| /* Abstract Object Interface (many thanks to Jim Fulton) */ | |
| #include "Python.h" | |
| #include <ctype.h> | |
| #include "structmember.h" /* we need the offsetof() macro from there */ | |
| #include "longintrepr.h" | |
| #define NEW_STYLE_NUMBER(o) PyType_HasFeature((o)->ob_type, \ | |
| Py_TPFLAGS_CHECKTYPES) | |
| /* Shorthands to return certain errors */ | |
| static PyObject * | |
| type_error(const char *msg, PyObject *obj) | |
| { | |
| PyErr_Format(PyExc_TypeError, msg, obj->ob_type->tp_name); | |
| return NULL; | |
| } | |
| static PyObject * | |
| null_error(void) | |
| { | |
| if (!PyErr_Occurred()) | |
| PyErr_SetString(PyExc_SystemError, | |
| "null argument to internal routine"); | |
| return NULL; | |
| } | |
| /* Operations on any object */ | |
| int | |
| PyObject_Cmp(PyObject *o1, PyObject *o2, int *result) | |
| { | |
| int r; | |
| if (o1 == NULL || o2 == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| r = PyObject_Compare(o1, o2); | |
| if (PyErr_Occurred()) | |
| return -1; | |
| *result = r; | |
| return 0; | |
| } | |
| PyObject * | |
| PyObject_Type(PyObject *o) | |
| { | |
| PyObject *v; | |
| if (o == NULL) | |
| return null_error(); | |
| v = (PyObject *)o->ob_type; | |
| Py_INCREF(v); | |
| return v; | |
| } | |
| Py_ssize_t | |
| PyObject_Size(PyObject *o) | |
| { | |
| PySequenceMethods *m; | |
| if (o == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| m = o->ob_type->tp_as_sequence; | |
| if (m && m->sq_length) | |
| return m->sq_length(o); | |
| return PyMapping_Size(o); | |
| } | |
| #undef PyObject_Length | |
| Py_ssize_t | |
| PyObject_Length(PyObject *o) | |
| { | |
| return PyObject_Size(o); | |
| } | |
| #define PyObject_Length PyObject_Size | |
| /* The length hint function returns a non-negative value from o.__len__() | |
| or o.__length_hint__(). If those methods aren't found or return a negative | |
| value, then the defaultvalue is returned. If one of the calls fails, | |
| this function returns -1. | |
| */ | |
| Py_ssize_t | |
| _PyObject_LengthHint(PyObject *o, Py_ssize_t defaultvalue) | |
| { | |
| static PyObject *hintstrobj = NULL; | |
| PyObject *ro, *hintmeth; | |
| Py_ssize_t rv; | |
| /* try o.__len__() */ | |
| rv = PyObject_Size(o); | |
| if (rv >= 0) | |
| return rv; | |
| if (PyErr_Occurred()) { | |
| if (!PyErr_ExceptionMatches(PyExc_TypeError) && | |
| !PyErr_ExceptionMatches(PyExc_AttributeError)) | |
| return -1; | |
| PyErr_Clear(); | |
| } | |
| if (PyInstance_Check(o)) | |
| return defaultvalue; | |
| /* try o.__length_hint__() */ | |
| hintmeth = _PyObject_LookupSpecial(o, "__length_hint__", &hintstrobj); | |
| if (hintmeth == NULL) { | |
| if (PyErr_Occurred()) | |
| return -1; | |
| else | |
| return defaultvalue; | |
| } | |
| ro = PyObject_CallFunctionObjArgs(hintmeth, NULL); | |
| Py_DECREF(hintmeth); | |
| if (ro == NULL) { | |
| if (!PyErr_ExceptionMatches(PyExc_TypeError) && | |
| !PyErr_ExceptionMatches(PyExc_AttributeError)) | |
| return -1; | |
| PyErr_Clear(); | |
| return defaultvalue; | |
| } | |
| rv = PyLong_Check(ro) ? PyLong_AsSsize_t(ro) : defaultvalue; | |
| Py_DECREF(ro); | |
| return rv; | |
| } | |
| PyObject * | |
| PyObject_GetItem(PyObject *o, PyObject *key) | |
| { | |
| PyMappingMethods *m; | |
| if (o == NULL || key == NULL) | |
| return null_error(); | |
| m = o->ob_type->tp_as_mapping; | |
| if (m && m->mp_subscript) | |
| return m->mp_subscript(o, key); | |
| if (o->ob_type->tp_as_sequence) { | |
| if (PyIndex_Check(key)) { | |
| Py_ssize_t key_value; | |
| key_value = PyNumber_AsSsize_t(key, PyExc_IndexError); | |
| if (key_value == -1 && PyErr_Occurred()) | |
| return NULL; | |
| return PySequence_GetItem(o, key_value); | |
| } | |
| else if (o->ob_type->tp_as_sequence->sq_item) | |
| return type_error("sequence index must " | |
| "be integer, not '%.200s'", key); | |
| } | |
| return type_error("'%.200s' object is not subscriptable", o); | |
| } | |
| int | |
| PyObject_SetItem(PyObject *o, PyObject *key, PyObject *value) | |
| { | |
| PyMappingMethods *m; | |
| if (o == NULL || key == NULL || value == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| m = o->ob_type->tp_as_mapping; | |
| if (m && m->mp_ass_subscript) | |
| return m->mp_ass_subscript(o, key, value); | |
| if (o->ob_type->tp_as_sequence) { | |
| if (PyIndex_Check(key)) { | |
| Py_ssize_t key_value; | |
| key_value = PyNumber_AsSsize_t(key, PyExc_IndexError); | |
| if (key_value == -1 && PyErr_Occurred()) | |
| return -1; | |
| return PySequence_SetItem(o, key_value, value); | |
| } | |
| else if (o->ob_type->tp_as_sequence->sq_ass_item) { | |
| type_error("sequence index must be " | |
| "integer, not '%.200s'", key); | |
| return -1; | |
| } | |
| } | |
| type_error("'%.200s' object does not support item assignment", o); | |
| return -1; | |
| } | |
| int | |
| PyObject_DelItem(PyObject *o, PyObject *key) | |
| { | |
| PyMappingMethods *m; | |
| if (o == NULL || key == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| m = o->ob_type->tp_as_mapping; | |
| if (m && m->mp_ass_subscript) | |
| return m->mp_ass_subscript(o, key, (PyObject*)NULL); | |
| if (o->ob_type->tp_as_sequence) { | |
| if (PyIndex_Check(key)) { | |
| Py_ssize_t key_value; | |
| key_value = PyNumber_AsSsize_t(key, PyExc_IndexError); | |
| if (key_value == -1 && PyErr_Occurred()) | |
| return -1; | |
| return PySequence_DelItem(o, key_value); | |
| } | |
| else if (o->ob_type->tp_as_sequence->sq_ass_item) { | |
| type_error("sequence index must be " | |
| "integer, not '%.200s'", key); | |
| return -1; | |
| } | |
| } | |
| type_error("'%.200s' object does not support item deletion", o); | |
| return -1; | |
| } | |
| int | |
| PyObject_DelItemString(PyObject *o, char *key) | |
| { | |
| PyObject *okey; | |
| int ret; | |
| if (o == NULL || key == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| okey = PyString_FromString(key); | |
| if (okey == NULL) | |
| return -1; | |
| ret = PyObject_DelItem(o, okey); | |
| Py_DECREF(okey); | |
| return ret; | |
| } | |
| int | |
| PyObject_AsCharBuffer(PyObject *obj, | |
| const char **buffer, | |
| Py_ssize_t *buffer_len) | |
| { | |
| PyBufferProcs *pb; | |
| char *pp; | |
| Py_ssize_t len; | |
| if (obj == NULL || buffer == NULL || buffer_len == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| pb = obj->ob_type->tp_as_buffer; | |
| if (pb == NULL || | |
| pb->bf_getcharbuffer == NULL || | |
| pb->bf_getsegcount == NULL) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "expected a character buffer object"); | |
| return -1; | |
| } | |
| if ((*pb->bf_getsegcount)(obj,NULL) != 1) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "expected a single-segment buffer object"); | |
| return -1; | |
| } | |
| len = (*pb->bf_getcharbuffer)(obj, 0, &pp); | |
| if (len < 0) | |
| return -1; | |
| *buffer = pp; | |
| *buffer_len = len; | |
| return 0; | |
| } | |
| int | |
| PyObject_CheckReadBuffer(PyObject *obj) | |
| { | |
| PyBufferProcs *pb = obj->ob_type->tp_as_buffer; | |
| if (pb == NULL || | |
| pb->bf_getreadbuffer == NULL || | |
| pb->bf_getsegcount == NULL || | |
| (*pb->bf_getsegcount)(obj, NULL) != 1) | |
| return 0; | |
| return 1; | |
| } | |
| int PyObject_AsReadBuffer(PyObject *obj, | |
| const void **buffer, | |
| Py_ssize_t *buffer_len) | |
| { | |
| PyBufferProcs *pb; | |
| void *pp; | |
| Py_ssize_t len; | |
| if (obj == NULL || buffer == NULL || buffer_len == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| pb = obj->ob_type->tp_as_buffer; | |
| if (pb == NULL || | |
| pb->bf_getreadbuffer == NULL || | |
| pb->bf_getsegcount == NULL) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "expected a readable buffer object"); | |
| return -1; | |
| } | |
| if ((*pb->bf_getsegcount)(obj, NULL) != 1) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "expected a single-segment buffer object"); | |
| return -1; | |
| } | |
| len = (*pb->bf_getreadbuffer)(obj, 0, &pp); | |
| if (len < 0) | |
| return -1; | |
| *buffer = pp; | |
| *buffer_len = len; | |
| return 0; | |
| } | |
| int PyObject_AsWriteBuffer(PyObject *obj, | |
| void **buffer, | |
| Py_ssize_t *buffer_len) | |
| { | |
| PyBufferProcs *pb; | |
| void*pp; | |
| Py_ssize_t len; | |
| if (obj == NULL || buffer == NULL || buffer_len == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| pb = obj->ob_type->tp_as_buffer; | |
| if (pb == NULL || | |
| pb->bf_getwritebuffer == NULL || | |
| pb->bf_getsegcount == NULL) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "expected a writeable buffer object"); | |
| return -1; | |
| } | |
| if ((*pb->bf_getsegcount)(obj, NULL) != 1) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "expected a single-segment buffer object"); | |
| return -1; | |
| } | |
| len = (*pb->bf_getwritebuffer)(obj,0,&pp); | |
| if (len < 0) | |
| return -1; | |
| *buffer = pp; | |
| *buffer_len = len; | |
| return 0; | |
| } | |
| /* Buffer C-API for Python 3.0 */ | |
| int | |
| PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags) | |
| { | |
| if (!PyObject_CheckBuffer(obj)) { | |
| PyErr_Format(PyExc_TypeError, | |
| "'%100s' does not have the buffer interface", | |
| Py_TYPE(obj)->tp_name); | |
| return -1; | |
| } | |
| return (*(obj->ob_type->tp_as_buffer->bf_getbuffer))(obj, view, flags); | |
| } | |
| static int | |
| _IsFortranContiguous(Py_buffer *view) | |
| { | |
| Py_ssize_t sd, dim; | |
| int i; | |
| if (view->ndim == 0) return 1; | |
| if (view->strides == NULL) return (view->ndim == 1); | |
| sd = view->itemsize; | |
| if (view->ndim == 1) return (view->shape[0] == 1 || | |
| sd == view->strides[0]); | |
| for (i=0; i<view->ndim; i++) { | |
| dim = view->shape[i]; | |
| if (dim == 0) return 1; | |
| if (view->strides[i] != sd) return 0; | |
| sd *= dim; | |
| } | |
| return 1; | |
| } | |
| static int | |
| _IsCContiguous(Py_buffer *view) | |
| { | |
| Py_ssize_t sd, dim; | |
| int i; | |
| if (view->ndim == 0) return 1; | |
| if (view->strides == NULL) return 1; | |
| sd = view->itemsize; | |
| if (view->ndim == 1) return (view->shape[0] == 1 || | |
| sd == view->strides[0]); | |
| for (i=view->ndim-1; i>=0; i--) { | |
| dim = view->shape[i]; | |
