| /* @(#)k_rem_pio2.c 5.1 93/09/24 */ | |
| /* | |
| * ==================================================== | |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
| * | |
| * Developed at SunPro, a Sun Microsystems, Inc. business. | |
| * Permission to use, copy, modify, and distribute this | |
| * software is freely granted, provided that this notice | |
| * is preserved. | |
| * ==================================================== | |
| */ | |
| #include <LibConfig.h> | |
| #include <sys/EfiCdefs.h> | |
| #if defined(LIBM_SCCS) && !defined(lint) | |
| __RCSID("$NetBSD: k_rem_pio2.c,v 1.11 2003/01/04 23:43:03 wiz Exp $"); | |
| #endif | |
| /* | |
| * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) | |
| * double x[],y[]; int e0,nx,prec; int ipio2[]; | |
| * | |
| * __kernel_rem_pio2 return the last three digits of N with | |
| * y = x - N*pi/2 | |
| * so that |y| < pi/2. | |
| * | |
| * The method is to compute the integer (mod 8) and fraction parts of | |
| * (2/pi)*x without doing the full multiplication. In general we | |
| * skip the part of the product that are known to be a huge integer ( | |
| * more accurately, = 0 mod 8 ). Thus the number of operations are | |
| * independent of the exponent of the input. | |
| * | |
| * (2/pi) is represented by an array of 24-bit integers in ipio2[]. | |
| * | |
| * Input parameters: | |
| * x[] The input value (must be positive) is broken into nx | |
| * pieces of 24-bit integers in double precision format. | |
| * x[i] will be the i-th 24 bit of x. The scaled exponent | |
| * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 | |
| * match x's up to 24 bits. | |
| * | |
| * Example of breaking a double positive z into x[0]+x[1]+x[2]: | |
| * e0 = ilogb(z)-23 | |
| * z = scalbn(z,-e0) | |
| * for i = 0,1,2 | |
| * x[i] = floor(z) | |
| * z = (z-x[i])*2**24 | |
| * | |
| * | |
| * y[] output result in an array of double precision numbers. | |
| * The dimension of y[] is: | |
| * 24-bit precision 1 | |
| * 53-bit precision 2 | |
| * 64-bit precision 2 | |
| * 113-bit precision 3 | |
| * The actual value is the sum of them. Thus for 113-bit | |
| * precison, one may have to do something like: | |
| * | |
| * long double t,w,r_head, r_tail; | |
| * t = (long double)y[2] + (long double)y[1]; | |
| * w = (long double)y[0]; | |
| * r_head = t+w; | |
| * r_tail = w - (r_head - t); | |
| * | |
| * e0 The exponent of x[0] | |
| * | |
| * nx dimension of x[] | |
| * | |
| * prec an integer indicating the precision: | |
| * 0 24 bits (single) | |
| * 1 53 bits (double) | |
| * 2 64 bits (extended) | |
| * 3 113 bits (quad) | |
| * | |
| * ipio2[] | |
| * integer array, contains the (24*i)-th to (24*i+23)-th | |
| * bit of 2/pi after binary point. The corresponding | |
| * floating value is | |
| * | |
| * ipio2[i] * 2^(-24(i+1)). | |
| * | |
| * External function: | |
| * double scalbn(), floor(); | |
| * | |
| * | |
| * Here is the description of some local variables: | |
| * | |
| * jk jk+1 is the initial number of terms of ipio2[] needed | |
| * in the computation. The recommended value is 2,3,4, | |
| * 6 for single, double, extended,and quad. | |
| * | |
| * jz local integer variable indicating the number of | |
| * terms of ipio2[] used. | |
| * | |
| * jx nx - 1 | |
| * | |
| * jv index for pointing to the suitable ipio2[] for the | |
| * computation. In general, we want | |
| * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 | |
| * is an integer. Thus | |
| * e0-3-24*jv >= 0 or (e0-3)/24 >= jv | |
| * Hence jv = max(0,(e0-3)/24). | |
| * | |
| * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. | |
| * | |
| * q[] double array with integral value, representing the | |
| * 24-bits chunk of the product of x and 2/pi. | |
| * | |
| * q0 the corresponding exponent of q[0]. Note that the | |
| * exponent for q[i] would be q0-24*i. | |
| * | |
| * PIo2[] double precision array, obtained by cutting pi/2 | |
| * into 24 bits chunks. | |
| * | |
| * f[] ipio2[] in floating point | |
| * | |
| * iq[] integer array by breaking up q[] in 24-bits chunk. | |
| * | |
| * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] | |
| * | |
| * ih integer. If >0 it indicates q[] is >= 0.5, hence | |
| * it also indicates the *sign* of the result. | |
| * | |
| */ | |
| /* | |
| * Constants: | |
| * The hexadecimal values are the intended ones for the following | |
| * constants. The decimal values may be used, provided that the | |
| * compiler will convert from decimal to binary accurately enough | |
| * to produce the hexadecimal values shown. | |
| */ | |
| #include "math.h" | |
| #include "math_private.h" | |
