size_a < size_b) { | |
{ PyLongObject *temp = a; a = b; b = temp; } | |
{ Py_ssize_t size_temp = size_a; | |
size_a = size_b; | |
size_b = size_temp; } | |
} | |
z = _PyLong_New(size_a+1); | |
if (z == NULL) | |
return NULL; | |
for (i = 0; i < size_b; ++i) { | |
carry += a->ob_digit[i] + b->ob_digit[i]; | |
z->ob_digit[i] = carry & PyLong_MASK; | |
carry >>= PyLong_SHIFT; | |
} | |
for (; i < size_a; ++i) { | |
carry += a->ob_digit[i]; | |
z->ob_digit[i] = carry & PyLong_MASK; | |
carry >>= PyLong_SHIFT; | |
} | |
z->ob_digit[i] = carry; | |
return long_normalize(z); | |
} | |
/* Subtract the absolute values of two integers. */ | |
static PyLongObject * | |
x_sub(PyLongObject *a, PyLongObject *b) | |
{ | |
Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); | |
PyLongObject *z; | |
Py_ssize_t i; | |
int sign = 1; | |
digit borrow = 0; | |
/* Ensure a is the larger of the two: */ | |
if (size_a < size_b) { | |
sign = -1; | |
{ PyLongObject *temp = a; a = b; b = temp; } | |
{ Py_ssize_t size_temp = size_a; | |
size_a = size_b; | |
size_b = size_temp; } | |
} | |
else if (size_a == size_b) { | |
/* Find highest digit where a and b differ: */ | |
i = size_a; | |
while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) | |
; | |
if (i < 0) | |
return _PyLong_New(0); | |
if (a->ob_digit[i] < b->ob_digit[i]) { | |
sign = -1; | |
{ PyLongObject *temp = a; a = b; b = temp; } | |
} | |
size_a = size_b = i+1; | |
} | |
z = _PyLong_New(size_a); | |
if (z == NULL) | |
return NULL; | |
for (i = 0; i < size_b; ++i) { | |
/* The following assumes unsigned arithmetic | |
works module 2**N for some N>PyLong_SHIFT. */ | |
borrow = a->ob_digit[i] - b->ob_digit[i] - borrow; | |
z->ob_digit[i] = borrow & PyLong_MASK; | |
borrow >>= PyLong_SHIFT; | |
borrow &= 1; /* Keep only one sign bit */ | |
} | |
for (; i < size_a; ++i) { | |
borrow = a->ob_digit[i] - borrow; | |
z->ob_digit[i] = borrow & PyLong_MASK; | |
borrow >>= PyLong_SHIFT; | |
borrow &= 1; /* Keep only one sign bit */ | |
} | |
assert(borrow == 0); | |
if (sign < 0) | |
z->ob_size = -(z->ob_size); | |
return long_normalize(z); | |
} | |
static PyObject * | |
long_add(PyLongObject *v, PyLongObject *w) | |
{ | |
PyLongObject *a, *b, *z; | |
CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); | |
if (a->ob_size < 0) { | |
if (b->ob_size < 0) { | |
z = x_add(a, b); | |
if (z != NULL && z->ob_size != 0) | |
z->ob_size = -(z->ob_size); | |
} | |
else | |
z = x_sub(b, a); | |
} | |
else { | |
if (b->ob_size < 0) | |
z = x_sub(a, b); | |
else | |
z = x_add(a, b); | |
} | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return (PyObject *)z; | |
} | |
static PyObject * | |
long_sub(PyLongObject *v, PyLongObject *w) | |
{ | |
PyLongObject *a, *b, *z; | |
CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); | |
if (a->ob_size < 0) { | |
if (b->ob_size < 0) | |
z = x_sub(a, b); | |
else | |
z = x_add(a, b); | |
if (z != NULL && z->ob_size != 0) | |
z->ob_size = -(z->ob_size); | |
} | |
else { | |
if (b->ob_size < 0) | |
z = x_add(a, b); | |
else | |
z = x_sub(a, b); | |
} | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return (PyObject *)z; | |
} | |
/* Grade school multiplication, ignoring the signs. | |
* Returns the absolute value of the product, or NULL if error. | |
*/ | |
static PyLongObject * | |
x_mul(PyLongObject *a, PyLongObject *b) | |
{ | |
PyLongObject *z; | |
Py_ssize_t size_a = ABS(Py_SIZE(a)); | |
Py_ssize_t size_b = ABS(Py_SIZE(b)); | |
Py_ssize_t i; | |
z = _PyLong_New(size_a + size_b); | |
if (z == NULL) | |
return NULL; | |
memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit)); | |
if (a == b) { | |
/* Efficient squaring per HAC, Algorithm 14.16: | |
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf | |
* Gives slightly less than a 2x speedup when a == b, | |
* via exploiting that each entry in the multiplication | |
* pyramid appears twice (except for the size_a squares). | |
*/ | |
for (i = 0; i < size_a; ++i) { | |
twodigits carry; | |
twodigits f = a->ob_digit[i]; | |
digit *pz = z->ob_digit + (i << 1); | |
digit *pa = a->ob_digit + i + 1; | |
digit *paend = a->ob_digit + size_a; | |
SIGCHECK({ | |
Py_DECREF(z); | |
return NULL; | |
}); | |
carry = *pz + f * f; | |
*pz++ = (digit)(carry & PyLong_MASK); | |
carry >>= PyLong_SHIFT; | |
assert(carry <= PyLong_MASK); | |
/* Now f is added in twice in each column of the | |
* pyramid it appears. Same as adding f<<1 once. | |
*/ | |
f <<= 1; | |
while (pa < paend) { | |
carry += *pz + *pa++ * f; | |
*pz++ = (digit)(carry & PyLong_MASK); | |
carry >>= PyLong_SHIFT; | |
assert(carry <= (PyLong_MASK << 1)); | |
} | |
if (carry) { | |
carry += *pz; | |
*pz++ = (digit)(carry & PyLong_MASK); | |
carry >>= PyLong_SHIFT; | |
} | |
if (carry) | |
*pz += (digit)(carry & PyLong_MASK); | |
assert((carry >> PyLong_SHIFT) == 0); | |
} | |
} | |
else { /* a is not the same as b -- gradeschool long mult */ | |
for (i = 0; i < size_a; ++i) { | |
twodigits carry = 0; | |
twodigits f = a->ob_digit[i]; | |
digit *pz = z->ob_digit + i; | |
digit *pb = b->ob_digit; | |
digit *pbend = b->ob_digit + size_b; | |
SIGCHECK({ | |
Py_DECREF(z); | |
return NULL; | |
}); | |
while (pb < pbend) { | |
carry += *pz + *pb++ * f; | |
*pz++ = (digit)(carry & PyLong_MASK); | |
carry >>= PyLong_SHIFT; | |
assert(carry <= PyLong_MASK); | |
} | |
if (carry) | |
*pz += (digit)(carry & PyLong_MASK); | |
assert((carry >> PyLong_SHIFT) == 0); | |
} | |
} | |
return long_normalize(z); | |
} | |
/* A helper for Karatsuba multiplication (k_mul). | |
Takes a long "n" and an integer "size" representing the place to | |
split, and sets low and high such that abs(n) == (high << size) + low, | |
viewing the shift as being by digits. The sign bit is ignored, and | |
the return values are >= 0. | |
Returns 0 on success, -1 on failure. | |
*/ | |
static int | |
kmul_split(PyLongObject *n, | |
Py_ssize_t size, | |
PyLongObject **high, | |
PyLongObject **low) | |
{ | |
PyLongObject *hi, *lo; | |
Py_ssize_t size_lo, size_hi; | |
const Py_ssize_t size_n = ABS(Py_SIZE(n)); | |
size_lo = MIN(size_n, size); | |
size_hi = size_n - size_lo; | |
if ((hi = _PyLong_New(size_hi)) == NULL) | |
return -1; | |
if ((lo = _PyLong_New(size_lo)) == NULL) { | |
Py_DECREF(hi); | |
return -1; | |
} | |
memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit)); | |
memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit)); | |
*high = long_normalize(hi); | |
*low = long_normalize(lo); | |
return 0; | |
} | |
static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); | |
/* Karatsuba multiplication. Ignores the input signs, and returns the | |
* absolute value of the product (or NULL if error). | |
* See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295). | |
*/ | |
static PyLongObject * | |
k_mul(PyLongObject *a, PyLongObject *b) | |