| if (dim == 0) return 1; | |
| if (view->strides[i] != sd) return 0; | |
| sd *= dim; | |
| } | |
| return 1; | |
| } | |
| int | |
| PyBuffer_IsContiguous(Py_buffer *view, char fort) | |
| { | |
| if (view->suboffsets != NULL) return 0; | |
| if (fort == 'C') | |
| return _IsCContiguous(view); | |
| else if (fort == 'F') | |
| return _IsFortranContiguous(view); | |
| else if (fort == 'A') | |
| return (_IsCContiguous(view) || _IsFortranContiguous(view)); | |
| return 0; | |
| } | |
| void* | |
| PyBuffer_GetPointer(Py_buffer *view, Py_ssize_t *indices) | |
| { | |
| char* pointer; | |
| int i; | |
| pointer = (char *)view->buf; | |
| for (i = 0; i < view->ndim; i++) { | |
| pointer += view->strides[i]*indices[i]; | |
| if ((view->suboffsets != NULL) && (view->suboffsets[i] >= 0)) { | |
| pointer = *((char**)pointer) + view->suboffsets[i]; | |
| } | |
| } | |
| return (void*)pointer; | |
| } | |
| void | |
| _Py_add_one_to_index_F(int nd, Py_ssize_t *index, const Py_ssize_t *shape) | |
| { | |
| int k; | |
| for (k=0; k<nd; k++) { | |
| if (index[k] < shape[k]-1) { | |
| index[k]++; | |
| break; | |
| } | |
| else { | |
| index[k] = 0; | |
| } | |
| } | |
| } | |
| void | |
| _Py_add_one_to_index_C(int nd, Py_ssize_t *index, const Py_ssize_t *shape) | |
| { | |
| int k; | |
| for (k=nd-1; k>=0; k--) { | |
| if (index[k] < shape[k]-1) { | |
| index[k]++; | |
| break; | |
| } | |
| else { | |
| index[k] = 0; | |
| } | |
| } | |
| } | |
| /* view is not checked for consistency in either of these. It is | |
| assumed that the size of the buffer is view->len in | |
| view->len / view->itemsize elements. | |
| */ | |
| int | |
| PyBuffer_ToContiguous(void *buf, Py_buffer *view, Py_ssize_t len, char fort) | |
| { | |
| int k; | |
| void (*addone)(int, Py_ssize_t *, const Py_ssize_t *); | |
| Py_ssize_t *indices, elements; | |
| char *dest, *ptr; | |
| if (len > view->len) { | |
| len = view->len; | |
| } | |
| if (PyBuffer_IsContiguous(view, fort)) { | |
| /* simplest copy is all that is needed */ | |
| memcpy(buf, view->buf, len); | |
| return 0; | |
| } | |
| /* Otherwise a more elaborate scheme is needed */ | |
| /* XXX(nnorwitz): need to check for overflow! */ | |
| indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*(view->ndim)); | |
| if (indices == NULL) { | |
| PyErr_NoMemory(); | |
| return -1; | |
| } | |
| for (k=0; k<view->ndim;k++) { | |
| indices[k] = 0; | |
| } | |
| if (fort == 'F') { | |
| addone = _Py_add_one_to_index_F; | |
| } | |
| else { | |
| addone = _Py_add_one_to_index_C; | |
| } | |
| dest = buf; | |
| /* XXX : This is not going to be the fastest code in the world | |
| several optimizations are possible. | |
| */ | |
| elements = len / view->itemsize; | |
| while (elements--) { | |
| addone(view->ndim, indices, view->shape); | |
| ptr = PyBuffer_GetPointer(view, indices); | |
| memcpy(dest, ptr, view->itemsize); | |
| dest += view->itemsize; | |
| } | |
| PyMem_Free(indices); | |
| return 0; | |
| } | |
| int | |
| PyBuffer_FromContiguous(Py_buffer *view, void *buf, Py_ssize_t len, char fort) | |
| { | |
| int k; | |
| void (*addone)(int, Py_ssize_t *, const Py_ssize_t *); | |
| Py_ssize_t *indices, elements; | |
| char *src, *ptr; | |
| if (len > view->len) { | |
| len = view->len; | |
| } | |
| if (PyBuffer_IsContiguous(view, fort)) { | |
| /* simplest copy is all that is needed */ | |
| memcpy(view->buf, buf, len); | |
| return 0; | |
| } | |
| /* Otherwise a more elaborate scheme is needed */ | |
| /* XXX(nnorwitz): need to check for overflow! */ | |
| indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*(view->ndim)); | |
| if (indices == NULL) { | |
| PyErr_NoMemory(); | |
| return -1; | |
| } | |
| for (k=0; k<view->ndim;k++) { | |
| indices[k] = 0; | |
| } | |
| if (fort == 'F') { | |
| addone = _Py_add_one_to_index_F; | |
| } | |
| else { | |
| addone = _Py_add_one_to_index_C; | |
| } | |
| src = buf; | |
| /* XXX : This is not going to be the fastest code in the world | |
| several optimizations are possible. | |
| */ | |
| elements = len / view->itemsize; | |
| while (elements--) { | |
| addone(view->ndim, indices, view->shape); | |
| ptr = PyBuffer_GetPointer(view, indices); | |
| memcpy(ptr, src, view->itemsize); | |
| src += view->itemsize; | |
| } | |
| PyMem_Free(indices); | |
| return 0; | |
| } | |
| int PyObject_CopyData(PyObject *dest, PyObject *src) | |
| { | |
| Py_buffer view_dest, view_src; | |
| int k; | |
| Py_ssize_t *indices, elements; | |
| char *dptr, *sptr; | |
| if (!PyObject_CheckBuffer(dest) || | |
| !PyObject_CheckBuffer(src)) { | |
| PyErr_SetString(PyExc_TypeError, | |
| "both destination and source must have the "\ | |
| "buffer interface"); | |
| return -1; | |
| } | |
| if (PyObject_GetBuffer(dest, &view_dest, PyBUF_FULL) != 0) return -1; | |
| if (PyObject_GetBuffer(src, &view_src, PyBUF_FULL_RO) != 0) { | |
| PyBuffer_Release(&view_dest); | |
| return -1; | |
| } | |
| if (view_dest.len < view_src.len) { | |
| PyErr_SetString(PyExc_BufferError, | |
| "destination is too small to receive data from source"); | |
| PyBuffer_Release(&view_dest); | |
| PyBuffer_Release(&view_src); | |
| return -1; | |
| } | |
| if ((PyBuffer_IsContiguous(&view_dest, 'C') && | |
| PyBuffer_IsContiguous(&view_src, 'C')) || | |
| (PyBuffer_IsContiguous(&view_dest, 'F') && | |
| PyBuffer_IsContiguous(&view_src, 'F'))) { | |
| /* simplest copy is all that is needed */ | |
| memcpy(view_dest.buf, view_src.buf, view_src.len); | |
| PyBuffer_Release(&view_dest); | |
| PyBuffer_Release(&view_src); | |
| return 0; | |
| } | |
| /* Otherwise a more elaborate copy scheme is needed */ | |
| /* XXX(nnorwitz): need to check for overflow! */ | |
| indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*view_src.ndim); | |
| if (indices == NULL) { | |
| PyErr_NoMemory(); | |
| PyBuffer_Release(&view_dest); | |
| PyBuffer_Release(&view_src); | |
| return -1; | |
| } | |
| for (k=0; k<view_src.ndim;k++) { | |
| indices[k] = 0; | |
| } | |
| elements = 1; | |
| for (k=0; k<view_src.ndim; k++) { | |
| /* XXX(nnorwitz): can this overflow? */ | |
| elements *= view_src.shape[k]; | |
| } | |
| while (elements--) { | |
| _Py_add_one_to_index_C(view_src.ndim, indices, view_src.shape); | |
| dptr = PyBuffer_GetPointer(&view_dest, indices); | |
| sptr = PyBuffer_GetPointer(&view_src, indices); | |
| memcpy(dptr, sptr, view_src.itemsize); | |
| } | |
| PyMem_Free(indices); | |
| PyBuffer_Release(&view_dest); | |
| PyBuffer_Release(&view_src); | |
| return 0; | |
| } | |
| void | |
| PyBuffer_FillContiguousStrides(int nd, Py_ssize_t *shape, | |
| Py_ssize_t *strides, int itemsize, | |
| char fort) | |
| { | |
| int k; | |
| Py_ssize_t sd; | |
| sd = itemsize; | |
| if (fort == 'F') { | |
| for (k=0; k<nd; k++) { | |
| strides[k] = sd; | |
| sd *= shape[k]; | |
| } | |
| } | |
| else { | |
| for (k=nd-1; k>=0; k--) { | |
| strides[k] = sd; | |
| sd *= shape[k]; | |
| } | |
| } | |
| return; | |
| } | |
| int | |
| PyBuffer_FillInfo(Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len, | |
| int readonly, int flags) | |
| { | |
| if (view == NULL) return 0; | |
| if (((flags & PyBUF_WRITABLE) == PyBUF_WRITABLE) && | |
| (readonly == 1)) { | |
| PyErr_SetString(PyExc_BufferError, | |
| "Object is not writable."); | |
| return -1; | |
| } | |
| view->obj = obj; | |
| if (obj) | |
| Py_INCREF(obj); | |
| view->buf = buf; | |
| view->len = len; | |
| view->readonly = readonly; | |
| view->itemsize = 1; | |
| view->format = NULL; | |
| if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) | |
| view->format = "B"; | |
| view->ndim = 1; | |
| view->shape = NULL; | |
| if ((flags & PyBUF_ND) == PyBUF_ND) | |
| view->shape = &(view->len); | |
| view->strides = NULL; | |
| if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) | |
| view->strides = &(view->itemsize); | |
| view->suboffsets = NULL; | |
| view->internal = NULL; | |
| return 0; | |
| } | |
| void | |
| PyBuffer_Release(Py_buffer *view) | |
| { | |
| PyObject *obj = view->obj; | |
| if (obj && Py_TYPE(obj)->tp_as_buffer && Py_TYPE(obj)->tp_as_buffer->bf_releasebuffer) | |
| Py_TYPE(obj)->tp_as_buffer->bf_releasebuffer(obj, view); | |
| Py_XDECREF(obj); | |
| view->obj = NULL; | |
| } | |
| PyObject * | |
| PyObject_Format(PyObject* obj, PyObject *format_spec) | |
| { | |
| PyObject *empty = NULL; | |
| PyObject *result = NULL; | |
| #ifdef Py_USING_UNICODE | |
| int spec_is_unicode; | |
| int result_is_unicode; | |
| #endif | |
| /* If no format_spec is provided, use an empty string */ | |
| if (format_spec == NULL) { | |
| empty = PyString_FromStringAndSize(NULL, 0); | |
| format_spec = empty; | |
| } | |
| /* Check the format_spec type, and make sure it's str or unicode */ | |
| #ifdef Py_USING_UNICODE | |
| if (PyUnicode_Check(format_spec)) | |
| spec_is_unicode = 1; | |
| else if (PyString_Check(format_spec)) | |
| spec_is_unicode = 0; | |
| else { | |
| #else | |
| if (!PyString_Check(format_spec)) { | |
| #endif | |
| PyErr_Format(PyExc_TypeError, | |
| "format expects arg 2 to be string " | |
| "or unicode, not %.100s", Py_TYPE(format_spec)->tp_name); | |
| goto done; | |
| } | |
| /* Check for a __format__ method and call it. */ | |
| if (PyInstance_Check(obj)) { | |
| /* We're an instance of a classic class */ | |
| PyObject *bound_method = PyObject_GetAttrString(obj, "__format__"); | |
| if (bound_method != NULL) { | |
| result = PyObject_CallFunctionObjArgs(bound_method, | |
| format_spec, | |
| NULL); | |
| Py_DECREF(bound_method); | |
| } else { | |
| PyObject *self_as_str = NULL; | |
| PyObject *format_method = NULL; | |
| Py_ssize_t format_len; | |
| PyErr_Clear(); | |
| /* Per the PEP, convert to str (or unicode, | |
| depending on the type of the format | |
| specifier). For new-style classes, this | |
| logic is done by object.__format__(). */ | |
| #ifdef Py_USING_UNICODE | |
| if (spec_is_unicode) { | |
| format_len = PyUnicode_GET_SIZE(format_spec); | |
| self_as_str = PyObject_Unicode(obj); | |
| } else | |
| #endif | |
| { | |
| format_len = PyString_GET_SIZE(format_spec); | |
| self_as_str = PyObject_Str(obj); | |
| } | |
| if (self_as_str == NULL) | |
| goto done1; | |
