| /* @(#)s_cos.c 5.1 93/09/24 */ | |
| /* | |
| * ==================================================== | |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
| * | |
| * Developed at SunPro, a Sun Microsystems, Inc. business. | |
| * Permission to use, copy, modify, and distribute this | |
| * software is freely granted, provided that this notice | |
| * is preserved. | |
| * ==================================================== | |
| */ | |
| #include <LibConfig.h> | |
| #include <sys/EfiCdefs.h> | |
| #if defined(LIBM_SCCS) && !defined(lint) | |
| __RCSID("$NetBSD: s_cos.c,v 1.10 2002/05/26 22:01:54 wiz Exp $"); | |
| #endif | |
| /* cos(x) | |
| * Return cosine function of x. | |
| * | |
| * kernel function: | |
| * __kernel_sin ... sine function on [-pi/4,pi/4] | |
| * __kernel_cos ... cosine function on [-pi/4,pi/4] | |
| * __ieee754_rem_pio2 ... argument reduction routine | |
| * | |
| * Method. | |
| * Let S,C and T denote the sin, cos and tan respectively on | |
| * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 | |
| * in [-pi/4 , +pi/4], and let n = k mod 4. | |
| * We have | |
| * | |
| * n sin(x) cos(x) tan(x) | |
| * ---------------------------------------------------------- | |
| * 0 S C T | |
| * 1 C -S -1/T | |
| * 2 -S -C T | |
| * 3 -C S -1/T | |
| * ---------------------------------------------------------- | |
| * | |
| * Special cases: | |
| * Let trig be any of sin, cos, or tan. | |
| * trig(+-INF) is NaN, with signals; | |
| * trig(NaN) is that NaN; | |
| * | |
| * Accuracy: | |
| * TRIG(x) returns trig(x) nearly rounded | |
| */ | |
| #include "math.h" | |
| #include "math_private.h" | |
| double | |
| cos(double x) | |
| { | |
| double y[2],z=0.0; | |
| int32_t n, ix; | |
| /* High word of x. */ | |
| GET_HIGH_WORD(ix,x); | |
| /* |x| ~< pi/4 */ | |
| ix &= 0x7fffffff; | |
| if(ix <= 0x3fe921fb) return __kernel_cos(x,z); | |
| /* cos(Inf or NaN) is NaN */ | |
| else if (ix>=0x7ff00000) return x-x; | |
| /* argument reduction needed */ | |
| else { | |
| n = __ieee754_rem_pio2(x,y); | |
| switch(n&3) { | |
| case 0: return __kernel_cos(y[0],y[1]); | |
| case 1: return -__kernel_sin(y[0],y[1],1); | |
| case 2: return -__kernel_cos(y[0],y[1]); | |
| default: | |
| return __kernel_sin(y[0],y[1],1); | |
| } | |
| } | |
| } |