{ | |
Py_ssize_t asize = ABS(Py_SIZE(a)); | |
Py_ssize_t bsize = ABS(Py_SIZE(b)); | |
PyLongObject *ah = NULL; | |
PyLongObject *al = NULL; | |
PyLongObject *bh = NULL; | |
PyLongObject *bl = NULL; | |
PyLongObject *ret = NULL; | |
PyLongObject *t1, *t2, *t3; | |
Py_ssize_t shift; /* the number of digits we split off */ | |
Py_ssize_t i; | |
/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl | |
* Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl | |
* Then the original product is | |
* ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl | |
* By picking X to be a power of 2, "*X" is just shifting, and it's | |
* been reduced to 3 multiplies on numbers half the size. | |
*/ | |
/* We want to split based on the larger number; fiddle so that b | |
* is largest. | |
*/ | |
if (asize > bsize) { | |
t1 = a; | |
a = b; | |
b = t1; | |
i = asize; | |
asize = bsize; | |
bsize = i; | |
} | |
/* Use gradeschool math when either number is too small. */ | |
i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF; | |
if (asize <= i) { | |
if (asize == 0) | |
return _PyLong_New(0); | |
else | |
return x_mul(a, b); | |
} | |
/* If a is small compared to b, splitting on b gives a degenerate | |
* case with ah==0, and Karatsuba may be (even much) less efficient | |
* than "grade school" then. However, we can still win, by viewing | |
* b as a string of "big digits", each of width a->ob_size. That | |
* leads to a sequence of balanced calls to k_mul. | |
*/ | |
if (2 * asize <= bsize) | |
return k_lopsided_mul(a, b); | |
/* Split a & b into hi & lo pieces. */ | |
shift = bsize >> 1; | |
if (kmul_split(a, shift, &ah, &al) < 0) goto fail; | |
assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */ | |
if (a == b) { | |
bh = ah; | |
bl = al; | |
Py_INCREF(bh); | |
Py_INCREF(bl); | |
} | |
else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; | |
/* The plan: | |
* 1. Allocate result space (asize + bsize digits: that's always | |
* enough). | |
* 2. Compute ah*bh, and copy into result at 2*shift. | |
* 3. Compute al*bl, and copy into result at 0. Note that this | |
* can't overlap with #2. | |
* 4. Subtract al*bl from the result, starting at shift. This may | |
* underflow (borrow out of the high digit), but we don't care: | |
* we're effectively doing unsigned arithmetic mod | |
* PyLong_BASE**(sizea + sizeb), and so long as the *final* result fits, | |
* borrows and carries out of the high digit can be ignored. | |
* 5. Subtract ah*bh from the result, starting at shift. | |
* 6. Compute (ah+al)*(bh+bl), and add it into the result starting | |
* at shift. | |
*/ | |
/* 1. Allocate result space. */ | |
ret = _PyLong_New(asize + bsize); | |
if (ret == NULL) goto fail; | |
#ifdef Py_DEBUG | |
/* Fill with trash, to catch reference to uninitialized digits. */ | |
memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit)); | |
#endif | |
/* 2. t1 <- ah*bh, and copy into high digits of result. */ | |
if ((t1 = k_mul(ah, bh)) == NULL) goto fail; | |
assert(Py_SIZE(t1) >= 0); | |
assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret)); | |
memcpy(ret->ob_digit + 2*shift, t1->ob_digit, | |
Py_SIZE(t1) * sizeof(digit)); | |
/* Zero-out the digits higher than the ah*bh copy. */ | |
i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1); | |
if (i) | |
memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0, | |
i * sizeof(digit)); | |
/* 3. t2 <- al*bl, and copy into the low digits. */ | |
if ((t2 = k_mul(al, bl)) == NULL) { | |
Py_DECREF(t1); | |
goto fail; | |
} | |
assert(Py_SIZE(t2) >= 0); | |
assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */ | |
memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit)); | |
/* Zero out remaining digits. */ | |
i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */ | |
if (i) | |
memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit)); | |
/* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first | |
* because it's fresher in cache. | |
*/ | |
i = Py_SIZE(ret) - shift; /* # digits after shift */ | |
(void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2)); | |
Py_DECREF(t2); | |
(void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1)); | |
Py_DECREF(t1); | |
/* 6. t3 <- (ah+al)(bh+bl), and add into result. */ | |
if ((t1 = x_add(ah, al)) == NULL) goto fail; | |
Py_DECREF(ah); | |
Py_DECREF(al); | |
ah = al = NULL; | |
if (a == b) { | |
t2 = t1; | |
Py_INCREF(t2); | |
} | |
else if ((t2 = x_add(bh, bl)) == NULL) { | |
Py_DECREF(t1); | |
goto fail; | |
} | |
Py_DECREF(bh); | |
Py_DECREF(bl); | |
bh = bl = NULL; | |
t3 = k_mul(t1, t2); | |
Py_DECREF(t1); | |
Py_DECREF(t2); | |
if (t3 == NULL) goto fail; | |
assert(Py_SIZE(t3) >= 0); | |
/* Add t3. It's not obvious why we can't run out of room here. | |
* See the (*) comment after this function. | |
*/ | |
(void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3)); | |
Py_DECREF(t3); | |
return long_normalize(ret); | |
fail: | |
Py_XDECREF(ret); | |
Py_XDECREF(ah); | |
Py_XDECREF(al); | |
Py_XDECREF(bh); | |
Py_XDECREF(bl); | |
return NULL; | |
} | |
/* (*) Why adding t3 can't "run out of room" above. | |
Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts | |
to start with: | |
1. For any integer i, i = c(i/2) + f(i/2). In particular, | |
bsize = c(bsize/2) + f(bsize/2). | |
2. shift = f(bsize/2) | |
3. asize <= bsize | |
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this | |
routine, so asize > bsize/2 >= f(bsize/2) in this routine. | |
We allocated asize + bsize result digits, and add t3 into them at an offset | |
of shift. This leaves asize+bsize-shift allocated digit positions for t3 | |
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) = | |
asize + c(bsize/2) available digit positions. | |
bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has | |
at most c(bsize/2) digits + 1 bit. | |
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2) | |
digits, and al has at most f(bsize/2) digits in any case. So ah+al has at | |
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit. | |
The product (ah+al)*(bh+bl) therefore has at most | |
c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits | |
and we have asize + c(bsize/2) available digit positions. We need to show | |
this is always enough. An instance of c(bsize/2) cancels out in both, so | |
the question reduces to whether asize digits is enough to hold | |
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize, | |
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4, | |
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1 | |
digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If | |
asize == bsize, then we're asking whether bsize digits is enough to hold | |
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits | |
is enough to hold 2 bits. This is so if bsize >= 2, which holds because | |