| if (format_len > 0) { | |
| /* See the almost identical code in | |
| typeobject.c for new-style | |
| classes. */ | |
| if (PyErr_WarnEx( | |
| PyExc_PendingDeprecationWarning, | |
| "object.__format__ with a non-empty " | |
| "format string is deprecated", 1) | |
| < 0) { | |
| goto done1; | |
| } | |
| /* Eventually this will become an | |
| error: | |
| PyErr_Format(PyExc_TypeError, | |
| "non-empty format string passed to " | |
| "object.__format__"); | |
| goto done1; | |
| */ | |
| } | |
| /* Then call str.__format__ on that result */ | |
| format_method = PyObject_GetAttrString(self_as_str, "__format__"); | |
| if (format_method == NULL) { | |
| goto done1; | |
| } | |
| result = PyObject_CallFunctionObjArgs(format_method, | |
| format_spec, | |
| NULL); | |
| done1: | |
| Py_XDECREF(self_as_str); | |
| Py_XDECREF(format_method); | |
| if (result == NULL) | |
| goto done; | |
| } | |
| } else { | |
| /* Not an instance of a classic class, use the code | |
| from py3k */ | |
| static PyObject *format_cache = NULL; | |
| /* Find the (unbound!) __format__ method (a borrowed | |
| reference) */ | |
| PyObject *method = _PyObject_LookupSpecial(obj, "__format__", | |
| &format_cache); | |
| if (method == NULL) { | |
| if (!PyErr_Occurred()) | |
| PyErr_Format(PyExc_TypeError, | |
| "Type %.100s doesn't define __format__", | |
| Py_TYPE(obj)->tp_name); | |
| goto done; | |
| } | |
| /* And call it. */ | |
| result = PyObject_CallFunctionObjArgs(method, format_spec, NULL); | |
| Py_DECREF(method); | |
| } | |
| if (result == NULL) | |
| goto done; | |
| /* Check the result type, and make sure it's str or unicode */ | |
| #ifdef Py_USING_UNICODE | |
| if (PyUnicode_Check(result)) | |
| result_is_unicode = 1; | |
| else if (PyString_Check(result)) | |
| result_is_unicode = 0; | |
| else { | |
| #else | |
| if (!PyString_Check(result)) { | |
| #endif | |
| PyErr_Format(PyExc_TypeError, | |
| "%.100s.__format__ must return string or " | |
| "unicode, not %.100s", Py_TYPE(obj)->tp_name, | |
| Py_TYPE(result)->tp_name); | |
| Py_DECREF(result); | |
| result = NULL; | |
| goto done; | |
| } | |
| /* Convert to unicode, if needed. Required if spec is unicode | |
| and result is str */ | |
| #ifdef Py_USING_UNICODE | |
| if (spec_is_unicode && !result_is_unicode) { | |
| PyObject *tmp = PyObject_Unicode(result); | |
| /* This logic works whether or not tmp is NULL */ | |
| Py_DECREF(result); | |
| result = tmp; | |
| } | |
| #endif | |
| done: | |
| Py_XDECREF(empty); | |
| return result; | |
| } | |
| /* Operations on numbers */ | |
| int | |
| PyNumber_Check(PyObject *o) | |
| { | |
| return o && o->ob_type->tp_as_number && | |
| (o->ob_type->tp_as_number->nb_int || | |
| o->ob_type->tp_as_number->nb_float); | |
| } | |
| /* Binary operators */ | |
| /* New style number protocol support */ | |
| #define NB_SLOT(x) offsetof(PyNumberMethods, x) | |
| #define NB_BINOP(nb_methods, slot) \ | |
| (*(binaryfunc*)(& ((char*)nb_methods)[slot])) | |
| #define NB_TERNOP(nb_methods, slot) \ | |
| (*(ternaryfunc*)(& ((char*)nb_methods)[slot])) | |
| /* | |
| Calling scheme used for binary operations: | |
| v w Action | |
| ------------------------------------------------------------------- | |
| new new w.op(v,w)[*], v.op(v,w), w.op(v,w) | |
| new old v.op(v,w), coerce(v,w), v.op(v,w) | |
| old new w.op(v,w), coerce(v,w), v.op(v,w) | |
| old old coerce(v,w), v.op(v,w) | |
| [*] only when v->ob_type != w->ob_type && w->ob_type is a subclass of | |
| v->ob_type | |
| Legend: | |
| ------- | |
| * new == new style number | |
| * old == old style number | |
| * Action indicates the order in which operations are tried until either | |
| a valid result is produced or an error occurs. | |
| */ | |
| static PyObject * | |
| binary_op1(PyObject *v, PyObject *w, const int op_slot) | |
| { | |
| PyObject *x; | |
| binaryfunc slotv = NULL; | |
| binaryfunc slotw = NULL; | |
| if (v->ob_type->tp_as_number != NULL && NEW_STYLE_NUMBER(v)) | |
| slotv = NB_BINOP(v->ob_type->tp_as_number, op_slot); | |
| if (w->ob_type != v->ob_type && | |
| w->ob_type->tp_as_number != NULL && NEW_STYLE_NUMBER(w)) { | |
| slotw = NB_BINOP(w->ob_type->tp_as_number, op_slot); | |
| if (slotw == slotv) | |
| slotw = NULL; | |
| } | |
| if (slotv) { | |
| if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) { | |
| x = slotw(v, w); | |
| if (x != Py_NotImplemented) | |
| return x; | |
| Py_DECREF(x); /* can't do it */ | |
| slotw = NULL; | |
| } | |
| x = slotv(v, w); | |
| if (x != Py_NotImplemented) | |
| return x; | |
| Py_DECREF(x); /* can't do it */ | |
| } | |
| if (slotw) { | |
| x = slotw(v, w); | |
| if (x != Py_NotImplemented) | |
| return x; | |
| Py_DECREF(x); /* can't do it */ | |
| } | |
| if (!NEW_STYLE_NUMBER(v) || !NEW_STYLE_NUMBER(w)) { | |
| int err = PyNumber_CoerceEx(&v, &w); | |
| if (err < 0) { | |
| return NULL; | |
| } | |
| if (err == 0) { | |
| PyNumberMethods *mv = v->ob_type->tp_as_number; | |
| if (mv) { | |
| binaryfunc slot; | |
| slot = NB_BINOP(mv, op_slot); | |
| if (slot) { | |
| x = slot(v, w); | |
| Py_DECREF(v); | |
| Py_DECREF(w); | |
| return x; | |
| } | |
| } | |
| /* CoerceEx incremented the reference counts */ | |
| Py_DECREF(v); | |
| Py_DECREF(w); | |
| } | |
| } | |
| Py_INCREF(Py_NotImplemented); | |
| return Py_NotImplemented; | |
| } | |
| static PyObject * | |
| binop_type_error(PyObject *v, PyObject *w, const char *op_name) | |
| { | |
| PyErr_Format(PyExc_TypeError, | |
| "unsupported operand type(s) for %.100s: " | |
| "'%.100s' and '%.100s'", | |
| op_name, | |
| v->ob_type->tp_name, | |
| w->ob_type->tp_name); | |
| return NULL; | |
| } | |
| static PyObject * | |
| binary_op(PyObject *v, PyObject *w, const int op_slot, const char *op_name) | |
| { | |
| PyObject *result = binary_op1(v, w, op_slot); | |
| if (result == Py_NotImplemented) { | |
| Py_DECREF(result); | |
| return binop_type_error(v, w, op_name); | |
| } | |
| return result; | |
| } | |
| /* | |
| Calling scheme used for ternary operations: | |
| *** In some cases, w.op is called before v.op; see binary_op1. *** | |
| v w z Action | |
| ------------------------------------------------------------------- | |
| new new new v.op(v,w,z), w.op(v,w,z), z.op(v,w,z) | |
| new old new v.op(v,w,z), z.op(v,w,z), coerce(v,w,z), v.op(v,w,z) | |
| old new new w.op(v,w,z), z.op(v,w,z), coerce(v,w,z), v.op(v,w,z) | |
| old old new z.op(v,w,z), coerce(v,w,z), v.op(v,w,z) | |
| new new old v.op(v,w,z), w.op(v,w,z), coerce(v,w,z), v.op(v,w,z) | |
| new old old v.op(v,w,z), coerce(v,w,z), v.op(v,w,z) | |
| old new old w.op(v,w,z), coerce(v,w,z), v.op(v,w,z) | |
| old old old coerce(v,w,z), v.op(v,w,z) | |
| Legend: | |
| ------- | |
| * new == new style number | |
| * old == old style number | |
| * Action indicates the order in which operations are tried until either | |
| a valid result is produced or an error occurs. | |
| * coerce(v,w,z) actually does: coerce(v,w), coerce(v,z), coerce(w,z) and | |
| only if z != Py_None; if z == Py_None, then it is treated as absent | |
| variable and only coerce(v,w) is tried. | |
| */ | |
| static PyObject * | |
| ternary_op(PyObject *v, | |
| PyObject *w, | |
| PyObject *z, | |
| const int op_slot, | |
| const char *op_name) | |
| { | |
| PyNumberMethods *mv, *mw, *mz; | |
| PyObject *x = NULL; | |
| ternaryfunc slotv = NULL; | |
| ternaryfunc slotw = NULL; | |
| ternaryfunc slotz = NULL; | |
| mv = v->ob_type->tp_as_number; | |
| mw = w->ob_type->tp_as_number; | |
| if (mv != NULL && NEW_STYLE_NUMBER(v)) | |
| slotv = NB_TERNOP(mv, op_slot); | |
| if (w->ob_type != v->ob_type && | |
| mw != NULL && NEW_STYLE_NUMBER(w)) { | |
| slotw = NB_TERNOP(mw, op_slot); | |
| if (slotw == slotv) | |
| slotw = NULL; | |
| } | |
| if (slotv) { | |
| if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) { | |
| x = slotw(v, w, z); | |
| if (x != Py_NotImplemented) | |
| return x; | |
| Py_DECREF(x); /* can't do it */ | |
| slotw = NULL; | |
| } | |
| x = slotv(v, w, z); | |
| if (x != Py_NotImplemented) | |
| return x; | |
| Py_DECREF(x); /* can't do it */ | |
| } | |
| if (slotw) { | |
| x = slotw(v, w, z); | |
| if (x != Py_NotImplemented) | |
| return x; | |
| Py_DECREF(x); /* can't do it */ | |
| } | |
| mz = z->ob_type->tp_as_number; | |
| if (mz != NULL && NEW_STYLE_NUMBER(z)) { | |
| slotz = NB_TERNOP(mz, op_slot); | |
| if (slotz == slotv || slotz == slotw) | |
| slotz = NULL; | |
| if (slotz) { | |
| x = slotz(v, w, z); | |
| if (x != Py_NotImplemented) | |
| return x; | |
| Py_DECREF(x); /* can't do it */ | |
| } | |
| } | |
| if (!NEW_STYLE_NUMBER(v) || !NEW_STYLE_NUMBER(w) || | |
| (z != Py_None && !NEW_STYLE_NUMBER(z))) { | |
| /* we have an old style operand, coerce */ | |
| PyObject *v1, *z1, *w2, *z2; | |
| int c; | |
| c = PyNumber_Coerce(&v, &w); | |
| if (c != 0) | |
| goto error3; | |
| /* Special case: if the third argument is None, it is | |
| treated as absent argument and not coerced. */ | |
| if (z == Py_None) { | |
| if (v->ob_type->tp_as_number) { | |
| slotz = NB_TERNOP(v->ob_type->tp_as_number, | |
| op_slot); | |
| if (slotz) | |
| x = slotz(v, w, z); | |
| else | |
| c = -1; | |
| } | |
| else | |
| c = -1; | |
| goto error2; | |
| } | |
| v1 = v; | |
| z1 = z; | |
| c = PyNumber_Coerce(&v1, &z1); | |
| if (c != 0) | |
| goto error2; | |
| w2 = w; | |
| z2 = z1; | |
| c = PyNumber_Coerce(&w2, &z2); | |
| if (c != 0) | |
| goto error1; | |
| if (v1->ob_type->tp_as_number != NULL) { | |
| slotv = NB_TERNOP(v1->ob_type->tp_as_number, | |
| op_slot); | |
| if (slotv) | |
| x = slotv(v1, w2, z2); | |
| else | |
| c = -1; | |
| } | |
| else | |
| c = -1; | |
| Py_DECREF(w2); | |
| Py_DECREF(z2); | |
| error1: | |
| Py_DECREF(v1); | |
| Py_DECREF(z1); | |
| error2: | |
| Py_DECREF(v); | |
| Py_DECREF(w); | |
| error3: | |
| if (c >= 0) | |
| return x; | |
| } | |
| if (z == Py_None) | |
| PyErr_Format( | |
| PyExc_TypeError, | |
| "unsupported operand type(s) for ** or pow(): " | |
| "'%.100s' and '%.100s'", | |
| v->ob_type->tp_name, | |
| w->ob_type->tp_name); | |
| else | |
| PyErr_Format( | |
| PyExc_TypeError, | |
| "unsupported operand type(s) for pow(): " | |
