| /** @file
|
| This library will parse the coreboot table in memory and extract those required
|
| information.
|
|
|
| Copyright (c) 2014 - 2015, Intel Corporation. All rights reserved.<BR>
|
| This program and the accompanying materials
|
| are licensed and made available under the terms and conditions of the BSD License
|
| which accompanies this distribution. The full text of the license may be found at
|
| http://opensource.org/licenses/bsd-license.php
|
|
|
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
| **/
|
|
|
| #include <Uefi/UefiBaseType.h>
|
| #include <Library/BaseLib.h>
|
| #include <Library/BaseMemoryLib.h>
|
| #include <Library/DebugLib.h>
|
| #include <Library/PcdLib.h>
|
| #include <Library/CbParseLib.h>
|
|
|
| #include <IndustryStandard/Acpi.h>
|
|
|
| #include "Coreboot.h"
|
|
|
|
|
| /**
|
| Convert a packed value from cbuint64 to a UINT64 value.
|
|
|
| @param val The pointer to packed data.
|
|
|
| @return the UNIT64 value after convertion.
|
|
|
| **/
|
| UINT64 |
| cb_unpack64 (
|
| IN struct cbuint64 val
|
| )
|
| {
|
| return LShiftU64 (val.hi, 32) | val.lo;
|
| }
|
|
|
|
|
| /**
|
| Returns the sum of all elements in a buffer of 16-bit values. During
|
| calculation, the carry bits are also been added.
|
|
|
| @param Buffer The pointer to the buffer to carry out the sum operation.
|
| @param Length The size, in bytes, of Buffer.
|
|
|
| @return Sum The sum of Buffer with carry bits included during additions.
|
|
|
| **/
|
| UINT16
|
| CbCheckSum16 (
|
| IN UINT16 *Buffer,
|
| IN UINTN Length
|
| )
|
| {
|
| UINT32 Sum, TmpValue;
|
| UINTN Idx;
|
| UINT8 *TmpPtr;
|
|
|
| Sum = 0;
|
| TmpPtr = (UINT8 *)Buffer;
|
| for(Idx = 0; Idx < Length; Idx++) {
|
| TmpValue = TmpPtr[Idx];
|
| if (Idx % 2 == 1) {
|
| TmpValue <<= 8;
|
| }
|
|
|
| Sum += TmpValue;
|
|
|
| // Wrap
|
| if (Sum >= 0x10000) {
|
| Sum = (Sum + (Sum >> 16)) & 0xFFFF;
|
| }
|
| }
|
|
|
| return (UINT16)((~Sum) & 0xFFFF);
|
| }
|
|
|
|
|
| /**
|
| Find coreboot record with given Tag from the memory Start in 4096
|
| bytes range.
|
|
|
| @param Start The start memory to be searched in
|
| @param Tag The tag id to be found
|
|
|
| @retval NULL The Tag is not found.
|
| @retval Others The poiter to the record found.
|
|
|
| **/
|
| VOID *
|
| FindCbTag (
|
| IN VOID *Start,
|
| IN UINT32 Tag
|
| )
|
| {
|
| struct cb_header *Header;
|
| struct cb_record *Record;
|
| UINT8 *TmpPtr;
|
| UINT8 *TagPtr;
|
| UINTN Idx;
|
| UINT16 CheckSum;
|
|
|
| Header = NULL;
|
| TmpPtr = (UINT8 *)Start;
|
| for (Idx = 0; Idx < 4096; Idx += 16, TmpPtr += 16) {
|
| Header = (struct cb_header *)TmpPtr;
|
| if (Header->signature == CB_HEADER_SIGNATURE) {
|
| break;
|
| }
|
| }
|
|
|
| if (Idx >= 4096) {
|
| return NULL;
|
| }
|
|
|
| if ((Header == NULL) || (Header->table_bytes == 0)) {
|
| return NULL;
|
| }
|
|
|
| //
|
| // Check the checksum of the coreboot table header
|
| //
|
| CheckSum = CbCheckSum16 ((UINT16 *)Header, sizeof (*Header));
|
| if (CheckSum != 0) {
|
| DEBUG ((EFI_D_ERROR, "Invalid coreboot table header checksum\n"));
|
| return NULL;
|
| }
|
|
|
| CheckSum = CbCheckSum16 ((UINT16 *)(TmpPtr + sizeof (*Header)), Header->table_bytes);
|
| if (CheckSum != Header->table_checksum) {
|
| DEBUG ((EFI_D_ERROR, "Incorrect checksum of all the coreboot table entries\n"));
|
| return NULL;
|
| }
|
|
|
| TagPtr = NULL;
|
| TmpPtr += Header->header_bytes;
|
| for (Idx = 0; Idx < Header->table_entries; Idx++) {
|
| Record = (struct cb_record *)TmpPtr;
|
| if (Record->tag == CB_TAG_FORWARD) {
|
| TmpPtr = (VOID *)(UINTN)((struct cb_forward *)(UINTN)Record)->forward;
|
| if (Tag == CB_TAG_FORWARD) {
|
| return TmpPtr;
|
| } else {
|
| return FindCbTag (TmpPtr, Tag);
|
| }
|
| }
|
| if (Record->tag == Tag) {
|
| TagPtr = TmpPtr;
|
| break;
|
| }
|
| TmpPtr += Record->size;
|
| }
|
|
|
| return TagPtr;
|
| }
|
|
|
|
|
| /**
|
| Find the given table with TableId from the given coreboot memory Root.