bsize >= KARATSUBA_CUTOFF >= 2. | |
Note that since there's always enough room for (ah+al)*(bh+bl), and that's | |
clearly >= each of ah*bh and al*bl, there's always enough room to subtract | |
ah*bh and al*bl too. | |
*/ | |
/* b has at least twice the digits of a, and a is big enough that Karatsuba | |
* would pay off *if* the inputs had balanced sizes. View b as a sequence | |
* of slices, each with a->ob_size digits, and multiply the slices by a, | |
* one at a time. This gives k_mul balanced inputs to work with, and is | |
* also cache-friendly (we compute one double-width slice of the result | |
* at a time, then move on, never backtracking except for the helpful | |
* single-width slice overlap between successive partial sums). | |
*/ | |
static PyLongObject * | |
k_lopsided_mul(PyLongObject *a, PyLongObject *b) | |
{ | |
const Py_ssize_t asize = ABS(Py_SIZE(a)); | |
Py_ssize_t bsize = ABS(Py_SIZE(b)); | |
Py_ssize_t nbdone; /* # of b digits already multiplied */ | |
PyLongObject *ret; | |
PyLongObject *bslice = NULL; | |
assert(asize > KARATSUBA_CUTOFF); | |
assert(2 * asize <= bsize); | |
/* Allocate result space, and zero it out. */ | |
ret = _PyLong_New(asize + bsize); | |
if (ret == NULL) | |
return NULL; | |
memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit)); | |
/* Successive slices of b are copied into bslice. */ | |
bslice = _PyLong_New(asize); | |
if (bslice == NULL) | |
goto fail; | |
nbdone = 0; | |
while (bsize > 0) { | |
PyLongObject *product; | |
const Py_ssize_t nbtouse = MIN(bsize, asize); | |
/* Multiply the next slice of b by a. */ | |
memcpy(bslice->ob_digit, b->ob_digit + nbdone, | |
nbtouse * sizeof(digit)); | |
Py_SIZE(bslice) = nbtouse; | |
product = k_mul(a, bslice); | |
if (product == NULL) | |
goto fail; | |
/* Add into result. */ | |
(void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone, | |
product->ob_digit, Py_SIZE(product)); | |
Py_DECREF(product); | |
bsize -= nbtouse; | |
nbdone += nbtouse; | |
} | |
Py_DECREF(bslice); | |
return long_normalize(ret); | |
fail: | |
Py_DECREF(ret); | |
Py_XDECREF(bslice); | |
return NULL; | |
} | |
static PyObject * | |
long_mul(PyLongObject *v, PyLongObject *w) | |
{ | |
PyLongObject *a, *b, *z; | |
if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) { | |
Py_INCREF(Py_NotImplemented); | |
return Py_NotImplemented; | |
} | |
z = k_mul(a, b); | |
/* Negate if exactly one of the inputs is negative. */ | |
if (((a->ob_size ^ b->ob_size) < 0) && z) | |
z->ob_size = -(z->ob_size); | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return (PyObject *)z; | |
} | |
/* The / and % operators are now defined in terms of divmod(). | |
The expression a mod b has the value a - b*floor(a/b). | |
The long_divrem function gives the remainder after division of | |
|a| by |b|, with the sign of a. This is also expressed | |
as a - b*trunc(a/b), if trunc truncates towards zero. | |
Some examples: | |
a b a rem b a mod b | |
13 10 3 3 | |
-13 10 -3 7 | |
13 -10 3 -7 | |
-13 -10 -3 -3 | |
So, to get from rem to mod, we have to add b if a and b | |
have different signs. We then subtract one from the 'div' | |
part of the outcome to keep the invariant intact. */ | |
/* Compute | |
* *pdiv, *pmod = divmod(v, w) | |
* NULL can be passed for pdiv or pmod, in which case that part of | |
* the result is simply thrown away. The caller owns a reference to | |
* each of these it requests (does not pass NULL for). | |
*/ | |
static int | |
l_divmod(PyLongObject *v, PyLongObject *w, | |
PyLongObject **pdiv, PyLongObject **pmod) | |
{ | |
PyLongObject *div, *mod; | |
if (long_divrem(v, w, &div, &mod) < 0) | |
return -1; | |
if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) || | |
(Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) { | |
PyLongObject *temp; | |
PyLongObject *one; | |
temp = (PyLongObject *) long_add(mod, w); | |
Py_DECREF(mod); | |
mod = temp; | |
if (mod == NULL) { | |
Py_DECREF(div); | |
return -1; | |
} | |
one = (PyLongObject *) PyLong_FromLong(1L); | |
if (one == NULL || | |
(temp = (PyLongObject *) long_sub(div, one)) == NULL) { | |
Py_DECREF(mod); | |
Py_DECREF(div); | |
Py_XDECREF(one); | |
return -1; | |
} | |
Py_DECREF(one); | |
Py_DECREF(div); | |
div = temp; | |
} | |
if (pdiv != NULL) | |
*pdiv = div; | |
else | |
Py_DECREF(div); | |
if (pmod != NULL) | |
*pmod = mod; | |
else | |
Py_DECREF(mod); | |
return 0; | |
} | |
static PyObject * | |
long_div(PyObject *v, PyObject *w) | |
{ | |
PyLongObject *a, *b, *div; | |
CONVERT_BINOP(v, w, &a, &b); | |
if (l_divmod(a, b, &div, NULL) < 0) | |
div = NULL; | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return (PyObject *)div; | |
} | |
static PyObject * | |
long_classic_div(PyObject *v, PyObject *w) | |
{ | |
PyLongObject *a, *b, *div; | |
CONVERT_BINOP(v, w, &a, &b); | |
if (Py_DivisionWarningFlag && | |
PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0) | |
div = NULL; | |
else if (l_divmod(a, b, &div, NULL) < 0) | |
div = NULL; | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return (PyObject *)div; | |
} | |
/* PyLong/PyLong -> float, with correctly rounded result. */ | |
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT) | |
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT) | |
static PyObject * | |
long_true_divide(PyObject *v, PyObject *w) | |
{ | |
PyLongObject *a, *b, *x; | |
Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits; | |
digit mask, low; | |
int inexact, negate, a_is_small, b_is_small; | |
double dx, result; | |
CONVERT_BINOP(v, w, &a, &b); | |
/* | |
Method in a nutshell: | |
0. reduce to case a, b > 0; filter out obvious underflow/overflow | |
1. choose a suitable integer 'shift' | |
2. use integer arithmetic to compute x = floor(2**-shift*a/b) | |
3. adjust x for correct rounding | |
4. convert x to a double dx with the same value | |
5. return ldexp(dx, shift). | |
In more detail: | |
0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b | |
returns either 0.0 or -0.0, depending on the sign of b. For a and | |
b both nonzero, ignore signs of a and b, and add the sign back in | |
at the end. Now write a_bits and b_bits for the bit lengths of a | |
and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise | |
for b). Then | |
2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1). | |
So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and | |
so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP - | |
DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of | |
the way, we can assume that | |
DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP. | |
1. The integer 'shift' is chosen so that x has the right number of | |
bits for a double, plus two or three extra bits that will be used | |
in the rounding decisions. Writing a_bits and b_bits for the | |