| "'%.100s', '%.100s', '%.100s'", | |
| v->ob_type->tp_name, | |
| w->ob_type->tp_name, | |
| z->ob_type->tp_name); | |
| return NULL; | |
| } | |
| #define BINARY_FUNC(func, op, op_name) \ | |
| PyObject * \ | |
| func(PyObject *v, PyObject *w) { \ | |
| return binary_op(v, w, NB_SLOT(op), op_name); \ | |
| } | |
| BINARY_FUNC(PyNumber_Or, nb_or, "|") | |
| BINARY_FUNC(PyNumber_Xor, nb_xor, "^") | |
| BINARY_FUNC(PyNumber_And, nb_and, "&") | |
| BINARY_FUNC(PyNumber_Lshift, nb_lshift, "<<") | |
| BINARY_FUNC(PyNumber_Rshift, nb_rshift, ">>") | |
| BINARY_FUNC(PyNumber_Subtract, nb_subtract, "-") | |
| BINARY_FUNC(PyNumber_Divide, nb_divide, "/") | |
| BINARY_FUNC(PyNumber_Divmod, nb_divmod, "divmod()") | |
| PyObject * | |
| PyNumber_Add(PyObject *v, PyObject *w) | |
| { | |
| PyObject *result = binary_op1(v, w, NB_SLOT(nb_add)); | |
| if (result == Py_NotImplemented) { | |
| PySequenceMethods *m = v->ob_type->tp_as_sequence; | |
| Py_DECREF(result); | |
| if (m && m->sq_concat) { | |
| return (*m->sq_concat)(v, w); | |
| } | |
| result = binop_type_error(v, w, "+"); | |
| } | |
| return result; | |
| } | |
| static PyObject * | |
| sequence_repeat(ssizeargfunc repeatfunc, PyObject *seq, PyObject *n) | |
| { | |
| Py_ssize_t count; | |
| if (PyIndex_Check(n)) { | |
| count = PyNumber_AsSsize_t(n, PyExc_OverflowError); | |
| if (count == -1 && PyErr_Occurred()) | |
| return NULL; | |
| } | |
| else { | |
| return type_error("can't multiply sequence by " | |
| "non-int of type '%.200s'", n); | |
| } | |
| return (*repeatfunc)(seq, count); | |
| } | |
| PyObject * | |
| PyNumber_Multiply(PyObject *v, PyObject *w) | |
| { | |
| PyObject *result = binary_op1(v, w, NB_SLOT(nb_multiply)); | |
| if (result == Py_NotImplemented) { | |
| PySequenceMethods *mv = v->ob_type->tp_as_sequence; | |
| PySequenceMethods *mw = w->ob_type->tp_as_sequence; | |
| Py_DECREF(result); | |
| if (mv && mv->sq_repeat) { | |
| return sequence_repeat(mv->sq_repeat, v, w); | |
| } | |
| else if (mw && mw->sq_repeat) { | |
| return sequence_repeat(mw->sq_repeat, w, v); | |
| } | |
| result = binop_type_error(v, w, "*"); | |
| } | |
| return result; | |
| } | |
| PyObject * | |
| PyNumber_FloorDivide(PyObject *v, PyObject *w) | |
| { | |
| /* XXX tp_flags test */ | |
| return binary_op(v, w, NB_SLOT(nb_floor_divide), "//"); | |
| } | |
| PyObject * | |
| PyNumber_TrueDivide(PyObject *v, PyObject *w) | |
| { | |
| /* XXX tp_flags test */ | |
| return binary_op(v, w, NB_SLOT(nb_true_divide), "/"); | |
| } | |
| PyObject * | |
| PyNumber_Remainder(PyObject *v, PyObject *w) | |
| { | |
| return binary_op(v, w, NB_SLOT(nb_remainder), "%"); | |
| } | |
| PyObject * | |
| PyNumber_Power(PyObject *v, PyObject *w, PyObject *z) | |
| { | |
| return ternary_op(v, w, z, NB_SLOT(nb_power), "** or pow()"); | |
| } | |
| /* Binary in-place operators */ | |
| /* The in-place operators are defined to fall back to the 'normal', | |
| non in-place operations, if the in-place methods are not in place. | |
| - If the left hand object has the appropriate struct members, and | |
| they are filled, call the appropriate function and return the | |
| result. No coercion is done on the arguments; the left-hand object | |
| is the one the operation is performed on, and it's up to the | |
| function to deal with the right-hand object. | |
| - Otherwise, in-place modification is not supported. Handle it exactly as | |
| a non in-place operation of the same kind. | |
| */ | |
| #define HASINPLACE(t) \ | |
| PyType_HasFeature((t)->ob_type, Py_TPFLAGS_HAVE_INPLACEOPS) | |
| static PyObject * | |
| binary_iop1(PyObject *v, PyObject *w, const int iop_slot, const int op_slot) | |
| { | |
| PyNumberMethods *mv = v->ob_type->tp_as_number; | |
| if (mv != NULL && HASINPLACE(v)) { | |
| binaryfunc slot = NB_BINOP(mv, iop_slot); | |
| if (slot) { | |
| PyObject *x = (slot)(v, w); | |
| if (x != Py_NotImplemented) { | |
| return x; | |
| } | |
| Py_DECREF(x); | |
| } | |
| } | |
| return binary_op1(v, w, op_slot); | |
| } | |
| static PyObject * | |
| binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot, | |
| const char *op_name) | |
| { | |
| PyObject *result = binary_iop1(v, w, iop_slot, op_slot); | |
| if (result == Py_NotImplemented) { | |
| Py_DECREF(result); | |
| return binop_type_error(v, w, op_name); | |
| } | |
| return result; | |
| } | |
| #define INPLACE_BINOP(func, iop, op, op_name) \ | |
| PyObject * \ | |
| func(PyObject *v, PyObject *w) { \ | |
| return binary_iop(v, w, NB_SLOT(iop), NB_SLOT(op), op_name); \ | |
| } | |
| INPLACE_BINOP(PyNumber_InPlaceOr, nb_inplace_or, nb_or, "|=") | |
| INPLACE_BINOP(PyNumber_InPlaceXor, nb_inplace_xor, nb_xor, "^=") | |
| INPLACE_BINOP(PyNumber_InPlaceAnd, nb_inplace_and, nb_and, "&=") | |
| INPLACE_BINOP(PyNumber_InPlaceLshift, nb_inplace_lshift, nb_lshift, "<<=") | |
| INPLACE_BINOP(PyNumber_InPlaceRshift, nb_inplace_rshift, nb_rshift, ">>=") | |
| INPLACE_BINOP(PyNumber_InPlaceSubtract, nb_inplace_subtract, nb_subtract, "-=") | |
| INPLACE_BINOP(PyNumber_InPlaceDivide, nb_inplace_divide, nb_divide, "/=") | |
| PyObject * | |
| PyNumber_InPlaceFloorDivide(PyObject *v, PyObject *w) | |
| { | |
| /* XXX tp_flags test */ | |
| return binary_iop(v, w, NB_SLOT(nb_inplace_floor_divide), | |
| NB_SLOT(nb_floor_divide), "//="); | |
| } | |
| PyObject * | |
| PyNumber_InPlaceTrueDivide(PyObject *v, PyObject *w) | |
| { | |
| /* XXX tp_flags test */ | |
| return binary_iop(v, w, NB_SLOT(nb_inplace_true_divide), | |
| NB_SLOT(nb_true_divide), "/="); | |
| } | |
| PyObject * | |
| PyNumber_InPlaceAdd(PyObject *v, PyObject *w) | |
| { | |
| PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_add), | |
| NB_SLOT(nb_add)); | |
| if (result == Py_NotImplemented) { | |
| PySequenceMethods *m = v->ob_type->tp_as_sequence; | |
| Py_DECREF(result); | |
| if (m != NULL) { | |
| binaryfunc f = NULL; | |
| if (HASINPLACE(v)) | |
| f = m->sq_inplace_concat; | |
| if (f == NULL) | |
| f = m->sq_concat; | |
| if (f != NULL) | |
| return (*f)(v, w); | |
| } | |
| result = binop_type_error(v, w, "+="); | |
| } | |
| return result; | |
| } | |
| PyObject * | |
| PyNumber_InPlaceMultiply(PyObject *v, PyObject *w) | |
| { | |
| PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_multiply), | |
| NB_SLOT(nb_multiply)); | |
| if (result == Py_NotImplemented) { | |
| ssizeargfunc f = NULL; | |
| PySequenceMethods *mv = v->ob_type->tp_as_sequence; | |
| PySequenceMethods *mw = w->ob_type->tp_as_sequence; | |
| Py_DECREF(result); | |
| if (mv != NULL) { | |
| if (HASINPLACE(v)) | |
| f = mv->sq_inplace_repeat; | |
| if (f == NULL) | |
| f = mv->sq_repeat; | |
| if (f != NULL) | |
| return sequence_repeat(f, v, w); | |
| } | |
| else if (mw != NULL) { | |
| /* Note that the right hand operand should not be | |
| * mutated in this case so sq_inplace_repeat is not | |
| * used. */ | |
| if (mw->sq_repeat) | |
| return sequence_repeat(mw->sq_repeat, w, v); | |
| } | |
| result = binop_type_error(v, w, "*="); | |
| } | |
| return result; | |
| } | |
| PyObject * | |
| PyNumber_InPlaceRemainder(PyObject *v, PyObject *w) | |
| { | |
| return binary_iop(v, w, NB_SLOT(nb_inplace_remainder), | |
| NB_SLOT(nb_remainder), "%="); | |
| } | |
| PyObject * | |
| PyNumber_InPlacePower(PyObject *v, PyObject *w, PyObject *z) | |
| { | |
| if (HASINPLACE(v) && v->ob_type->tp_as_number && | |
| v->ob_type->tp_as_number->nb_inplace_power != NULL) { | |
| return ternary_op(v, w, z, NB_SLOT(nb_inplace_power), "**="); | |
| } | |
| else { | |
| return ternary_op(v, w, z, NB_SLOT(nb_power), "**="); | |
| } | |
| } | |
| /* Unary operators and functions */ | |
| PyObject * | |
| PyNumber_Negative(PyObject *o) | |
| { | |
| PyNumberMethods *m; | |
| if (o == NULL) | |
| return null_error(); | |
| m = o->ob_type->tp_as_number; | |
| if (m && m->nb_negative) | |
| return (*m->nb_negative)(o); | |
| return type_error("bad operand type for unary -: '%.200s'", o); | |
| } | |
| PyObject * | |
| PyNumber_Positive(PyObject *o) | |
| { | |
| PyNumberMethods *m; | |
| if (o == NULL) | |
| return null_error(); | |
| m = o->ob_type->tp_as_number; | |
| if (m && m->nb_positive) | |
| return (*m->nb_positive)(o); | |
| return type_error("bad operand type for unary +: '%.200s'", o); | |
| } | |
| PyObject * | |
| PyNumber_Invert(PyObject *o) | |
| { | |
| PyNumberMethods *m; | |
| if (o == NULL) | |
| return null_error(); | |
| m = o->ob_type->tp_as_number; | |
| if (m && m->nb_invert) | |
| return (*m->nb_invert)(o); | |
| return type_error("bad operand type for unary ~: '%.200s'", o); | |
| } | |
| PyObject * | |
| PyNumber_Absolute(PyObject *o) | |
| { | |
| PyNumberMethods *m; | |
| if (o == NULL) | |
| return null_error(); | |
| m = o->ob_type->tp_as_number; | |
| if (m && m->nb_absolute) | |
| return m->nb_absolute(o); | |
| return type_error("bad operand type for abs(): '%.200s'", o); | |
| } | |
| /* Add a check for embedded NULL-bytes in the argument. */ | |
| static PyObject * | |
| int_from_string(const char *s, Py_ssize_t len) | |
| { | |
| char *end; | |
| PyObject *x; | |
| x = PyInt_FromString((char*)s, &end, 10); | |
| if (x == NULL) | |
| return NULL; | |
| if (end != s + len) { | |
| PyErr_SetString(PyExc_ValueError, | |
| "null byte in argument for int()"); | |
| Py_DECREF(x); | |
| return NULL; | |
| } | |
| return x; | |
| } | |
| /* Return a Python Int or Long from the object item | |
| Raise TypeError if the result is not an int-or-long | |
| or if the object cannot be interpreted as an index. | |
| */ | |
| PyObject * | |
| PyNumber_Index(PyObject *item) | |
| { | |
| PyObject *result = NULL; | |
| if (item == NULL) | |
| return null_error(); | |
| if (PyInt_Check(item) || PyLong_Check(item)) { | |
| Py_INCREF(item); | |
| return item; | |
| } | |
| if (PyIndex_Check(item)) { | |
| result = item->ob_type->tp_as_number->nb_index(item); | |
| if (result && | |
| !PyInt_Check(result) && !PyLong_Check(result)) { | |
| PyErr_Format(PyExc_TypeError, | |
| "__index__ returned non-(int,long) " \ | |
| "(type %.200s)", | |
| result->ob_type->tp_name); | |
| Py_DECREF(result); | |
| return NULL; | |
| } | |
| } | |
| else { | |