|
|
|
| @param Root The coreboot memory table to be searched in
|
| @param TableId Table id to be found
|
| @param pMemTable To save the base address of the memory table found
|
| @param pMemTableSize To save the size of memory table found
|
|
|
| @retval RETURN_SUCCESS Successfully find out the memory table.
|
| @retval RETURN_INVALID_PARAMETER Invalid input parameters.
|
| @retval RETURN_NOT_FOUND Failed to find the memory table.
|
|
|
| **/
|
| RETURN_STATUS
|
| FindCbMemTable (
|
| IN struct cbmem_root *Root,
|
| IN UINT32 TableId,
|
| OUT VOID **pMemTable,
|
| OUT UINT32 *pMemTableSize
|
| )
|
| {
|
| UINTN Idx;
|
| BOOLEAN IsImdEntry;
|
| struct cbmem_entry *Entries;
|
|
|
| if ((Root == NULL) || (pMemTable == NULL)) {
|
| return RETURN_INVALID_PARAMETER;
|
| }
|
| //
|
| // Check if the entry is CBMEM or IMD
|
| // and handle them separately
|
| //
|
| Entries = Root->entries;
|
| if (Entries[0].magic == CBMEM_ENTRY_MAGIC) {
|
| IsImdEntry = FALSE;
|
| } else {
|
| Entries = (struct cbmem_entry *)((struct imd_root *)Root)->entries;
|
| if (Entries[0].magic == IMD_ENTRY_MAGIC) {
|
| IsImdEntry = TRUE;
|
| } else {
|
| return RETURN_NOT_FOUND;
|
| }
|
| }
|
|
|
| for (Idx = 0; Idx < Root->num_entries; Idx++) {
|
| if (Entries[Idx].id == TableId) {
|
| if (IsImdEntry) {
|
| *pMemTable = (VOID *) ((UINTN)Entries[Idx].start + (UINTN)Root);
|
| } else {
|
| *pMemTable = (VOID *) (UINTN)Entries[Idx].start;
|
| }
|
| if (pMemTableSize != NULL) {
|
| *pMemTableSize = Entries[Idx].size;
|
| }
|
|
|
| DEBUG ((EFI_D_INFO, "Find CbMemTable Id 0x%x, base %p, size 0x%x\n", |
| TableId, *pMemTable, Entries[Idx].size)); |
| return RETURN_SUCCESS;
|
| }
|
| }
|
|
|
| return RETURN_NOT_FOUND;
|
| }
|
|
|
|
|
| /**
|
| Acquire the memory information from the coreboot table in memory.
|
|
|
| @param pLowMemorySize Pointer to the variable of low memory size
|
| @param pHighMemorySize Pointer to the variable of high memory size
|
|
|
| @retval RETURN_SUCCESS Successfully find out the memory information.
|
| @retval RETURN_INVALID_PARAMETER Invalid input parameters.
|
| @retval RETURN_NOT_FOUND Failed to find the memory information.