number of significant bits in a and b respectively, a | |
straightforward formula for shift is: | |
shift = a_bits - b_bits - DBL_MANT_DIG - 2 | |
This is fine in the usual case, but if a/b is smaller than the | |
smallest normal float then it can lead to double rounding on an | |
IEEE 754 platform, giving incorrectly rounded results. So we | |
adjust the formula slightly. The actual formula used is: | |
shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2 | |
2. The quantity x is computed by first shifting a (left -shift bits | |
if shift <= 0, right shift bits if shift > 0) and then dividing by | |
b. For both the shift and the division, we keep track of whether | |
the result is inexact, in a flag 'inexact'; this information is | |
needed at the rounding stage. | |
With the choice of shift above, together with our assumption that | |
a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows | |
that x >= 1. | |
3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace | |
this with an exactly representable float of the form | |
round(x/2**extra_bits) * 2**(extra_bits+shift). | |
For float representability, we need x/2**extra_bits < | |
2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP - | |
DBL_MANT_DIG. This translates to the condition: | |
extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG | |
To round, we just modify the bottom digit of x in-place; this can | |
end up giving a digit with value > PyLONG_MASK, but that's not a | |
problem since digits can hold values up to 2*PyLONG_MASK+1. | |
With the original choices for shift above, extra_bits will always | |
be 2 or 3. Then rounding under the round-half-to-even rule, we | |
round up iff the most significant of the extra bits is 1, and | |
either: (a) the computation of x in step 2 had an inexact result, | |
or (b) at least one other of the extra bits is 1, or (c) the least | |
significant bit of x (above those to be rounded) is 1. | |
4. Conversion to a double is straightforward; all floating-point | |
operations involved in the conversion are exact, so there's no | |
danger of rounding errors. | |
5. Use ldexp(x, shift) to compute x*2**shift, the final result. | |
The result will always be exactly representable as a double, except | |
in the case that it overflows. To avoid dependence on the exact | |
behaviour of ldexp on overflow, we check for overflow before | |
applying ldexp. The result of ldexp is adjusted for sign before | |
returning. | |
*/ | |
/* Reduce to case where a and b are both positive. */ | |
a_size = ABS(Py_SIZE(a)); | |
b_size = ABS(Py_SIZE(b)); | |
negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0); | |
if (b_size == 0) { | |
PyErr_SetString(PyExc_ZeroDivisionError, | |
"division by zero"); | |
goto error; | |
} | |
if (a_size == 0) | |
goto underflow_or_zero; | |
/* Fast path for a and b small (exactly representable in a double). | |
Relies on floating-point division being correctly rounded; results | |
may be subject to double rounding on x86 machines that operate with | |
the x87 FPU set to 64-bit precision. */ | |
a_is_small = a_size <= MANT_DIG_DIGITS || | |
(a_size == MANT_DIG_DIGITS+1 && | |
a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); | |
b_is_small = b_size <= MANT_DIG_DIGITS || | |
(b_size == MANT_DIG_DIGITS+1 && | |
b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); | |
if (a_is_small && b_is_small) { | |
double da, db; | |
da = a->ob_digit[--a_size]; | |
while (a_size > 0) | |
da = da * PyLong_BASE + a->ob_digit[--a_size]; | |
db = b->ob_digit[--b_size]; | |
while (b_size > 0) | |
db = db * PyLong_BASE + b->ob_digit[--b_size]; | |
result = da / db; | |
goto success; | |
} | |
/* Catch obvious cases of underflow and overflow */ | |
diff = a_size - b_size; | |
if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1) | |
/* Extreme overflow */ | |
goto overflow; | |
else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT) | |
/* Extreme underflow */ | |
goto underflow_or_zero; | |
/* Next line is now safe from overflowing a Py_ssize_t */ | |
diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) - | |
bits_in_digit(b->ob_digit[b_size - 1]); | |
/* Now diff = a_bits - b_bits. */ | |
if (diff > DBL_MAX_EXP) | |
goto overflow; | |
else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1) | |
goto underflow_or_zero; | |
/* Choose value for shift; see comments for step 1 above. */ | |
shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2; | |
inexact = 0; | |
/* x = abs(a * 2**-shift) */ | |
if (shift <= 0) { | |
Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT; | |
digit rem; | |
/* x = a << -shift */ | |
if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) { | |
/* In practice, it's probably impossible to end up | |
here. Both a and b would have to be enormous, | |
using close to SIZE_T_MAX bytes of memory each. */ | |
PyErr_SetString(PyExc_OverflowError, | |
"intermediate overflow during division"); | |
goto error; | |
} | |
x = _PyLong_New(a_size + shift_digits + 1); | |
if (x == NULL) | |
goto error; | |
for (i = 0; i < shift_digits; i++) | |
x->ob_digit[i] = 0; | |
rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit, | |
a_size, -shift % PyLong_SHIFT); | |
x->ob_digit[a_size + shift_digits] = rem; | |
} | |
else { | |
Py_ssize_t shift_digits = shift / PyLong_SHIFT; | |
digit rem; | |
/* x = a >> shift */ | |
assert(a_size >= shift_digits); | |
x = _PyLong_New(a_size - shift_digits); | |
if (x == NULL) | |
goto error; | |
rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits, | |
a_size - shift_digits, shift % PyLong_SHIFT); | |
/* set inexact if any of the bits shifted out is nonzero */ | |
if (rem) | |
inexact = 1; | |
while (!inexact && shift_digits > 0) | |
if (a->ob_digit[--shift_digits]) | |
inexact = 1; | |
} | |
long_normalize(x); | |
x_size = Py_SIZE(x); | |
/* x //= b. If the remainder is nonzero, set inexact. We own the only | |
reference to x, so it's safe to modify it in-place. */ | |
if (b_size == 1) { | |
digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size, | |
b->ob_digit[0]); | |
long_normalize(x); | |
if (rem) | |
inexact = 1; | |
} | |
else { | |
PyLongObject *div, *rem; | |
div = x_divrem(x, b, &rem); | |
Py_DECREF(x); | |
x = div; | |
if (x == NULL) | |
goto error; | |
if (Py_SIZE(rem)) | |
inexact = 1; | |
Py_DECREF(rem); | |
} | |
x_size = ABS(Py_SIZE(x)); | |
assert(x_size > 0); /* result of division is never zero */ | |
x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]); | |
/* The number of extra bits that have to be rounded away. */ | |
extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG; | |
assert(extra_bits == 2 || extra_bits == 3); | |
/* Round by directly modifying the low digit of x. */ | |
mask = (digit)1 << (extra_bits - 1); | |
low = x->ob_digit[0] | inexact; | |