| PyErr_Format(PyExc_TypeError, | |
| "'%.200s' object cannot be interpreted " | |
| "as an index", item->ob_type->tp_name); | |
| } | |
| return result; | |
| } | |
| /* Return an error on Overflow only if err is not NULL*/ | |
| Py_ssize_t | |
| PyNumber_AsSsize_t(PyObject *item, PyObject *err) | |
| { | |
| Py_ssize_t result; | |
| PyObject *runerr; | |
| PyObject *value = PyNumber_Index(item); | |
| if (value == NULL) | |
| return -1; | |
| /* We're done if PyInt_AsSsize_t() returns without error. */ | |
| result = PyInt_AsSsize_t(value); | |
| if (result != -1 || !(runerr = PyErr_Occurred())) | |
| goto finish; | |
| /* Error handling code -- only manage OverflowError differently */ | |
| if (!PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) | |
| goto finish; | |
| PyErr_Clear(); | |
| /* If no error-handling desired then the default clipping | |
| is sufficient. | |
| */ | |
| if (!err) { | |
| assert(PyLong_Check(value)); | |
| /* Whether or not it is less than or equal to | |
| zero is determined by the sign of ob_size | |
| */ | |
| if (_PyLong_Sign(value) < 0) | |
| result = PY_SSIZE_T_MIN; | |
| else | |
| result = PY_SSIZE_T_MAX; | |
| } | |
| else { | |
| /* Otherwise replace the error with caller's error object. */ | |
| PyErr_Format(err, | |
| "cannot fit '%.200s' into an index-sized integer", | |
| item->ob_type->tp_name); | |
| } | |
| finish: | |
| Py_DECREF(value); | |
| return result; | |
| } | |
| PyObject * | |
| _PyNumber_ConvertIntegralToInt(PyObject *integral, const char* error_format) | |
| { | |
| const char *type_name; | |
| static PyObject *int_name = NULL; | |
| if (int_name == NULL) { | |
| int_name = PyString_InternFromString("__int__"); | |
| if (int_name == NULL) | |
| return NULL; | |
| } | |
| if (integral && (!PyInt_Check(integral) && | |
| !PyLong_Check(integral))) { | |
| /* Don't go through tp_as_number->nb_int to avoid | |
| hitting the classic class fallback to __trunc__. */ | |
| PyObject *int_func = PyObject_GetAttr(integral, int_name); | |
| if (int_func == NULL) { | |
| PyErr_Clear(); /* Raise a different error. */ | |
| goto non_integral_error; | |
| } | |
| Py_DECREF(integral); | |
| integral = PyEval_CallObject(int_func, NULL); | |
| Py_DECREF(int_func); | |
| if (integral && (!PyInt_Check(integral) && | |
| !PyLong_Check(integral))) { | |
| goto non_integral_error; | |
| } | |
| } | |
| return integral; | |
| non_integral_error: | |
| if (PyInstance_Check(integral)) { | |
| type_name = PyString_AS_STRING(((PyInstanceObject *)integral) | |
| ->in_class->cl_name); | |
| } | |
| else { | |
| type_name = integral->ob_type->tp_name; | |
| } | |
| PyErr_Format(PyExc_TypeError, error_format, type_name); | |
| Py_DECREF(integral); | |
| return NULL; | |
| } | |
| PyObject * | |
| PyNumber_Int(PyObject *o) | |
| { | |
| PyNumberMethods *m; | |
| static PyObject *trunc_name = NULL; | |
| PyObject *trunc_func; | |
| const char *buffer; | |
| Py_ssize_t buffer_len; | |
| if (trunc_name == NULL) { | |
| trunc_name = PyString_InternFromString("__trunc__"); | |
| if (trunc_name == NULL) | |
| return NULL; | |
| } | |
| if (o == NULL) | |
| return null_error(); | |
| if (PyInt_CheckExact(o)) { | |
| Py_INCREF(o); | |
| return o; | |
| } | |
| m = o->ob_type->tp_as_number; | |
| if (m && m->nb_int) { /* This should include subclasses of int */ | |
| /* Classic classes always take this branch. */ | |
| PyObject *res = m->nb_int(o); | |
| if (res && (!PyInt_Check(res) && !PyLong_Check(res))) { | |
| PyErr_Format(PyExc_TypeError, | |
| "__int__ returned non-int (type %.200s)", | |
| res->ob_type->tp_name); | |
| Py_DECREF(res); | |
| return NULL; | |
| } | |
| return res; | |
| } | |
| if (PyInt_Check(o)) { /* A int subclass without nb_int */ | |
| PyIntObject *io = (PyIntObject*)o; | |
| return PyInt_FromLong(io->ob_ival); | |
| } | |
| trunc_func = PyObject_GetAttr(o, trunc_name); | |
| if (trunc_func) { | |
| PyObject *truncated = PyEval_CallObject(trunc_func, NULL); | |
| Py_DECREF(trunc_func); | |
| /* __trunc__ is specified to return an Integral type, but | |
| int() needs to return an int. */ | |
| return _PyNumber_ConvertIntegralToInt( | |
| truncated, | |
| "__trunc__ returned non-Integral (type %.200s)"); | |
| } | |
| PyErr_Clear(); /* It's not an error if o.__trunc__ doesn't exist. */ | |
| if (PyString_Check(o)) | |
| return int_from_string(PyString_AS_STRING(o), | |
| PyString_GET_SIZE(o)); | |
| #ifdef Py_USING_UNICODE | |
| if (PyUnicode_Check(o)) | |
| return PyInt_FromUnicode(PyUnicode_AS_UNICODE(o), | |
| PyUnicode_GET_SIZE(o), | |
| 10); | |
| #endif | |
| if (!PyObject_AsCharBuffer(o, &buffer, &buffer_len)) | |
| return int_from_string((char*)buffer, buffer_len); | |
| return type_error("int() argument must be a string or a " | |
| "number, not '%.200s'", o); | |
| } | |
| /* Add a check for embedded NULL-bytes in the argument. */ | |
| static PyObject * | |
| long_from_string(const char *s, Py_ssize_t len) | |
| { | |
| char *end; | |
| PyObject *x; | |
| x = PyLong_FromString((char*)s, &end, 10); | |
| if (x == NULL) | |
| return NULL; | |
| if (end != s + len) { | |
| PyErr_SetString(PyExc_ValueError, | |
| "null byte in argument for long()"); | |
| Py_DECREF(x); | |
| return NULL; | |
| } | |
| return x; | |
| } | |
| PyObject * | |
| PyNumber_Long(PyObject *o) | |
| { | |
| PyNumberMethods *m; | |
| static PyObject *trunc_name = NULL; | |
| PyObject *trunc_func; | |
| const char *buffer; | |
| Py_ssize_t buffer_len; | |
| if (trunc_name == NULL) { | |
| trunc_name = PyString_InternFromString("__trunc__"); | |
| if (trunc_name == NULL) | |
| return NULL; | |
| } | |
| if (o == NULL) | |
| return null_error(); | |
| m = o->ob_type->tp_as_number; | |
| if (m && m->nb_long) { /* This should include subclasses of long */ | |
| /* Classic classes always take this branch. */ | |
| PyObject *res = m->nb_long(o); | |
| if (res == NULL) | |
| return NULL; | |
| if (PyInt_Check(res)) { | |
| long value = PyInt_AS_LONG(res); | |
| Py_DECREF(res); | |
| return PyLong_FromLong(value); | |
| } | |
| else if (!PyLong_Check(res)) { | |
| PyErr_Format(PyExc_TypeError, | |
| "__long__ returned non-long (type %.200s)", | |
| res->ob_type->tp_name); | |
| Py_DECREF(res); | |
| return NULL; | |
| } | |
| return res; | |
| } | |
| if (PyLong_Check(o)) /* A long subclass without nb_long */ | |
| return _PyLong_Copy((PyLongObject *)o); | |
| trunc_func = PyObject_GetAttr(o, trunc_name); | |
| if (trunc_func) { | |
| PyObject *truncated = PyEval_CallObject(trunc_func, NULL); | |
| PyObject *int_instance; | |
| Py_DECREF(trunc_func); | |
| /* __trunc__ is specified to return an Integral type, | |
| but long() needs to return a long. */ | |
| int_instance = _PyNumber_ConvertIntegralToInt( | |
| truncated, | |
| "__trunc__ returned non-Integral (type %.200s)"); | |
| if (int_instance && PyInt_Check(int_instance)) { | |
| /* Make sure that long() returns a long instance. */ | |
| long value = PyInt_AS_LONG(int_instance); | |
| Py_DECREF(int_instance); | |
| return PyLong_FromLong(value); | |
| } | |
| return int_instance; | |
| } | |
| PyErr_Clear(); /* It's not an error if o.__trunc__ doesn't exist. */ | |
| if (PyString_Check(o)) | |
| /* need to do extra error checking that PyLong_FromString() | |
| * doesn't do. In particular long('9.5') must raise an | |
| * exception, not truncate the float. | |
| */ | |
| return long_from_string(PyString_AS_STRING(o), | |
| PyString_GET_SIZE(o)); | |
| #ifdef Py_USING_UNICODE | |
| if (PyUnicode_Check(o)) | |
| /* The above check is done in PyLong_FromUnicode(). */ | |
| return PyLong_FromUnicode(PyUnicode_AS_UNICODE(o), | |
| PyUnicode_GET_SIZE(o), | |
| 10); | |
| #endif | |
| if (!PyObject_AsCharBuffer(o, &buffer, &buffer_len)) | |
| return long_from_string(buffer, buffer_len); | |
| return type_error("long() argument must be a string or a " | |
| "number, not '%.200s'", o); | |
| } | |
| PyObject * | |
| PyNumber_Float(PyObject *o) | |
| { | |
| PyNumberMethods *m; | |
| if (o == NULL) | |
| return null_error(); | |
| m = o->ob_type->tp_as_number; | |
| if (m && m->nb_float) { /* This should include subclasses of float */ | |
| PyObject *res = m->nb_float(o); | |
| if (res && !PyFloat_Check(res)) { | |
| PyErr_Format(PyExc_TypeError, | |
| "__float__ returned non-float (type %.200s)", | |
| res->ob_type->tp_name); | |
| Py_DECREF(res); | |
| return NULL; | |
| } | |
| return res; | |
| } | |
| if (PyFloat_Check(o)) { /* A float subclass with nb_float == NULL */ | |
| PyFloatObject *po = (PyFloatObject *)o; | |
| return PyFloat_FromDouble(po->ob_fval); | |
| } | |
| return PyFloat_FromString(o, NULL); | |
| } | |
| PyObject * | |
| PyNumber_ToBase(PyObject *n, int base) | |
| { | |
| PyObject *res = NULL; | |
| PyObject *index = PyNumber_Index(n); | |
| if (!index) | |
| return NULL; | |
| if (PyLong_Check(index)) | |
| res = _PyLong_Format(index, base, 0, 1); | |
| else if (PyInt_Check(index)) | |
| res = _PyInt_Format((PyIntObject*)index, base, 1); | |
| else | |
| /* It should not be possible to get here, as | |
| PyNumber_Index already has a check for the same | |
| condition */ | |
| PyErr_SetString(PyExc_ValueError, "PyNumber_ToBase: index not " | |
| "int or long"); | |
| Py_DECREF(index); | |
| return res; | |
| } | |
| /* Operations on sequences */ | |
| int | |
| PySequence_Check(PyObject *s) | |
| { | |
| if (s == NULL) | |
| return 0; | |
| if (PyInstance_Check(s)) | |
| return PyObject_HasAttrString(s, "__getitem__"); | |
| if (PyDict_Check(s)) | |
| return 0; | |
| return s->ob_type->tp_as_sequence && | |
| s->ob_type->tp_as_sequence->sq_item != NULL; | |
| } | |
| Py_ssize_t | |
| PySequence_Size(PyObject *s) | |
| { | |
| PySequenceMethods *m; | |
| if (s == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| m = s->ob_type->tp_as_sequence; | |
| if (m && m->sq_length) | |
| return m->sq_length(s); | |
| type_error("object of type '%.200s' has no len()", s); | |
| return -1; | |
| } | |
| #undef PySequence_Length | |
| Py_ssize_t | |
| PySequence_Length(PyObject *s) | |
| { | |
| return PySequence_Size(s); | |
| } | |
| #define PySequence_Length PySequence_Size | |
| PyObject * | |