| static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ | |
| static const double PIo2[] = { | |
| 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ | |
| 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ | |
| 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ | |
| 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ | |
| 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ | |
| 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ | |
| 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ | |
| 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ | |
| }; | |
| static const double | |
| zero = 0.0, | |
| one = 1.0, | |
| two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ | |
| twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ | |
| int | |
| __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) | |
| { | |
| int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; | |
| double z,fw,f[20],fq[20],q[20]; | |
| /* initialize jk*/ | |
| jk = init_jk[prec]; | |
| jp = jk; | |
| /* determine jx,jv,q0, note that 3>q0 */ | |
| jx = nx-1; | |
| jv = (e0-3)/24; if(jv<0) jv=0; | |
| q0 = e0-24*(jv+1); | |
| /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ | |
| j = jv-jx; m = jx+jk; | |
| for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; | |
| /* compute q[0],q[1],...q[jk] */ | |
| for (i=0;i<=jk;i++) { | |
| for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; | |
| } | |
| jz = jk; | |
| recompute: | |
| /* distill q[] into iq[] reversingly */ | |
| for(i=0,j=jz,z=q[jz];j>0;i++,j--) { | |
| fw = (double)((int32_t)(twon24* z)); | |
| iq[i] = (int32_t)(z-two24*fw); | |
| z = q[j-1]+fw; | |
| } | |
| /* compute n */ | |
| z = scalbn(z,q0); /* actual value of z */ | |
| z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ | |
| n = (int32_t) z; | |
| z -= (double)n; | |
| ih = 0; | |
| if(q0>0) { /* need iq[jz-1] to determine n */ | |
| i = (iq[jz-1]>>(24-q0)); n += i; | |
| iq[jz-1] -= i<<(24-q0); | |
| ih = iq[jz-1]>>(23-q0); | |
| } | |
| else if(q0==0) ih = iq[jz-1]>>23; | |
| else if(z>=0.5) ih=2; | |
| if(ih>0) { /* q > 0.5 */ | |
| n += 1; carry = 0; | |
| for(i=0;i<jz ;i++) { /* compute 1-q */ | |
| j = iq[i]; | |
| if(carry==0) { | |
| if(j!=0) { | |
| carry = 1; iq[i] = 0x1000000- j; | |
| } | |
| } else iq[i] = 0xffffff - j; | |
| } | |
| if(q0>0) { /* rare case: chance is 1 in 12 */ | |
| switch(q0) { | |
| case 1: | |
| iq[jz-1] &= 0x7fffff; break; | |
| case 2: | |
| iq[jz-1] &= 0x3fffff; break; | |
| } | |
| } | |
| if(ih==2) { | |
| z = one - z; | |
| if(carry!=0) z -= scalbn(one,q0); | |
| } | |
| } | |
| /* check if recomputation is needed */ | |
| if(z==zero) { | |
| j = 0; | |
| for (i=jz-1;i>=jk;i--) j |= iq[i]; | |
| if(j==0) { /* need recomputation */ | |
| for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ | |
| for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ | |
| f[jx+i] = (double) ipio2[jv+i]; | |
| for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; | |
| q[i] = fw; | |
| } | |
| jz += k; | |
| goto recompute; | |
| } | |
| } | |
| /* chop off zero terms */ | |
| if(z==0.0) { | |
| jz -= 1; q0 -= 24; | |
| while(iq[jz]==0) { jz--; q0-=24;} | |
| } else { /* break z into 24-bit if necessary */ | |
| z = scalbn(z,-q0); | |
| if(z>=two24) { | |
| fw = (double)((int32_t)(twon24*z)); | |
| iq[jz] = (int32_t)(z-two24*fw); | |
| jz += 1; q0 += 24; | |
| iq[jz] = (int32_t) fw; | |
| } else iq[jz] = (int32_t) z ; | |
| } | |
| /* convert integer "bit" chunk to floating-point value */ | |
| fw = scalbn(one,q0); | |
| for(i=jz;i>=0;i--) { | |
| q[i] = fw*(double)iq[i]; fw*=twon24; | |
| } | |
| /* compute PIo2[0,...,jp]*q[jz,...,0] */ | |
| for(i=jz;i>=0;i--) { | |
| for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; | |
| fq[jz-i] = fw; | |
| } | |
| /* compress fq[] into y[] */ | |
| switch(prec) { | |
| case 0: | |
| fw = 0.0; | |
| for (i=jz;i>=0;i--) fw += fq[i]; | |
| y[0] = (ih==0)? fw: -fw; | |
| break; | |
| case 1: | |
| case 2: | |
| fw = 0.0; | |
| for (i=jz;i>=0;i--) fw += fq[i]; | |
| y[0] = (ih==0)? fw: -fw; | |
| fw = fq[0]-fw; | |
| for (i=1;i<=jz;i++) fw += fq[i]; | |
| y[1] = (ih==0)? fw: -fw; | |
| break; | |
| case 3: /* painful */ | |
| for (i=jz;i>0;i--) { | |
| fw = fq[i-1]+fq[i]; | |
| fq[i] += fq[i-1]-fw; | |
| fq[i-1] = fw; | |
| } | |
| for (i=jz;i>1;i--) { | |
| fw = fq[i-1]+fq[i]; | |
| fq[i] += fq[i-1]-fw; | |
| fq[i-1] = fw; | |
| } | |
| for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; | |
| if(ih==0) { | |
| y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; | |
| } else { | |
| y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; | |
| } | |
| } | |
| return n&7; | |
| } |