if (low & mask && low & (3*mask-1)) | |
low += mask; | |
x->ob_digit[0] = low & ~(mask-1U); | |
/* Convert x to a double dx; the conversion is exact. */ | |
dx = x->ob_digit[--x_size]; | |
while (x_size > 0) | |
dx = dx * PyLong_BASE + x->ob_digit[--x_size]; | |
Py_DECREF(x); | |
/* Check whether ldexp result will overflow a double. */ | |
if (shift + x_bits >= DBL_MAX_EXP && | |
(shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits))) | |
goto overflow; | |
result = ldexp(dx, (int)shift); | |
success: | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return PyFloat_FromDouble(negate ? -result : result); | |
underflow_or_zero: | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return PyFloat_FromDouble(negate ? -0.0 : 0.0); | |
overflow: | |
PyErr_SetString(PyExc_OverflowError, | |
"integer division result too large for a float"); | |
error: | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return NULL; | |
} | |
static PyObject * | |
long_mod(PyObject *v, PyObject *w) | |
{ | |
PyLongObject *a, *b, *mod; | |
CONVERT_BINOP(v, w, &a, &b); | |
if (l_divmod(a, b, NULL, &mod) < 0) | |
mod = NULL; | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return (PyObject *)mod; | |
} | |
static PyObject * | |
long_divmod(PyObject *v, PyObject *w) | |
{ | |
PyLongObject *a, *b, *div, *mod; | |
PyObject *z; | |
CONVERT_BINOP(v, w, &a, &b); | |
if (l_divmod(a, b, &div, &mod) < 0) { | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return NULL; | |
} | |
z = PyTuple_New(2); | |
if (z != NULL) { | |
PyTuple_SetItem(z, 0, (PyObject *) div); | |
PyTuple_SetItem(z, 1, (PyObject *) mod); | |
} | |
else { | |
Py_DECREF(div); | |
Py_DECREF(mod); | |
} | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return z; | |
} | |
/* pow(v, w, x) */ | |
static PyObject * | |
long_pow(PyObject *v, PyObject *w, PyObject *x) | |
{ | |
PyLongObject *a, *b, *c; /* a,b,c = v,w,x */ | |
int negativeOutput = 0; /* if x<0 return negative output */ | |
PyLongObject *z = NULL; /* accumulated result */ | |
Py_ssize_t i, j, k; /* counters */ | |
PyLongObject *temp = NULL; | |
/* 5-ary values. If the exponent is large enough, table is | |
* precomputed so that table[i] == a**i % c for i in range(32). | |
*/ | |
PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | |
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
/* a, b, c = v, w, x */ | |
CONVERT_BINOP(v, w, &a, &b); | |
if (PyLong_Check(x)) { | |
c = (PyLongObject *)x; | |
Py_INCREF(x); | |
} | |
else if (PyInt_Check(x)) { | |
c = (PyLongObject *)PyLong_FromLong(PyInt_AS_LONG(x)); | |
if (c == NULL) | |
goto Error; | |
} | |
else if (x == Py_None) | |
c = NULL; | |
else { | |
Py_DECREF(a); | |
Py_DECREF(b); | |
Py_INCREF(Py_NotImplemented); | |
return Py_NotImplemented; | |
} | |
if (Py_SIZE(b) < 0) { /* if exponent is negative */ | |
if (c) { | |
PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " | |
"cannot be negative when 3rd argument specified"); | |
goto Error; | |
} | |
else { | |
/* else return a float. This works because we know | |
that this calls float_pow() which converts its | |
arguments to double. */ | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return PyFloat_Type.tp_as_number->nb_power(v, w, x); | |
} | |
} | |
if (c) { | |
/* if modulus == 0: | |
raise ValueError() */ | |
if (Py_SIZE(c) == 0) { | |
PyErr_SetString(PyExc_ValueError, | |
"pow() 3rd argument cannot be 0"); | |
goto Error; | |
} | |
/* if modulus < 0: | |
negativeOutput = True | |
modulus = -modulus */ | |
if (Py_SIZE(c) < 0) { | |
negativeOutput = 1; | |
temp = (PyLongObject *)_PyLong_Copy(c); | |
if (temp == NULL) | |
goto Error; | |
Py_DECREF(c); | |
c = temp; | |
temp = NULL; | |
c->ob_size = - c->ob_size; | |
} | |
/* if modulus == 1: | |
return 0 */ | |
if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) { | |
z = (PyLongObject *)PyLong_FromLong(0L); | |
goto Done; | |
} | |
/* if base < 0: | |
base = base % modulus | |
Having the base positive just makes things easier. */ | |
if (Py_SIZE(a) < 0) { | |
if (l_divmod(a, c, NULL, &temp) < 0) | |
goto Error; | |
Py_DECREF(a); | |
a = temp; | |
temp = NULL; | |
} | |
} | |
/* At this point a, b, and c are guaranteed non-negative UNLESS | |
c is NULL, in which case a may be negative. */ | |
z = (PyLongObject *)PyLong_FromLong(1L); | |
if (z == NULL) | |
goto Error; | |
/* Perform a modular reduction, X = X % c, but leave X alone if c | |
* is NULL. | |
*/ | |
#define REDUCE(X) \ | |
do { \ | |
if (c != NULL) { \ | |
if (l_divmod(X, c, NULL, &temp) < 0) \ | |
goto Error; \ | |
Py_XDECREF(X); \ | |
X = temp; \ | |
temp = NULL; \ | |
} \ | |
} while(0) | |
/* Multiply two values, then reduce the result: | |
result = X*Y % c. If c is NULL, skip the mod. */ | |
#define MULT(X, Y, result) \ | |
do { \ | |
temp = (PyLongObject *)long_mul(X, Y); \ | |
if (temp == NULL) \ | |
goto Error; \ | |
Py_XDECREF(result); \ | |
result = temp; \ | |
temp = NULL; \ | |
REDUCE(result); \ | |
} while(0) | |
if (Py_SIZE(b) <= FIVEARY_CUTOFF) { | |
/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */ | |
/* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */ | |
for (i = Py_SIZE(b) - 1; i >= 0; --i) { | |
digit bi = b->ob_digit[i]; | |
for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) { | |
MULT(z, z, z); | |
if (bi & j) | |
MULT(z, a, z); | |
} | |
} | |
} | |
else { | |
/* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */ | |
Py_INCREF(z); /* still holds 1L */ | |
table[0] = z; | |
for (i = 1; i < 32; ++i) | |
MULT(table[i-1], a, table[i]); | |
for (i = Py_SIZE(b) - 1; i >= 0; --i) { | |
const digit bi = b->ob_digit[i]; | |
for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) { | |
const int index = (bi >> j) & 0x1f; | |
for (k = 0; k < 5; ++k) | |
MULT(z, z, z); | |
if (index) | |
MULT(z, table[index], z); | |
} | |
} | |
} | |
if (negativeOutput && (Py_SIZE(z) != 0)) { | |
temp = (PyLongObject *)long_sub(z, c); | |
if (temp == NULL) | |
goto Error; | |
Py_DECREF(z); | |
z = temp; | |
temp = NULL; | |
} | |
goto Done; | |
Error: | |
if (z != NULL) { | |
Py_DECREF(z); | |
z = NULL; | |
} | |
/* fall through */ | |
Done: | |
if (Py_SIZE(b) > FIVEARY_CUTOFF) { | |
for (i = 0; i < 32; ++i) | |
Py_XDECREF(table[i]); | |
} | |
Py_DECREF(a); | |
Py_DECREF(b); | |
Py_XDECREF(c); | |
Py_XDECREF(temp); | |
return (PyObject *)z; | |
} | |
static PyObject * | |
long_invert(PyLongObject *v) | |
{ | |
/* Implement ~x as -(x+1) */ | |
PyLongObject *x; | |
PyLongObject *w; | |
w = (PyLongObject *)PyLong_FromLong(1L); | |
if (w == NULL) | |
return NULL; | |
x = (PyLongObject *) long_add(v, w); | |
Py_DECREF(w); | |
if (x == NULL) | |
return NULL; | |
Py_SIZE(x) = -(Py_SIZE(x)); | |
return (PyObject *)x; | |
} | |
static PyObject * | |
long_neg(PyLongObject *v) | |
{ | |
PyLongObject *z; | |