| PySequence_Concat(PyObject *s, PyObject *o) | |
| { | |
| PySequenceMethods *m; | |
| if (s == NULL || o == NULL) | |
| return null_error(); | |
| m = s->ob_type->tp_as_sequence; | |
| if (m && m->sq_concat) | |
| return m->sq_concat(s, o); | |
| /* Instances of user classes defining an __add__() method only | |
| have an nb_add slot, not an sq_concat slot. So we fall back | |
| to nb_add if both arguments appear to be sequences. */ | |
| if (PySequence_Check(s) && PySequence_Check(o)) { | |
| PyObject *result = binary_op1(s, o, NB_SLOT(nb_add)); | |
| if (result != Py_NotImplemented) | |
| return result; | |
| Py_DECREF(result); | |
| } | |
| return type_error("'%.200s' object can't be concatenated", s); | |
| } | |
| PyObject * | |
| PySequence_Repeat(PyObject *o, Py_ssize_t count) | |
| { | |
| PySequenceMethods *m; | |
| if (o == NULL) | |
| return null_error(); | |
| m = o->ob_type->tp_as_sequence; | |
| if (m && m->sq_repeat) | |
| return m->sq_repeat(o, count); | |
| /* Instances of user classes defining a __mul__() method only | |
| have an nb_multiply slot, not an sq_repeat slot. so we fall back | |
| to nb_multiply if o appears to be a sequence. */ | |
| if (PySequence_Check(o)) { | |
| PyObject *n, *result; | |
| n = PyInt_FromSsize_t(count); | |
| if (n == NULL) | |
| return NULL; | |
| result = binary_op1(o, n, NB_SLOT(nb_multiply)); | |
| Py_DECREF(n); | |
| if (result != Py_NotImplemented) | |
| return result; | |
| Py_DECREF(result); | |
| } | |
| return type_error("'%.200s' object can't be repeated", o); | |
| } | |
| PyObject * | |
| PySequence_InPlaceConcat(PyObject *s, PyObject *o) | |
| { | |
| PySequenceMethods *m; | |
| if (s == NULL || o == NULL) | |
| return null_error(); | |
| m = s->ob_type->tp_as_sequence; | |
| if (m && HASINPLACE(s) && m->sq_inplace_concat) | |
| return m->sq_inplace_concat(s, o); | |
| if (m && m->sq_concat) | |
| return m->sq_concat(s, o); | |
| if (PySequence_Check(s) && PySequence_Check(o)) { | |
| PyObject *result = binary_iop1(s, o, NB_SLOT(nb_inplace_add), | |
| NB_SLOT(nb_add)); | |
| if (result != Py_NotImplemented) | |
| return result; | |
| Py_DECREF(result); | |
| } | |
| return type_error("'%.200s' object can't be concatenated", s); | |
| } | |
| PyObject * | |
| PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count) | |
| { | |
| PySequenceMethods *m; | |
| if (o == NULL) | |
| return null_error(); | |
| m = o->ob_type->tp_as_sequence; | |
| if (m && HASINPLACE(o) && m->sq_inplace_repeat) | |
| return m->sq_inplace_repeat(o, count); | |
| if (m && m->sq_repeat) | |
| return m->sq_repeat(o, count); | |
| if (PySequence_Check(o)) { | |
| PyObject *n, *result; | |
| n = PyInt_FromSsize_t(count); | |
| if (n == NULL) | |
| return NULL; | |
| result = binary_iop1(o, n, NB_SLOT(nb_inplace_multiply), | |
| NB_SLOT(nb_multiply)); | |
| Py_DECREF(n); | |
| if (result != Py_NotImplemented) | |
| return result; | |
| Py_DECREF(result); | |
| } | |
| return type_error("'%.200s' object can't be repeated", o); | |
| } | |
| PyObject * | |
| PySequence_GetItem(PyObject *s, Py_ssize_t i) | |
| { | |
| PySequenceMethods *m; | |
| if (s == NULL) | |
| return null_error(); | |
| m = s->ob_type->tp_as_sequence; | |
| if (m && m->sq_item) { | |
| if (i < 0) { | |
| if (m->sq_length) { | |
| Py_ssize_t l = (*m->sq_length)(s); | |
| if (l < 0) | |
| return NULL; | |
| i += l; | |
| } | |
| } | |
| return m->sq_item(s, i); | |
| } | |
| return type_error("'%.200s' object does not support indexing", s); | |
| } | |
| PyObject * | |
| PySequence_GetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2) | |
| { | |
| PySequenceMethods *m; | |
| PyMappingMethods *mp; | |
| if (!s) return null_error(); | |
| m = s->ob_type->tp_as_sequence; | |
| if (m && m->sq_slice) { | |
| if (i1 < 0 || i2 < 0) { | |
| if (m->sq_length) { | |
| Py_ssize_t l = (*m->sq_length)(s); | |
| if (l < 0) | |
| return NULL; | |
| if (i1 < 0) | |
| i1 += l; | |
| if (i2 < 0) | |
| i2 += l; | |
| } | |
| } | |
| return m->sq_slice(s, i1, i2); | |
| } else if ((mp = s->ob_type->tp_as_mapping) && mp->mp_subscript) { | |
| PyObject *res; | |
| PyObject *slice = _PySlice_FromIndices(i1, i2); | |
| if (!slice) | |
| return NULL; | |
| res = mp->mp_subscript(s, slice); | |
| Py_DECREF(slice); | |
| return res; | |
| } | |
| return type_error("'%.200s' object is unsliceable", s); | |
| } | |
| int | |
| PySequence_SetItem(PyObject *s, Py_ssize_t i, PyObject *o) | |
| { | |
| PySequenceMethods *m; | |
| if (s == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| m = s->ob_type->tp_as_sequence; | |
| if (m && m->sq_ass_item) { | |
| if (i < 0) { | |
| if (m->sq_length) { | |
| Py_ssize_t l = (*m->sq_length)(s); | |
| if (l < 0) | |
| return -1; | |
| i += l; | |
| } | |
| } | |
| return m->sq_ass_item(s, i, o); | |
| } | |
| type_error("'%.200s' object does not support item assignment", s); | |
| return -1; | |
| } | |
| int | |
| PySequence_DelItem(PyObject *s, Py_ssize_t i) | |
| { | |
| PySequenceMethods *m; | |
| if (s == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| m = s->ob_type->tp_as_sequence; | |
| if (m && m->sq_ass_item) { | |
| if (i < 0) { | |
| if (m->sq_length) { | |
| Py_ssize_t l = (*m->sq_length)(s); | |
| if (l < 0) | |
| return -1; | |
| i += l; | |
| } | |
| } | |
| return m->sq_ass_item(s, i, (PyObject *)NULL); | |
| } | |
| type_error("'%.200s' object doesn't support item deletion", s); | |
| return -1; | |
| } | |
| int | |
| PySequence_SetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2, PyObject *o) | |
| { | |
| PySequenceMethods *m; | |
| PyMappingMethods *mp; | |
| if (s == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| m = s->ob_type->tp_as_sequence; | |
| if (m && m->sq_ass_slice) { | |
| if (i1 < 0 || i2 < 0) { | |
| if (m->sq_length) { | |
| Py_ssize_t l = (*m->sq_length)(s); | |
| if (l < 0) | |
| return -1; | |
| if (i1 < 0) | |
| i1 += l; | |
| if (i2 < 0) | |
| i2 += l; | |
| } | |
| } | |
| return m->sq_ass_slice(s, i1, i2, o); | |
| } else if ((mp = s->ob_type->tp_as_mapping) && mp->mp_ass_subscript) { | |
| int res; | |
| PyObject *slice = _PySlice_FromIndices(i1, i2); | |
| if (!slice) | |
| return -1; | |
| res = mp->mp_ass_subscript(s, slice, o); | |
| Py_DECREF(slice); | |
| return res; | |
| } | |
| type_error("'%.200s' object doesn't support slice assignment", s); | |
| return -1; | |
| } | |
| int | |
| PySequence_DelSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2) | |
| { | |
| PySequenceMethods *m; | |
| if (s == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| m = s->ob_type->tp_as_sequence; | |
| if (m && m->sq_ass_slice) { | |
| if (i1 < 0 || i2 < 0) { | |
| if (m->sq_length) { | |
| Py_ssize_t l = (*m->sq_length)(s); | |
| if (l < 0) | |
| return -1; | |
| if (i1 < 0) | |
| i1 += l; | |
| if (i2 < 0) | |
| i2 += l; | |
| } | |
| } | |
| return m->sq_ass_slice(s, i1, i2, (PyObject *)NULL); | |
| } | |
| type_error("'%.200s' object doesn't support slice deletion", s); | |
| return -1; | |
| } | |
| PyObject * | |
| PySequence_Tuple(PyObject *v) | |
| { | |
| PyObject *it; /* iter(v) */ | |
| Py_ssize_t n; /* guess for result tuple size */ | |
| PyObject *result = NULL; | |
| Py_ssize_t j; | |
| if (v == NULL) | |
| return null_error(); | |
| /* Special-case the common tuple and list cases, for efficiency. */ | |
| if (PyTuple_CheckExact(v)) { | |
| /* Note that we can't know whether it's safe to return | |
| a tuple *subclass* instance as-is, hence the restriction | |
| to exact tuples here. In contrast, lists always make | |
| a copy, so there's no need for exactness below. */ | |
| Py_INCREF(v); | |
| return v; | |
| } | |
| if (PyList_Check(v)) | |
| return PyList_AsTuple(v); | |
| /* Get iterator. */ | |
| it = PyObject_GetIter(v); | |
| if (it == NULL) | |
| return NULL; | |
| /* Guess result size and allocate space. */ | |
| n = _PyObject_LengthHint(v, 10); | |
| if (n == -1) | |
| goto Fail; | |
| result = PyTuple_New(n); | |
| if (result == NULL) | |
| goto Fail; | |
| /* Fill the tuple. */ | |
| for (j = 0; ; ++j) { | |
| PyObject *item = PyIter_Next(it); | |
| if (item == NULL) { | |
| if (PyErr_Occurred()) | |
| goto Fail; | |
| break; | |
| } | |
| if (j >= n) { | |
| Py_ssize_t oldn = n; | |
| /* The over-allocation strategy can grow a bit faster | |
| than for lists because unlike lists the | |
| over-allocation isn't permanent -- we reclaim | |
| the excess before the end of this routine. | |
| So, grow by ten and then add 25%. | |
| */ | |
| n += 10; | |
| n += n >> 2; | |
| if (n < oldn) { | |
| /* Check for overflow */ | |
| PyErr_NoMemory(); | |
| Py_DECREF(item); | |
| goto Fail; | |
| } | |
| if (_PyTuple_Resize(&result, n) != 0) { | |
| Py_DECREF(item); | |
| goto Fail; | |
| } | |
| } | |
| PyTuple_SET_ITEM(result, j, item); | |
| } | |
| /* Cut tuple back if guess was too large. */ | |
| if (j < n && | |
| _PyTuple_Resize(&result, j) != 0) | |
| goto Fail; | |
| Py_DECREF(it); | |
| return result; | |
| Fail: | |
| Py_XDECREF(result); | |
| Py_DECREF(it); | |
| return NULL; | |
| } | |
| PyObject * | |
| PySequence_List(PyObject *v) | |
| { | |
| PyObject *result; /* result list */ | |
| PyObject *rv; /* return value from PyList_Extend */ | |
| if (v == NULL) | |
| return null_error(); | |
| result = PyList_New(0); | |
| if (result == NULL) | |
| return NULL; | |
| rv = _PyList_Extend((PyListObject *)result, v); | |
| if (rv == NULL) { | |
| Py_DECREF(result); | |
| return NULL; | |
| } | |
| Py_DECREF(rv); | |
| return result; | |
| } | |
| PyObject * | |
| PySequence_Fast(PyObject *v, const char *m) | |
| { | |
| PyObject *it; | |
| if (v == NULL) | |
| return null_error(); | |
| if (PyList_CheckExact(v) || PyTuple_CheckExact(v)) { | |
| Py_INCREF(v); | |
| return v; | |
| } | |
| it = PyObject_GetIter(v); | |
| if (it == NULL) { | |
| if (PyErr_ExceptionMatches(PyExc_TypeError)) | |
| PyErr_SetString(PyExc_TypeError, m); | |
| return NULL; | |
| } | |
| v = PySequence_List(it); | |
| Py_DECREF(it); | |
| return v; | |
| } | |
| /* Iterate over seq. Result depends on the operation: | |
| PY_ITERSEARCH_COUNT: -1 if error, else # of times obj appears in seq. | |