|
|
|
| **/
|
| RETURN_STATUS
|
| CbParseMemoryInfo (
|
| OUT UINT64 *pLowMemorySize,
|
| OUT UINT64 *pHighMemorySize
|
| )
|
| {
|
| struct cb_memory *rec;
|
| struct cb_memory_range *Range;
|
| UINT64 Start;
|
| UINT64 Size;
|
| UINTN Index;
|
|
|
| if ((pLowMemorySize == NULL) || (pHighMemorySize == NULL)) {
|
| return RETURN_INVALID_PARAMETER;
|
| }
|
|
|
| //
|
| // Get the coreboot memory table
|
| //
|
| rec = (struct cb_memory *)FindCbTag (0, CB_TAG_MEMORY);
|
| if (rec == NULL) {
|
| rec = (struct cb_memory *)FindCbTag ((VOID *)(UINTN)PcdGet32 (PcdCbHeaderPointer), CB_TAG_MEMORY);
|
| }
|
|
|
| if (rec == NULL) {
|
| return RETURN_NOT_FOUND;
|
| }
|
|
|
| *pLowMemorySize = 0;
|
| *pHighMemorySize = 0;
|
|
|
| for (Index = 0; Index < MEM_RANGE_COUNT(rec); Index++) {
|
| Range = MEM_RANGE_PTR(rec, Index);
|
| Start = cb_unpack64(Range->start);
|
| Size = cb_unpack64(Range->size);
|
| DEBUG ((EFI_D_INFO, "%d. %016lx - %016lx [%02x]\n",
|
| Index, Start, Start + Size - 1, Range->type));
|
|
|
| if (Range->type != CB_MEM_RAM) {
|
| continue;
|
| }
|
|
|
| if (Start + Size < 0x100000000ULL) {
|
| *pLowMemorySize = Start + Size;
|
| } else {
|
| *pHighMemorySize = Start + Size - 0x100000000ULL;
|
| }
|
| }
|
|
|
| DEBUG ((EFI_D_INFO, "Low memory 0x%lx, High Memory 0x%lx\n", *pLowMemorySize, *pHighMemorySize));
|
|
|
| return RETURN_SUCCESS;
|
| }
|
|
|
|
|
| /**
|
| Acquire the coreboot memory table with the given table id
|
|
|
| @param TableId Table id to be searched
|
| @param pMemTable Pointer to the base address of the memory table
|
| @param pMemTableSize Pointer to the size of the memory table
|
|
|
| @retval RETURN_SUCCESS Successfully find out the memory table.
|
| @retval RETURN_INVALID_PARAMETER Invalid input parameters.
|
| @retval RETURN_NOT_FOUND Failed to find the memory table.
|
|
|
| **/
|
| RETURN_STATUS
|
| CbParseCbMemTable (
|
| IN UINT32 TableId,
|
| OUT VOID **pMemTable,
|
| OUT UINT32 *pMemTableSize
|
| )
|
| {
|
| struct cb_memory *rec;
|
| struct cb_memory_range *Range;
|
| UINT64 Start;
|
| UINT64 Size;
|
| UINTN Index;
|
|
|
| if (pMemTable == NULL) {
|
| return RETURN_INVALID_PARAMETER;
|
| }
|
| *pMemTable = NULL;
|
|
|
| //
|
| // Get the coreboot memory table
|
| //
|
| rec = (struct cb_memory *)FindCbTag (0, CB_TAG_MEMORY);
|
| if (rec == NULL) {
|
| rec = (struct cb_memory *)FindCbTag ((VOID *)(UINTN)PcdGet32 (PcdCbHeaderPointer), CB_TAG_MEMORY);
|
| }
|
|
|
| if (rec == NULL) {
|
| return RETURN_NOT_FOUND;
|
| }
|
|
|
| for (Index = 0; Index < MEM_RANGE_COUNT(rec); Index++) {
|
| Range = MEM_RANGE_PTR(rec, Index);
|
| Start = cb_unpack64(Range->start);
|
| Size = cb_unpack64(Range->size);
|
|
|
| if ((Range->type == CB_MEM_TABLE) && (Start > 0x1000)) {
|
| if (FindCbMemTable ((struct cbmem_root *)(UINTN)(Start + Size - DYN_CBMEM_ALIGN_SIZE), TableId, pMemTable, pMemTableSize) == RETURN_SUCCESS)
|
| return RETURN_SUCCESS;
|
| }
|
| }
|
|
|
| return RETURN_NOT_FOUND;
|
| }
|
|
|
|
|
| /**
|
| Acquire the acpi table from coreboot
|
|
|
| @param pMemTable Pointer to the base address of the memory table
|
| @param pMemTableSize Pointer to the size of the memory table
|
|
|
| @retval RETURN_SUCCESS Successfully find out the memory table.
|
| @retval RETURN_INVALID_PARAMETER Invalid input parameters.
|
| @retval RETURN_NOT_FOUND Failed to find the memory table.