if (v->ob_size == 0 && PyLong_CheckExact(v)) { | |
/* -0 == 0 */ | |
Py_INCREF(v); | |
return (PyObject *) v; | |
} | |
z = (PyLongObject *)_PyLong_Copy(v); | |
if (z != NULL) | |
z->ob_size = -(v->ob_size); | |
return (PyObject *)z; | |
} | |
static PyObject * | |
long_abs(PyLongObject *v) | |
{ | |
if (v->ob_size < 0) | |
return long_neg(v); | |
else | |
return long_long((PyObject *)v); | |
} | |
static int | |
long_nonzero(PyLongObject *v) | |
{ | |
return Py_SIZE(v) != 0; | |
} | |
static PyObject * | |
long_rshift(PyLongObject *v, PyLongObject *w) | |
{ | |
PyLongObject *a, *b; | |
PyLongObject *z = NULL; | |
Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j; | |
digit lomask, himask; | |
CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b); | |
if (Py_SIZE(a) < 0) { | |
/* Right shifting negative numbers is harder */ | |
PyLongObject *a1, *a2; | |
a1 = (PyLongObject *) long_invert(a); | |
if (a1 == NULL) | |
goto rshift_error; | |
a2 = (PyLongObject *) long_rshift(a1, b); | |
Py_DECREF(a1); | |
if (a2 == NULL) | |
goto rshift_error; | |
z = (PyLongObject *) long_invert(a2); | |
Py_DECREF(a2); | |
} | |
else { | |
shiftby = PyLong_AsSsize_t((PyObject *)b); | |
if (shiftby == -1L && PyErr_Occurred()) | |
goto rshift_error; | |
if (shiftby < 0) { | |
PyErr_SetString(PyExc_ValueError, | |
"negative shift count"); | |
goto rshift_error; | |
} | |
wordshift = shiftby / PyLong_SHIFT; | |
newsize = ABS(Py_SIZE(a)) - wordshift; | |
if (newsize <= 0) { | |
z = _PyLong_New(0); | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return (PyObject *)z; | |
} | |
loshift = shiftby % PyLong_SHIFT; | |
hishift = PyLong_SHIFT - loshift; | |
lomask = ((digit)1 << hishift) - 1; | |
himask = PyLong_MASK ^ lomask; | |
z = _PyLong_New(newsize); | |
if (z == NULL) | |
goto rshift_error; | |
if (Py_SIZE(a) < 0) | |
Py_SIZE(z) = -(Py_SIZE(z)); | |
for (i = 0, j = wordshift; i < newsize; i++, j++) { | |
z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask; | |
if (i+1 < newsize) | |
z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask; | |
} | |
z = long_normalize(z); | |
} | |
rshift_error: | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return (PyObject *) z; | |
} | |
static PyObject * | |
long_lshift(PyObject *v, PyObject *w) | |
{ | |
/* This version due to Tim Peters */ | |
PyLongObject *a, *b; | |
PyLongObject *z = NULL; | |
Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j; | |
twodigits accum; | |
CONVERT_BINOP(v, w, &a, &b); | |
shiftby = PyLong_AsSsize_t((PyObject *)b); | |
if (shiftby == -1L && PyErr_Occurred()) | |
goto lshift_error; | |
if (shiftby < 0) { | |
PyErr_SetString(PyExc_ValueError, "negative shift count"); | |
goto lshift_error; | |
} | |
/* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */ | |
wordshift = shiftby / PyLong_SHIFT; | |
remshift = shiftby - wordshift * PyLong_SHIFT; | |
oldsize = ABS(a->ob_size); | |
newsize = oldsize + wordshift; | |
if (remshift) | |
++newsize; | |
z = _PyLong_New(newsize); | |
if (z == NULL) | |
goto lshift_error; | |
if (a->ob_size < 0) | |
z->ob_size = -(z->ob_size); | |
for (i = 0; i < wordshift; i++) | |
z->ob_digit[i] = 0; | |
accum = 0; | |
for (i = wordshift, j = 0; j < oldsize; i++, j++) { | |
accum |= (twodigits)a->ob_digit[j] << remshift; | |
z->ob_digit[i] = (digit)(accum & PyLong_MASK); | |
accum >>= PyLong_SHIFT; | |
} | |
if (remshift) | |
z->ob_digit[newsize-1] = (digit)accum; | |
else | |
assert(!accum); | |
z = long_normalize(z); | |
lshift_error: | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return (PyObject *) z; | |
} | |
/* Compute two's complement of digit vector a[0:m], writing result to | |
z[0:m]. The digit vector a need not be normalized, but should not | |
be entirely zero. a and z may point to the same digit vector. */ | |
static void | |
v_complement(digit *z, digit *a, Py_ssize_t m) | |
{ | |
Py_ssize_t i; | |
digit carry = 1; | |
for (i = 0; i < m; ++i) { | |
carry += a[i] ^ PyLong_MASK; | |
z[i] = carry & PyLong_MASK; | |
carry >>= PyLong_SHIFT; | |
} | |
assert(carry == 0); | |
} | |
/* Bitwise and/xor/or operations */ | |
static PyObject * | |
long_bitwise(PyLongObject *a, | |
int op, /* '&', '|', '^' */ | |
PyLongObject *b) | |
{ | |
int nega, negb, negz; | |
Py_ssize_t size_a, size_b, size_z, i; | |
PyLongObject *z; | |
/* Bitwise operations for negative numbers operate as though | |
on a two's complement representation. So convert arguments | |
from sign-magnitude to two's complement, and convert the | |
result back to sign-magnitude at the end. */ | |
/* If a is negative, replace it by its two's complement. */ | |
size_a = ABS(Py_SIZE(a)); | |
nega = Py_SIZE(a) < 0; | |
if (nega) { | |
z = _PyLong_New(size_a); | |
if (z == NULL) | |
return NULL; | |
v_complement(z->ob_digit, a->ob_digit, size_a); | |
a = z; | |
} | |
else | |
/* Keep reference count consistent. */ | |
Py_INCREF(a); | |
/* Same for b. */ | |
size_b = ABS(Py_SIZE(b)); | |
negb = Py_SIZE(b) < 0; | |
if (negb) { | |
z = _PyLong_New(size_b); | |
if (z == NULL) { | |
Py_DECREF(a); | |
return NULL; | |
} | |
v_complement(z->ob_digit, b->ob_digit, size_b); | |
b = z; | |
} | |
else | |
Py_INCREF(b); | |
/* Swap a and b if necessary to ensure size_a >= size_b. */ | |
if (size_a < size_b) { | |
z = a; a = b; b = z; | |
size_z = size_a; size_a = size_b; size_b = size_z; | |
negz = nega; nega = negb; negb = negz; | |
} | |
/* JRH: The original logic here was to allocate the result value (z) | |
as the longer of the two operands. However, there are some cases | |
where the result is guaranteed to be shorter than that: AND of two | |
positives, OR of two negatives: use the shorter number. AND with | |
mixed signs: use the positive number. OR with mixed signs: use the | |
negative number. | |
*/ | |
switch (op) { | |
case '^': | |
negz = nega ^ negb; | |
size_z = size_a; | |
break; | |
case '&': | |
negz = nega & negb; | |
size_z = negb ? size_a : size_b; | |
break; | |
case '|': | |
negz = nega | negb; | |
size_z = negb ? size_b : size_a; | |
break; | |
default: | |
PyErr_BadArgument(); | |
return NULL; | |
} | |
/* We allow an extra digit if z is negative, to make sure that | |
the final two's complement of z doesn't overflow. */ | |
z = _PyLong_New(size_z + negz); | |
if (z == NULL) { | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return NULL; | |
} | |
/* Compute digits for overlap of a and b. */ | |
switch(op) { | |
case '&': | |
for (i = 0; i < size_b; ++i) | |
z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i]; | |
break; | |
case '|': | |
for (i = 0; i < size_b; ++i) | |
z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i]; | |
break; | |
case '^': | |
for (i = 0; i < size_b; ++i) | |
z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i]; | |
break; | |
default: | |
PyErr_BadArgument(); | |
return NULL; | |