| PY_ITERSEARCH_INDEX: 0-based index of first occurrence of obj in seq; | |
| set ValueError and return -1 if none found; also return -1 on error. | |
| Py_ITERSEARCH_CONTAINS: return 1 if obj in seq, else 0; -1 on error. | |
| */ | |
| Py_ssize_t | |
| _PySequence_IterSearch(PyObject *seq, PyObject *obj, int operation) | |
| { | |
| Py_ssize_t n; | |
| int wrapped; /* for PY_ITERSEARCH_INDEX, true iff n wrapped around */ | |
| PyObject *it; /* iter(seq) */ | |
| if (seq == NULL || obj == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| it = PyObject_GetIter(seq); | |
| if (it == NULL) { | |
| type_error("argument of type '%.200s' is not iterable", seq); | |
| return -1; | |
| } | |
| n = wrapped = 0; | |
| for (;;) { | |
| int cmp; | |
| PyObject *item = PyIter_Next(it); | |
| if (item == NULL) { | |
| if (PyErr_Occurred()) | |
| goto Fail; | |
| break; | |
| } | |
| cmp = PyObject_RichCompareBool(obj, item, Py_EQ); | |
| Py_DECREF(item); | |
| if (cmp < 0) | |
| goto Fail; | |
| if (cmp > 0) { | |
| switch (operation) { | |
| case PY_ITERSEARCH_COUNT: | |
| if (n == PY_SSIZE_T_MAX) { | |
| PyErr_SetString(PyExc_OverflowError, | |
| "count exceeds C integer size"); | |
| goto Fail; | |
| } | |
| ++n; | |
| break; | |
| case PY_ITERSEARCH_INDEX: | |
| if (wrapped) { | |
| PyErr_SetString(PyExc_OverflowError, | |
| "index exceeds C integer size"); | |
| goto Fail; | |
| } | |
| goto Done; | |
| case PY_ITERSEARCH_CONTAINS: | |
| n = 1; | |
| goto Done; | |
| default: | |
| assert(!"unknown operation"); | |
| } | |
| } | |
| if (operation == PY_ITERSEARCH_INDEX) { | |
| if (n == PY_SSIZE_T_MAX) | |
| wrapped = 1; | |
| ++n; | |
| } | |
| } | |
| if (operation != PY_ITERSEARCH_INDEX) | |
| goto Done; | |
| PyErr_SetString(PyExc_ValueError, | |
| "sequence.index(x): x not in sequence"); | |
| /* fall into failure code */ | |
| Fail: | |
| n = -1; | |
| /* fall through */ | |
| Done: | |
| Py_DECREF(it); | |
| return n; | |
| } | |
| /* Return # of times o appears in s. */ | |
| Py_ssize_t | |
| PySequence_Count(PyObject *s, PyObject *o) | |
| { | |
| return _PySequence_IterSearch(s, o, PY_ITERSEARCH_COUNT); | |
| } | |
| /* Return -1 if error; 1 if ob in seq; 0 if ob not in seq. | |
| * Use sq_contains if possible, else defer to _PySequence_IterSearch(). | |
| */ | |
| int | |
| PySequence_Contains(PyObject *seq, PyObject *ob) | |
| { | |
| Py_ssize_t result; | |
| if (PyType_HasFeature(seq->ob_type, Py_TPFLAGS_HAVE_SEQUENCE_IN)) { | |
| PySequenceMethods *sqm = seq->ob_type->tp_as_sequence; | |
| if (sqm != NULL && sqm->sq_contains != NULL) | |
| return (*sqm->sq_contains)(seq, ob); | |
| } | |
| result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS); | |
| return Py_SAFE_DOWNCAST(result, Py_ssize_t, int); | |
| } | |
| /* Backwards compatibility */ | |
| #undef PySequence_In | |
| int | |
| PySequence_In(PyObject *w, PyObject *v) | |
| { | |
| return PySequence_Contains(w, v); | |
| } | |
| Py_ssize_t | |
| PySequence_Index(PyObject *s, PyObject *o) | |
| { | |
| return _PySequence_IterSearch(s, o, PY_ITERSEARCH_INDEX); | |
| } | |
| /* Operations on mappings */ | |
| int | |
| PyMapping_Check(PyObject *o) | |
| { | |
| if (o && PyInstance_Check(o)) | |
| return PyObject_HasAttrString(o, "__getitem__"); | |
| return o && o->ob_type->tp_as_mapping && | |
| o->ob_type->tp_as_mapping->mp_subscript && | |
| !(o->ob_type->tp_as_sequence && | |
| o->ob_type->tp_as_sequence->sq_slice); | |
| } | |
| Py_ssize_t | |
| PyMapping_Size(PyObject *o) | |
| { | |
| PyMappingMethods *m; | |
| if (o == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| m = o->ob_type->tp_as_mapping; | |
| if (m && m->mp_length) | |
| return m->mp_length(o); | |
| type_error("object of type '%.200s' has no len()", o); | |
| return -1; | |
| } | |
| #undef PyMapping_Length | |
| Py_ssize_t | |
| PyMapping_Length(PyObject *o) | |
| { | |
| return PyMapping_Size(o); | |
| } | |
| #define PyMapping_Length PyMapping_Size | |
| PyObject * | |
| PyMapping_GetItemString(PyObject *o, char *key) | |
| { | |
| PyObject *okey, *r; | |
| if (key == NULL) | |
| return null_error(); | |
| okey = PyString_FromString(key); | |
| if (okey == NULL) | |
| return NULL; | |
| r = PyObject_GetItem(o, okey); | |
| Py_DECREF(okey); | |
| return r; | |
| } | |
| int | |
| PyMapping_SetItemString(PyObject *o, char *key, PyObject *value) | |
| { | |
| PyObject *okey; | |
| int r; | |
| if (key == NULL) { | |
| null_error(); | |
| return -1; | |
| } | |
| okey = PyString_FromString(key); | |
| if (okey == NULL) | |
| return -1; | |
| r = PyObject_SetItem(o, okey, value); | |
| Py_DECREF(okey); | |
| return r; | |
| } | |
| int | |
| PyMapping_HasKeyString(PyObject *o, char *key) | |
| { | |
| PyObject *v; | |
| v = PyMapping_GetItemString(o, key); | |
| if (v) { | |
| Py_DECREF(v); | |
| return 1; | |
| } | |
| PyErr_Clear(); | |
| return 0; | |
| } | |
| int | |
| PyMapping_HasKey(PyObject *o, PyObject *key) | |
| { | |
| PyObject *v; | |
| v = PyObject_GetItem(o, key); | |
| if (v) { | |
| Py_DECREF(v); | |
| return 1; | |
| } | |
| PyErr_Clear(); | |
| return 0; | |
| } | |
| /* Operations on callable objects */ | |
| /* XXX PyCallable_Check() is in object.c */ | |
| PyObject * | |
| PyObject_CallObject(PyObject *o, PyObject *a) | |
| { | |
| return PyEval_CallObjectWithKeywords(o, a, NULL); | |
| } | |
| PyObject * | |
| PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) | |
| { | |
| ternaryfunc call; | |
| if ((call = func->ob_type->tp_call) != NULL) { | |
| PyObject *result; | |
| if (Py_EnterRecursiveCall(" while calling a Python object")) | |
| return NULL; | |
| result = (*call)(func, arg, kw); | |
| Py_LeaveRecursiveCall(); | |
| if (result == NULL && !PyErr_Occurred()) | |
| PyErr_SetString( | |
| PyExc_SystemError, | |
| "NULL result without error in PyObject_Call"); | |
| return result; | |
| } | |
| PyErr_Format(PyExc_TypeError, "'%.200s' object is not callable", | |
| func->ob_type->tp_name); | |
| return NULL; | |
| } | |
| static PyObject* | |
| call_function_tail(PyObject *callable, PyObject *args) | |
| { | |
| PyObject *retval; | |
| if (args == NULL) | |
| return NULL; | |
| if (!PyTuple_Check(args)) { | |
| PyObject *a; | |
| a = PyTuple_New(1); | |
| if (a == NULL) { | |
| Py_DECREF(args); | |
| return NULL; | |
| } | |
| PyTuple_SET_ITEM(a, 0, args); | |
| args = a; | |
| } | |
| retval = PyObject_Call(callable, args, NULL); | |
| Py_DECREF(args); | |
| return retval; | |
| } | |
| PyObject * | |
| PyObject_CallFunction(PyObject *callable, char *format, ...) | |
| { | |
| va_list va; | |
| PyObject *args; | |
| if (callable == NULL) | |
| return null_error(); | |
| if (format && *format) { | |
| va_start(va, format); | |
| args = Py_VaBuildValue(format, va); | |
| va_end(va); | |
| } | |
| else | |
| args = PyTuple_New(0); | |
| return call_function_tail(callable, args); | |
| } | |
| PyObject * | |
| _PyObject_CallFunction_SizeT(PyObject *callable, char *format, ...) | |
| { | |
| va_list va; | |
| PyObject *args; | |
| if (callable == NULL) | |
| return null_error(); | |
| if (format && *format) { | |
| va_start(va, format); | |
| args = _Py_VaBuildValue_SizeT(format, va); | |
| va_end(va); | |
| } | |
| else | |
| args = PyTuple_New(0); | |
| return call_function_tail(callable, args); | |
| } | |
| PyObject * | |
| PyObject_CallMethod(PyObject *o, char *name, char *format, ...) | |
| { | |
| va_list va; | |
| PyObject *args; | |
| PyObject *func = NULL; | |
| PyObject *retval = NULL; | |
| if (o == NULL || name == NULL) | |
| return null_error(); | |
| func = PyObject_GetAttrString(o, name); | |
| if (func == NULL) { | |
| PyErr_SetString(PyExc_AttributeError, name); | |
| return 0; | |
| } | |
| if (!PyCallable_Check(func)) { | |
| type_error("attribute of type '%.200s' is not callable", func); | |
| goto exit; | |
| } | |
| if (format && *format) { | |
| va_start(va, format); | |
| args = Py_VaBuildValue(format, va); | |
| va_end(va); | |
| } | |
| else | |
| args = PyTuple_New(0); | |
| retval = call_function_tail(func, args); | |
| exit: | |
| /* args gets consumed in call_function_tail */ | |
| Py_XDECREF(func); | |
| return retval; | |
| } | |
| PyObject * | |
| _PyObject_CallMethod_SizeT(PyObject *o, char *name, char *format, ...) | |
| { | |
| va_list va; | |
| PyObject *args; | |
| PyObject *func = NULL; | |
| PyObject *retval = NULL; | |
| if (o == NULL || name == NULL) | |
| return null_error(); | |
| func = PyObject_GetAttrString(o, name); | |
| if (func == NULL) { | |
| PyErr_SetString(PyExc_AttributeError, name); | |
| return 0; | |
| } | |
| if (!PyCallable_Check(func)) { | |
| type_error("attribute of type '%.200s' is not callable", func); | |
| goto exit; | |
| } | |
| if (format && *format) { | |
| va_start(va, format); | |
| args = _Py_VaBuildValue_SizeT(format, va); | |
| va_end(va); | |
| } | |
| else | |
| args = PyTuple_New(0); | |
| retval = call_function_tail(func, args); | |
| exit: | |
| /* args gets consumed in call_function_tail */ | |
| Py_XDECREF(func); | |
| return retval; | |
| } | |
| static PyObject * | |
| objargs_mktuple(va_list va) | |
| { | |
| int i, n = 0; | |
| va_list countva; | |
| PyObject *result, *tmp; | |
| #ifdef VA_LIST_IS_ARRAY | |
| memcpy(countva, va, sizeof(va_list)); | |
| #else | |
| #ifdef __va_copy | |
| __va_copy(countva, va); | |
| #else | |
| countva = va; | |
| #endif | |
| #endif | |
| while (((PyObject *)va_arg(countva, PyObject *)) != NULL) | |
| ++n; | |
| result = PyTuple_New(n); | |
| if (result != NULL && n > 0) { | |
| for (i = 0; i < n; ++i) { | |
| tmp = (PyObject *)va_arg(va, PyObject *); | |
| PyTuple_SET_ITEM(result, i, tmp); | |
| Py_INCREF(tmp); | |
| } | |
| } | |
| return result; | |
| } | |
| PyObject * | |
| PyObject_CallMethodObjArgs(PyObject *callable, PyObject *name, ...) | |
| { | |
| PyObject *args, *tmp; | |
| va_list vargs; | |
| if (callable == NULL || name == NULL) | |
| return null_error(); | |
| callable = PyObject_GetAttr(callable, name); | |
| if (callable == NULL) | |
| return NULL; | |
| /* count the args */ | |
| va_start(vargs, name); | |
| args = objargs_mktuple(vargs); | |
| va_end(vargs); | |