|
|
|
| **/
|
| RETURN_STATUS
|
| CbParseAcpiTable (
|
| OUT VOID **pMemTable,
|
| OUT UINT32 *pMemTableSize
|
| )
|
| {
|
| return CbParseCbMemTable (SIGNATURE_32 ('I', 'P', 'C', 'A'), pMemTable, pMemTableSize);
|
| }
|
|
|
| /**
|
| Acquire the smbios table from coreboot
|
|
|
| @param pMemTable Pointer to the base address of the memory table
|
| @param pMemTableSize Pointer to the size of the memory table
|
|
|
| @retval RETURN_SUCCESS Successfully find out the memory table.
|
| @retval RETURN_INVALID_PARAMETER Invalid input parameters.
|
| @retval RETURN_NOT_FOUND Failed to find the memory table.
|
|
|
| **/
|
| RETURN_STATUS
|
| CbParseSmbiosTable (
|
| OUT VOID **pMemTable,
|
| OUT UINT32 *pMemTableSize
|
| )
|
| {
|
| return CbParseCbMemTable (SIGNATURE_32 ('T', 'B', 'M', 'S'), pMemTable, pMemTableSize);
|
| }
|
|
|
| /**
|
| Find the required fadt information
|
|
|
| @param pPmCtrlReg Pointer to the address of power management control register
|
| @param pPmTimerReg Pointer to the address of power management timer register
|
| @param pResetReg Pointer to the address of system reset register
|
| @param pResetValue Pointer to the value to be writen to the system reset register
|
| @param pPmEvtReg Pointer to the address of power management event register
|
| @param pPmGpeEnReg Pointer to the address of power management GPE enable register
|
|
|
| @retval RETURN_SUCCESS Successfully find out all the required fadt information.
|
| @retval RETURN_NOT_FOUND Failed to find the fadt table.
|
|
|
| **/
|
| RETURN_STATUS
|
| CbParseFadtInfo (
|
| OUT UINTN *pPmCtrlReg,
|
| OUT UINTN *pPmTimerReg,
|
| OUT UINTN *pResetReg,
|
| OUT UINTN *pResetValue,
|
| OUT UINTN *pPmEvtReg,
|
| OUT UINTN *pPmGpeEnReg
|
| )
|
| {
|
| EFI_ACPI_3_0_ROOT_SYSTEM_DESCRIPTION_POINTER *Rsdp;
|
| EFI_ACPI_DESCRIPTION_HEADER *Rsdt;
|
| UINT32 *Entry32;
|
| UINTN Entry32Num;
|
| EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
|
| EFI_ACPI_DESCRIPTION_HEADER *Xsdt;
|
| UINT64 *Entry64;
|
| UINTN Entry64Num;
|
| UINTN Idx;
|
| RETURN_STATUS Status;
|
|
|
| Rsdp = NULL;
|
| Status = RETURN_SUCCESS;
|
|
|
| Status = CbParseAcpiTable ((VOID **)&Rsdp, NULL);
|
| if (RETURN_ERROR(Status)) {
|
| return Status;
|
| }
|
|
|
| if (Rsdp == NULL) {
|
| return RETURN_NOT_FOUND;
|
| }
|
|
|
| DEBUG ((EFI_D_INFO, "Find Rsdp at %p\n", Rsdp));
|
| DEBUG ((EFI_D_INFO, "Find Rsdt 0x%x, Xsdt 0x%lx\n", Rsdp->RsdtAddress, Rsdp->XsdtAddress));
|
|
|
| //
|
| // Search Rsdt First
|
| //
|
| Rsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)(Rsdp->RsdtAddress);
|
| if (Rsdt != NULL) {
|
| Entry32 = (UINT32 *)(Rsdt + 1);
|
| Entry32Num = (Rsdt->Length - sizeof(EFI_ACPI_DESCRIPTION_HEADER)) >> 2;
|
| for (Idx = 0; Idx < Entry32Num; Idx++) {
|
| if (*(UINT32 *)(UINTN)(Entry32[Idx]) == EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
|
| Fadt = (EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *)(UINTN)(Entry32[Idx]);
|
| if (pPmCtrlReg != NULL) {
|
| *pPmCtrlReg = Fadt->Pm1aCntBlk;
|
| }
|