} | |
/* Copy any remaining digits of a, inverting if necessary. */ | |
if (op == '^' && negb) | |
for (; i < size_z; ++i) | |
z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK; | |
else if (i < size_z) | |
memcpy(&z->ob_digit[i], &a->ob_digit[i], | |
(size_z-i)*sizeof(digit)); | |
/* Complement result if negative. */ | |
if (negz) { | |
Py_SIZE(z) = -(Py_SIZE(z)); | |
z->ob_digit[size_z] = PyLong_MASK; | |
v_complement(z->ob_digit, z->ob_digit, size_z+1); | |
} | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return (PyObject *)long_normalize(z); | |
} | |
static PyObject * | |
long_and(PyObject *v, PyObject *w) | |
{ | |
PyLongObject *a, *b; | |
PyObject *c; | |
CONVERT_BINOP(v, w, &a, &b); | |
c = long_bitwise(a, '&', b); | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return c; | |
} | |
static PyObject * | |
long_xor(PyObject *v, PyObject *w) | |
{ | |
PyLongObject *a, *b; | |
PyObject *c; | |
CONVERT_BINOP(v, w, &a, &b); | |
c = long_bitwise(a, '^', b); | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return c; | |
} | |
static PyObject * | |
long_or(PyObject *v, PyObject *w) | |
{ | |
PyLongObject *a, *b; | |
PyObject *c; | |
CONVERT_BINOP(v, w, &a, &b); | |
c = long_bitwise(a, '|', b); | |
Py_DECREF(a); | |
Py_DECREF(b); | |
return c; | |
} | |
static int | |
long_coerce(PyObject **pv, PyObject **pw) | |
{ | |
if (PyInt_Check(*pw)) { | |
*pw = PyLong_FromLong(PyInt_AS_LONG(*pw)); | |
if (*pw == NULL) | |
return -1; | |
Py_INCREF(*pv); | |
return 0; | |
} | |
else if (PyLong_Check(*pw)) { | |
Py_INCREF(*pv); | |
Py_INCREF(*pw); | |
return 0; | |
} | |
return 1; /* Can't do it */ | |
} | |
static PyObject * | |
long_long(PyObject *v) | |
{ | |
if (PyLong_CheckExact(v)) | |
Py_INCREF(v); | |
else | |
v = _PyLong_Copy((PyLongObject *)v); | |
return v; | |
} | |
static PyObject * | |
long_int(PyObject *v) | |
{ | |
long x; | |
x = PyLong_AsLong(v); | |
if (PyErr_Occurred()) { | |
if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | |
PyErr_Clear(); | |
if (PyLong_CheckExact(v)) { | |
Py_INCREF(v); | |
return v; | |
} | |
else | |
return _PyLong_Copy((PyLongObject *)v); | |
} | |
else | |
return NULL; | |
} | |
return PyInt_FromLong(x); | |
} | |
static PyObject * | |
long_float(PyObject *v) | |
{ | |
double result; | |
result = PyLong_AsDouble(v); | |
if (result == -1.0 && PyErr_Occurred()) | |
return NULL; | |
return PyFloat_FromDouble(result); | |
} | |
static PyObject * | |
long_oct(PyObject *v) | |
{ | |
return _PyLong_Format(v, 8, 1, 0); | |
} | |
static PyObject * | |
long_hex(PyObject *v) | |
{ | |
return _PyLong_Format(v, 16, 1, 0); | |
} | |
static PyObject * | |
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); | |
static PyObject * | |
long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | |
{ | |
PyObject *x = NULL; | |
int base = -909; /* unlikely! */ | |
static char *kwlist[] = {"x", "base", 0}; | |
if (type != &PyLong_Type) | |
return long_subtype_new(type, args, kwds); /* Wimp out */ | |
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist, | |
&x, &base)) | |
return NULL; | |
if (x == NULL) | |
return PyLong_FromLong(0L); | |
if (base == -909) | |
return PyNumber_Long(x); | |
else if (PyString_Check(x)) { | |
/* Since PyLong_FromString doesn't have a length parameter, | |
* check here for possible NULs in the string. */ | |
char *string = PyString_AS_STRING(x); | |
if (strlen(string) != (size_t)PyString_Size(x)) { | |
/* create a repr() of the input string, | |
* just like PyLong_FromString does. */ | |
PyObject *srepr; | |
srepr = PyObject_Repr(x); | |
if (srepr == NULL) | |
return NULL; | |
PyErr_Format(PyExc_ValueError, | |
"invalid literal for long() with base %d: %s", | |
base, PyString_AS_STRING(srepr)); | |
Py_DECREF(srepr); | |
return NULL; | |
} | |
return PyLong_FromString(PyString_AS_STRING(x), NULL, base); | |
} | |
#ifdef Py_USING_UNICODE | |
else if (PyUnicode_Check(x)) | |
return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x), | |
PyUnicode_GET_SIZE(x), | |
base); | |
#endif | |
else { | |
PyErr_SetString(PyExc_TypeError, | |
"long() can't convert non-string with explicit base"); | |
return NULL; | |
} | |
} | |
/* Wimpy, slow approach to tp_new calls for subtypes of long: | |
first create a regular long from whatever arguments we got, | |
then allocate a subtype instance and initialize it from | |
the regular long. The regular long is then thrown away. | |
*/ | |
static PyObject * | |
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | |
{ | |
PyLongObject *tmp, *newobj; | |
Py_ssize_t i, n; | |
assert(PyType_IsSubtype(type, &PyLong_Type)); | |
tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds); | |
if (tmp == NULL) | |
return NULL; | |
assert(PyLong_CheckExact(tmp)); | |
n = Py_SIZE(tmp); | |
if (n < 0) | |
n = -n; | |
newobj = (PyLongObject *)type->tp_alloc(type, n); | |
if (newobj == NULL) { | |
Py_DECREF(tmp); | |
return NULL; | |
} | |
assert(PyLong_Check(newobj)); | |
Py_SIZE(newobj) = Py_SIZE(tmp); | |
for (i = 0; i < n; i++) | |
newobj->ob_digit[i] = tmp->ob_digit[i]; | |
Py_DECREF(tmp); | |
return (PyObject *)newobj; | |
} | |
static PyObject * | |
long_getnewargs(PyLongObject *v) | |
{ | |
return Py_BuildValue("(N)", _PyLong_Copy(v)); | |
} | |
static PyObject * | |
long_get0(PyLongObject *v, void *context) { | |
return PyLong_FromLong(0L); | |
} | |
static PyObject * | |
long_get1(PyLongObject *v, void *context) { | |
return PyLong_FromLong(1L); | |
} | |
static PyObject * | |
long__format__(PyObject *self, PyObject *args) | |
{ | |
PyObject *format_spec; | |
if (!PyArg_ParseTuple(args, "O:__format__", &format_spec)) | |
return NULL; | |
if (PyBytes_Check(format_spec)) | |
return _PyLong_FormatAdvanced(self, | |
PyBytes_AS_STRING(format_spec), | |
PyBytes_GET_SIZE(format_spec)); | |
if (PyUnicode_Check(format_spec)) { | |
/* Convert format_spec to a str */ | |
PyObject *result; | |
PyObject *str_spec = PyObject_Str(format_spec); | |
if (str_spec == NULL) | |
return NULL; | |
result = _PyLong_FormatAdvanced(self, | |
PyBytes_AS_STRING(str_spec), | |
PyBytes_GET_SIZE(str_spec)); | |
Py_DECREF(str_spec); | |
return result; | |
} | |
PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode"); | |
return NULL; | |
} | |
static PyObject * | |
long_sizeof(PyLongObject *v) | |
{ | |
Py_ssize_t res; | |
res = v->ob_type->tp_basicsize + ABS(Py_SIZE(v))*sizeof(digit); | |
return PyInt_FromSsize_t(res); | |
} | |
static PyObject * | |
long_bit_length(PyLongObject *v) | |
{ | |
PyLongObject *result, *x, *y; | |
Py_ssize_t ndigits, msd_bits = 0; | |
digit msd; | |
assert(v != NULL); | |
assert(PyLong_Check(v)); | |
ndigits = ABS(Py_SIZE(v)); | |
if (ndigits == 0) | |
return PyInt_FromLong(0); | |
msd = v->ob_digit[ndigits-1]; | |
while (msd >= 32) { | |
msd_bits += 6; | |
msd >>= 6; | |