| if (args == NULL) { | |
| Py_DECREF(callable); | |
| return NULL; | |
| } | |
| tmp = PyObject_Call(callable, args, NULL); | |
| Py_DECREF(args); | |
| Py_DECREF(callable); | |
| return tmp; | |
| } | |
| PyObject * | |
| PyObject_CallFunctionObjArgs(PyObject *callable, ...) | |
| { | |
| PyObject *args, *tmp; | |
| va_list vargs; | |
| if (callable == NULL) | |
| return null_error(); | |
| /* count the args */ | |
| va_start(vargs, callable); | |
| args = objargs_mktuple(vargs); | |
| va_end(vargs); | |
| if (args == NULL) | |
| return NULL; | |
| tmp = PyObject_Call(callable, args, NULL); | |
| Py_DECREF(args); | |
| return tmp; | |
| } | |
| /* isinstance(), issubclass() */ | |
| /* abstract_get_bases() has logically 4 return states, with a sort of 0th | |
| * state that will almost never happen. | |
| * | |
| * 0. creating the __bases__ static string could get a MemoryError | |
| * 1. getattr(cls, '__bases__') could raise an AttributeError | |
| * 2. getattr(cls, '__bases__') could raise some other exception | |
| * 3. getattr(cls, '__bases__') could return a tuple | |
| * 4. getattr(cls, '__bases__') could return something other than a tuple | |
| * | |
| * Only state #3 is a non-error state and only it returns a non-NULL object | |
| * (it returns the retrieved tuple). | |
| * | |
| * Any raised AttributeErrors are masked by clearing the exception and | |
| * returning NULL. If an object other than a tuple comes out of __bases__, | |
| * then again, the return value is NULL. So yes, these two situations | |
| * produce exactly the same results: NULL is returned and no error is set. | |
| * | |
| * If some exception other than AttributeError is raised, then NULL is also | |
| * returned, but the exception is not cleared. That's because we want the | |
| * exception to be propagated along. | |
| * | |
| * Callers are expected to test for PyErr_Occurred() when the return value | |
| * is NULL to decide whether a valid exception should be propagated or not. | |
| * When there's no exception to propagate, it's customary for the caller to | |
| * set a TypeError. | |
| */ | |
| static PyObject * | |
| abstract_get_bases(PyObject *cls) | |
| { | |
| static PyObject *__bases__ = NULL; | |
| PyObject *bases; | |
| if (__bases__ == NULL) { | |
| __bases__ = PyString_InternFromString("__bases__"); | |
| if (__bases__ == NULL) | |
| return NULL; | |
| } | |
| bases = PyObject_GetAttr(cls, __bases__); | |
| if (bases == NULL) { | |
| if (PyErr_ExceptionMatches(PyExc_AttributeError)) | |
| PyErr_Clear(); | |
| return NULL; | |
| } | |
| if (!PyTuple_Check(bases)) { | |
| Py_DECREF(bases); | |
| return NULL; | |
| } | |
| return bases; | |
| } | |
| static int | |
| abstract_issubclass(PyObject *derived, PyObject *cls) | |
| { | |
| PyObject *bases = NULL; | |
| Py_ssize_t i, n; | |
| int r = 0; | |
| while (1) { | |
| if (derived == cls) | |
| return 1; | |
| bases = abstract_get_bases(derived); | |
| if (bases == NULL) { | |
| if (PyErr_Occurred()) | |
| return -1; | |
| return 0; | |
| } | |
| n = PyTuple_GET_SIZE(bases); | |
| if (n == 0) { | |
| Py_DECREF(bases); | |
| return 0; | |
| } | |
| /* Avoid recursivity in the single inheritance case */ | |
| if (n == 1) { | |
| derived = PyTuple_GET_ITEM(bases, 0); | |
| Py_DECREF(bases); | |
| continue; | |
| } | |
| for (i = 0; i < n; i++) { | |
| r = abstract_issubclass(PyTuple_GET_ITEM(bases, i), cls); | |
| if (r != 0) | |
| break; | |
| } | |
| Py_DECREF(bases); | |
| return r; | |
| } | |
| } | |
| static int | |
| check_class(PyObject *cls, const char *error) | |
| { | |
| PyObject *bases = abstract_get_bases(cls); | |
| if (bases == NULL) { | |
| /* Do not mask errors. */ | |
| if (!PyErr_Occurred()) | |
| PyErr_SetString(PyExc_TypeError, error); | |
| return 0; | |
| } | |
| Py_DECREF(bases); | |
| return -1; | |
| } | |
| static int | |
| recursive_isinstance(PyObject *inst, PyObject *cls) | |
| { | |
| PyObject *icls; | |
| static PyObject *__class__ = NULL; | |
| int retval = 0; | |
| if (__class__ == NULL) { | |
| __class__ = PyString_InternFromString("__class__"); | |
| if (__class__ == NULL) | |
| return -1; | |
| } | |
| if (PyClass_Check(cls) && PyInstance_Check(inst)) { | |
| PyObject *inclass = | |
| (PyObject*)((PyInstanceObject*)inst)->in_class; | |
| retval = PyClass_IsSubclass(inclass, cls); | |
| } | |
| else if (PyType_Check(cls)) { | |
| retval = PyObject_TypeCheck(inst, (PyTypeObject *)cls); | |
| if (retval == 0) { | |
| PyObject *c = PyObject_GetAttr(inst, __class__); | |
| if (c == NULL) { | |
| PyErr_Clear(); | |
| } | |
| else { | |
| if (c != (PyObject *)(inst->ob_type) && | |
| PyType_Check(c)) | |
| retval = PyType_IsSubtype( | |
| (PyTypeObject *)c, | |
| (PyTypeObject *)cls); | |
| Py_DECREF(c); | |
| } | |
| } | |
| } | |
| else { | |
| if (!check_class(cls, | |
| "isinstance() arg 2 must be a class, type," | |
| " or tuple of classes and types")) | |
| return -1; | |
| icls = PyObject_GetAttr(inst, __class__); | |
| if (icls == NULL) { | |
| PyErr_Clear(); | |
| retval = 0; | |
| } | |
| else { | |
| retval = abstract_issubclass(icls, cls); | |
| Py_DECREF(icls); | |
| } | |
| } | |
| return retval; | |
| } | |
| int | |
| PyObject_IsInstance(PyObject *inst, PyObject *cls) | |
| { | |
| static PyObject *name = NULL; | |
| /* Quick test for an exact match */ | |
| if (Py_TYPE(inst) == (PyTypeObject *)cls) | |
| return 1; | |
| if (PyTuple_Check(cls)) { | |
| Py_ssize_t i; | |
| Py_ssize_t n; | |
| int r = 0; | |
| if (Py_EnterRecursiveCall(" in __instancecheck__")) | |
| return -1; | |
| n = PyTuple_GET_SIZE(cls); | |
| for (i = 0; i < n; ++i) { | |
| PyObject *item = PyTuple_GET_ITEM(cls, i); | |
| r = PyObject_IsInstance(inst, item); | |
| if (r != 0) | |
| /* either found it, or got an error */ | |
| break; | |
| } | |
| Py_LeaveRecursiveCall(); | |
| return r; | |
| } | |
| if (!(PyClass_Check(cls) || PyInstance_Check(cls))) { | |
| PyObject *checker; | |
| checker = _PyObject_LookupSpecial(cls, "__instancecheck__", &name); | |
| if (checker != NULL) { | |
| PyObject *res; | |
| int ok = -1; | |
| if (Py_EnterRecursiveCall(" in __instancecheck__")) { | |
| Py_DECREF(checker); | |
| return ok; | |
| } | |
| res = PyObject_CallFunctionObjArgs(checker, inst, NULL); | |
| Py_LeaveRecursiveCall(); | |
| Py_DECREF(checker); | |
| if (res != NULL) { | |
| ok = PyObject_IsTrue(res); | |
| Py_DECREF(res); | |
| } | |
| return ok; | |
| } | |
| else if (PyErr_Occurred()) | |
| return -1; | |
| } | |
| return recursive_isinstance(inst, cls); | |
| } | |
| static int | |
| recursive_issubclass(PyObject *derived, PyObject *cls) | |
| { | |
| int retval; | |
| if (PyType_Check(cls) && PyType_Check(derived)) { | |
| /* Fast path (non-recursive) */ | |
| return PyType_IsSubtype( | |
| (PyTypeObject *)derived, (PyTypeObject *)cls); | |
| } | |
| if (!PyClass_Check(derived) || !PyClass_Check(cls)) { | |
| if (!check_class(derived, | |
| "issubclass() arg 1 must be a class")) | |
| return -1; | |
| if (!check_class(cls, | |
| "issubclass() arg 2 must be a class" | |
| " or tuple of classes")) | |
| return -1; | |
| retval = abstract_issubclass(derived, cls); | |
| } | |
| else { | |
| /* shortcut */ | |
| if (!(retval = (derived == cls))) | |
| retval = PyClass_IsSubclass(derived, cls); | |
| } | |
| return retval; | |
| } | |
| int | |
| PyObject_IsSubclass(PyObject *derived, PyObject *cls) | |
| { | |
| static PyObject *name = NULL; | |
| if (PyTuple_Check(cls)) { | |
| Py_ssize_t i; | |
| Py_ssize_t n; | |
| int r = 0; | |
| if (Py_EnterRecursiveCall(" in __subclasscheck__")) | |
| return -1; | |
| n = PyTuple_GET_SIZE(cls); | |
| for (i = 0; i < n; ++i) { | |
| PyObject *item = PyTuple_GET_ITEM(cls, i); | |
| r = PyObject_IsSubclass(derived, item); | |
| if (r != 0) | |
| /* either found it, or got an error */ | |
| break; | |
| } | |
| Py_LeaveRecursiveCall(); | |
| return r; | |
| } | |
| if (!(PyClass_Check(cls) || PyInstance_Check(cls))) { | |
| PyObject *checker; | |
| checker = _PyObject_LookupSpecial(cls, "__subclasscheck__", &name); | |
| if (checker != NULL) { | |
| PyObject *res; | |
| int ok = -1; | |
| if (Py_EnterRecursiveCall(" in __subclasscheck__")) { | |
| Py_DECREF(checker); | |
| return ok; | |
| } | |
| res = PyObject_CallFunctionObjArgs(checker, derived, NULL); | |
| Py_LeaveRecursiveCall(); | |
| Py_DECREF(checker); | |
| if (res != NULL) { | |
| ok = PyObject_IsTrue(res); | |
| Py_DECREF(res); | |
| } | |
| return ok; | |
| } | |
| else if (PyErr_Occurred()) { | |
| return -1; | |
| } | |
| } | |
| return recursive_issubclass(derived, cls); | |
| } | |
| int | |
| _PyObject_RealIsInstance(PyObject *inst, PyObject *cls) | |
| { | |
| return recursive_isinstance(inst, cls); | |
| } | |
| int | |
| _PyObject_RealIsSubclass(PyObject *derived, PyObject *cls) | |
| { | |
| return recursive_issubclass(derived, cls); | |
| } | |
| PyObject * | |
| PyObject_GetIter(PyObject *o) | |
| { | |
| PyTypeObject *t = o->ob_type; | |
| getiterfunc f = NULL; | |
| if (PyType_HasFeature(t, Py_TPFLAGS_HAVE_ITER)) | |
| f = t->tp_iter; | |
| if (f == NULL) { | |
| if (PySequence_Check(o)) | |
| return PySeqIter_New(o); | |
| return type_error("'%.200s' object is not iterable", o); | |
| } | |
| else { | |
| PyObject *res = (*f)(o); | |
| if (res != NULL && !PyIter_Check(res)) { | |
| PyErr_Format(PyExc_TypeError, | |
| "iter() returned non-iterator " | |
| "of type '%.100s'", | |
| res->ob_type->tp_name); | |
| Py_DECREF(res); | |
| res = NULL; | |
| } | |
| return res; | |
| } | |
| } | |
| /* Return next item. | |
| * If an error occurs, return NULL. PyErr_Occurred() will be true. | |
| * If the iteration terminates normally, return NULL and clear the | |
| * PyExc_StopIteration exception (if it was set). PyErr_Occurred() | |
| * will be false. | |
| * Else return the next object. PyErr_Occurred() will be false. | |
| */ | |
| PyObject * | |
| PyIter_Next(PyObject *iter) | |
| { | |
| PyObject *result; | |
| result = (*iter->ob_type->tp_iternext)(iter); | |
| if (result == NULL && | |
| PyErr_Occurred() && | |
| PyErr_ExceptionMatches(PyExc_StopIteration)) | |
| PyErr_Clear(); | |
| return result; | |
| } |