| DEBUG ((EFI_D_INFO, "PmCtrl Reg 0x%x\n", Fadt->Pm1aCntBlk));
|
|
|
| if (pPmTimerReg != NULL) {
|
| *pPmTimerReg = Fadt->PmTmrBlk;
|
| }
|
| DEBUG ((EFI_D_INFO, "PmTimer Reg 0x%x\n", Fadt->PmTmrBlk));
|
|
|
| if (pResetReg != NULL) {
|
| *pResetReg = (UINTN)Fadt->ResetReg.Address;
|
| }
|
| DEBUG ((EFI_D_INFO, "Reset Reg 0x%lx\n", Fadt->ResetReg.Address));
|
|
|
| if (pResetValue != NULL) {
|
| *pResetValue = Fadt->ResetValue;
|
| }
|
| DEBUG ((EFI_D_INFO, "Reset Value 0x%x\n", Fadt->ResetValue));
|
|
|
| if (pPmEvtReg != NULL) { |
| *pPmEvtReg = Fadt->Pm1aEvtBlk;
|
| DEBUG ((EFI_D_INFO, "PmEvt Reg 0x%x\n", Fadt->Pm1aEvtBlk));
|
| }
|
|
|
| if (pPmGpeEnReg != NULL) { |
| *pPmGpeEnReg = Fadt->Gpe0Blk + Fadt->Gpe0BlkLen / 2;
|
| DEBUG ((EFI_D_INFO, "PmGpeEn Reg 0x%x\n", *pPmGpeEnReg));
|
| }
|
|
|
| // |
| // Verify values for proper operation |
| // |
| ASSERT(Fadt->Pm1aCntBlk != 0); |
| ASSERT(Fadt->PmTmrBlk != 0); |
| ASSERT(Fadt->ResetReg.Address != 0); |
| ASSERT(Fadt->Pm1aEvtBlk != 0); |
| ASSERT(Fadt->Gpe0Blk != 0); |
| |
| return RETURN_SUCCESS;
|
| }
|
| }
|
| }
|
|
|
| //
|
| // Search Xsdt Second
|
| //
|
| Xsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)(Rsdp->XsdtAddress);
|
| if (Xsdt != NULL) {
|
| Entry64 = (UINT64 *)(Xsdt + 1);
|
| Entry64Num = (Xsdt->Length - sizeof(EFI_ACPI_DESCRIPTION_HEADER)) >> 3;
|
| for (Idx = 0; Idx < Entry64Num; Idx++) {
|
| if (*(UINT32 *)(UINTN)(Entry64[Idx]) == EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
|
| Fadt = (EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *)(UINTN)(Entry64[Idx]);
|
| if (pPmCtrlReg)
|
| *pPmCtrlReg = Fadt->Pm1aCntBlk;
|
| DEBUG ((EFI_D_ERROR, "PmCtrl Reg 0x%x\n", Fadt->Pm1aCntBlk));
|
|
|
| if (pPmTimerReg)
|
| *pPmTimerReg = Fadt->PmTmrBlk;
|
| DEBUG ((EFI_D_ERROR, "PmTimer Reg 0x%x\n", Fadt->PmTmrBlk));
|
|
|
| if (pResetReg)
|
| *pResetReg = (UINTN)Fadt->ResetReg.Address;
|
| DEBUG ((EFI_D_ERROR, "Reset Reg 0x%lx\n", Fadt->ResetReg.Address));
|
|
|
| if (pResetValue)
|
| *pResetValue = Fadt->ResetValue;
|
| DEBUG ((EFI_D_ERROR, "Reset Value 0x%x\n", Fadt->ResetValue));
|
|
|
| if (pPmEvtReg != NULL) { |
| *pPmEvtReg = Fadt->Pm1aEvtBlk;
|
| DEBUG ((EFI_D_INFO, "PmEvt Reg 0x%x\n", Fadt->Pm1aEvtBlk));
|
| }
|
|
|
| if (pPmGpeEnReg != NULL) { |
| *pPmGpeEnReg = Fadt->Gpe0Blk + Fadt->Gpe0BlkLen / 2;
|
| DEBUG ((EFI_D_INFO, "PmGpeEn Reg 0x%x\n", *pPmGpeEnReg));
|
| } |
| return RETURN_SUCCESS;
|
| }
|
| }
|
| }
|
|
|
| return RETURN_NOT_FOUND;
|
| }
|
|
|
| /**
|
| Find the serial port information
|
|
|
| @param pRegBase Pointer to the base address of serial port registers
|
| @param pRegAccessType Pointer to the access type of serial port registers
|
| @param pRegWidth Pointer to the register width in bytes |
| @param pBaudrate Pointer to the serial port baudrate
|
| @param pInputHertz Pointer to the input clock frequency |
| @param pUartPciAddr Pointer to the UART PCI bus, dev and func address |
|
|
| @retval RETURN_SUCCESS Successfully find the serial port information.