} | |
msd_bits += (long)(BitLengthTable[msd]); | |
if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT) | |
return PyInt_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits); | |
/* expression above may overflow; use Python integers instead */ | |
result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1); | |
if (result == NULL) | |
return NULL; | |
x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT); | |
if (x == NULL) | |
goto error; | |
y = (PyLongObject *)long_mul(result, x); | |
Py_DECREF(x); | |
if (y == NULL) | |
goto error; | |
Py_DECREF(result); | |
result = y; | |
x = (PyLongObject *)PyLong_FromLong((long)msd_bits); | |
if (x == NULL) | |
goto error; | |
y = (PyLongObject *)long_add(result, x); | |
Py_DECREF(x); | |
if (y == NULL) | |
goto error; | |
Py_DECREF(result); | |
result = y; | |
return (PyObject *)result; | |
error: | |
Py_DECREF(result); | |
return NULL; | |
} | |
PyDoc_STRVAR(long_bit_length_doc, | |
"long.bit_length() -> int or long\n\ | |
\n\ | |
Number of bits necessary to represent self in binary.\n\ | |
>>> bin(37L)\n\ | |
'0b100101'\n\ | |
>>> (37L).bit_length()\n\ | |
6"); | |
#if 0 | |
static PyObject * | |
long_is_finite(PyObject *v) | |
{ | |
Py_RETURN_TRUE; | |
} | |
#endif | |
static PyMethodDef long_methods[] = { | |
{"conjugate", (PyCFunction)long_long, METH_NOARGS, | |
"Returns self, the complex conjugate of any long."}, | |
{"bit_length", (PyCFunction)long_bit_length, METH_NOARGS, | |
long_bit_length_doc}, | |
#if 0 | |
{"is_finite", (PyCFunction)long_is_finite, METH_NOARGS, | |
"Returns always True."}, | |
#endif | |
{"__trunc__", (PyCFunction)long_long, METH_NOARGS, | |
"Truncating an Integral returns itself."}, | |
{"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS}, | |
{"__format__", (PyCFunction)long__format__, METH_VARARGS}, | |
{"__sizeof__", (PyCFunction)long_sizeof, METH_NOARGS, | |
"Returns size in memory, in bytes"}, | |
{NULL, NULL} /* sentinel */ | |
}; | |
static PyGetSetDef long_getset[] = { | |
{"real", | |
(getter)long_long, (setter)NULL, | |
"the real part of a complex number", | |
NULL}, | |
{"imag", | |
(getter)long_get0, (setter)NULL, | |
"the imaginary part of a complex number", | |
NULL}, | |
{"numerator", | |
(getter)long_long, (setter)NULL, | |
"the numerator of a rational number in lowest terms", | |
NULL}, | |
{"denominator", | |
(getter)long_get1, (setter)NULL, | |
"the denominator of a rational number in lowest terms", | |
NULL}, | |
{NULL} /* Sentinel */ | |
}; | |
PyDoc_STRVAR(long_doc, | |
"long(x[, base]) -> integer\n\ | |
\n\ | |
Convert a string or number to a long integer, if possible. A floating\n\ | |
point argument will be truncated towards zero (this does not include a\n\ | |
string representation of a floating point number!) When converting a\n\ | |
string, use the optional base. It is an error to supply a base when\n\ | |
converting a non-string."); | |
static PyNumberMethods long_as_number = { | |
(binaryfunc)long_add, /*nb_add*/ | |
(binaryfunc)long_sub, /*nb_subtract*/ | |
(binaryfunc)long_mul, /*nb_multiply*/ | |
long_classic_div, /*nb_divide*/ | |
long_mod, /*nb_remainder*/ | |
long_divmod, /*nb_divmod*/ | |
long_pow, /*nb_power*/ | |
(unaryfunc)long_neg, /*nb_negative*/ | |
(unaryfunc)long_long, /*tp_positive*/ | |
(unaryfunc)long_abs, /*tp_absolute*/ | |
(inquiry)long_nonzero, /*tp_nonzero*/ | |
(unaryfunc)long_invert, /*nb_invert*/ | |
long_lshift, /*nb_lshift*/ | |
(binaryfunc)long_rshift, /*nb_rshift*/ | |
long_and, /*nb_and*/ | |
long_xor, /*nb_xor*/ | |
long_or, /*nb_or*/ | |
long_coerce, /*nb_coerce*/ | |
long_int, /*nb_int*/ | |
long_long, /*nb_long*/ | |
long_float, /*nb_float*/ | |
long_oct, /*nb_oct*/ | |
long_hex, /*nb_hex*/ | |
0, /* nb_inplace_add */ | |
0, /* nb_inplace_subtract */ | |
0, /* nb_inplace_multiply */ | |
0, /* nb_inplace_divide */ | |
0, /* nb_inplace_remainder */ | |
0, /* nb_inplace_power */ | |
0, /* nb_inplace_lshift */ | |
0, /* nb_inplace_rshift */ | |
0, /* nb_inplace_and */ | |
0, /* nb_inplace_xor */ | |
0, /* nb_inplace_or */ | |
long_div, /* nb_floor_divide */ | |
long_true_divide, /* nb_true_divide */ | |
0, /* nb_inplace_floor_divide */ | |
0, /* nb_inplace_true_divide */ | |
long_long, /* nb_index */ | |
}; | |
PyTypeObject PyLong_Type = { | |
PyObject_HEAD_INIT(&PyType_Type) | |
0, /* ob_size */ | |
"long", /* tp_name */ | |
offsetof(PyLongObject, ob_digit), /* tp_basicsize */ | |
sizeof(digit), /* tp_itemsize */ | |
long_dealloc, /* tp_dealloc */ | |
0, /* tp_print */ | |
0, /* tp_getattr */ | |
0, /* tp_setattr */ | |
(cmpfunc)long_compare, /* tp_compare */ | |
long_repr, /* tp_repr */ | |
&long_as_number, /* tp_as_number */ | |
0, /* tp_as_sequence */ | |
0, /* tp_as_mapping */ | |
(hashfunc)long_hash, /* tp_hash */ | |
0, /* tp_call */ | |
long_str, /* tp_str */ | |
PyObject_GenericGetAttr, /* tp_getattro */ | |
0, /* tp_setattro */ | |
0, /* tp_as_buffer */ | |
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | | |
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */ | |
long_doc, /* tp_doc */ | |
0, /* tp_traverse */ | |
0, /* tp_clear */ | |
0, /* tp_richcompare */ | |
0, /* tp_weaklistoffset */ | |
0, /* tp_iter */ | |
0, /* tp_iternext */ | |
long_methods, /* tp_methods */ | |
0, /* tp_members */ | |
long_getset, /* tp_getset */ | |
0, /* tp_base */ | |
0, /* tp_dict */ | |
0, /* tp_descr_get */ | |
0, /* tp_descr_set */ | |
0, /* tp_dictoffset */ | |
0, /* tp_init */ | |
0, /* tp_alloc */ | |
long_new, /* tp_new */ | |
PyObject_Del, /* tp_free */ | |
}; | |
static PyTypeObject Long_InfoType; | |
PyDoc_STRVAR(long_info__doc__, | |
"sys.long_info\n\ | |
\n\ | |
A struct sequence that holds information about Python's\n\ | |
internal representation of integers. The attributes are read only."); | |
static PyStructSequence_Field long_info_fields[] = { | |
{"bits_per_digit", "size of a digit in bits"}, | |
{"sizeof_digit", "size in bytes of the C type used to represent a digit"}, | |
{NULL, NULL} | |
}; | |
static PyStructSequence_Desc long_info_desc = { | |
"sys.long_info", /* name */ | |
long_info__doc__, /* doc */ | |
long_info_fields, /* fields */ | |
2 /* number of fields */ | |
}; | |
PyObject * | |
PyLong_GetInfo(void) | |
{ | |
PyObject* long_info; | |
int field = 0; | |
long_info = PyStructSequence_New(&Long_InfoType); | |
if (long_info == NULL) | |
return NULL; | |
PyStructSequence_SET_ITEM(long_info, field++, | |
PyInt_FromLong(PyLong_SHIFT)); | |
PyStructSequence_SET_ITEM(long_info, field++, | |
PyInt_FromLong(sizeof(digit))); | |
if (PyErr_Occurred()) { | |
Py_CLEAR(long_info); | |
return NULL; | |
} | |
return long_info; | |
} | |
int | |
_PyLong_Init(void) | |
{ | |
/* initialize long_info */ | |
if (Long_InfoType.tp_name == 0) | |
PyStructSequence_InitType(&Long_InfoType, &long_info_desc); | |
return 1; | |
} |