|
| @retval RETURN_NOT_FOUND Failed to find the serial port information .
|
|
|
| **/
|
| RETURN_STATUS
|
| CbParseSerialInfo (
|
| OUT UINT32 *pRegBase,
|
| OUT UINT32 *pRegAccessType,
|
| OUT UINT32 *pRegWidth, |
| OUT UINT32 *pBaudrate, |
| OUT UINT32 *pInputHertz, |
| OUT UINT32 *pUartPciAddr |
| )
|
| {
|
| struct cb_serial *CbSerial;
|
|
|
| CbSerial = FindCbTag (0, CB_TAG_SERIAL);
|
| if (CbSerial == NULL) {
|
| CbSerial = FindCbTag ((VOID *)(UINTN)PcdGet32 (PcdCbHeaderPointer), CB_TAG_SERIAL);
|
| }
|
|
|
| if (CbSerial == NULL) {
|
| return RETURN_NOT_FOUND;
|
| }
|
|
|
| if (pRegBase != NULL) {
|
| *pRegBase = CbSerial->baseaddr;
|
| }
|
|
|
| if (pRegWidth != NULL) { |
| *pRegWidth = CbSerial->regwidth; |
| } |
| |
| if (pRegAccessType != NULL) {
|
| *pRegAccessType = CbSerial->type;
|
| }
|
|
|
| if (pBaudrate != NULL) {
|
| *pBaudrate = CbSerial->baud;
|
| }
|
|
|
| if (pInputHertz != NULL) { |
| *pInputHertz = CbSerial->input_hertz; |
| } |
| |
| if (pUartPciAddr != NULL) { |
| *pUartPciAddr = CbSerial->uart_pci_addr; |
| } |
| |
| return RETURN_SUCCESS;
|
| }
|
|
|
| /**
|
| Search for the coreboot table header
|
|
|
| @param Level Level of the search depth
|
| @param HeaderPtr Pointer to the pointer of coreboot table header
|
|
|
| @retval RETURN_SUCCESS Successfully find the coreboot table header .
|
| @retval RETURN_NOT_FOUND Failed to find the coreboot table header .
|
|
|
| **/
|
| RETURN_STATUS
|
| CbParseGetCbHeader (
|
| IN UINTN Level,
|
| OUT VOID **HeaderPtr
|
| )
|
| {
|
| UINTN Index;
|
| VOID *TempPtr;
|
|
|
| if (HeaderPtr == NULL) {
|
| return RETURN_NOT_FOUND;
|
| }
|
|
|
| TempPtr = NULL;
|
| for (Index = 0; Index < Level; Index++) {
|
| TempPtr = FindCbTag (TempPtr, CB_TAG_FORWARD);
|
| if (TempPtr == NULL) {
|
| break;
|
| }
|
| }
|
|
|
| if ((Index >= Level) && (TempPtr != NULL)) {
|
| *HeaderPtr = TempPtr;
|
| return RETURN_SUCCESS;
|
| }
|
|
|
| return RETURN_NOT_FOUND;
|
| }
|
|
|
| /**
|
| Find the video frame buffer information
|
|
|
| @param pFbInfo Pointer to the FRAME_BUFFER_INFO structure
|
|
|
| @retval RETURN_SUCCESS Successfully find the video frame buffer information.
|
| @retval RETURN_NOT_FOUND Failed to find the video frame buffer information .
|
|
|
| **/
|
| RETURN_STATUS
|
| CbParseFbInfo (
|
| OUT FRAME_BUFFER_INFO *pFbInfo
|
| )
|
| {
|
| struct cb_framebuffer *CbFbRec;
|
|
|
| if (pFbInfo == NULL) {
|
| return RETURN_INVALID_PARAMETER;
|
| }
|
|
|
| CbFbRec = FindCbTag (0, CB_TAG_FRAMEBUFFER);
|
| if (CbFbRec == NULL) {
|
| CbFbRec = FindCbTag ((VOID *)(UINTN)PcdGet32 (PcdCbHeaderPointer), CB_TAG_FRAMEBUFFER);
|
| }
|
|
|
| if (CbFbRec == NULL) {
|
| return RETURN_NOT_FOUND;
|
| }
|
|
|
| DEBUG ((EFI_D_INFO, "Found coreboot video frame buffer information\n"));
|
| DEBUG ((EFI_D_INFO, "physical_address: 0x%lx\n", CbFbRec->physical_address));
|
| DEBUG ((EFI_D_INFO, "x_resolution: 0x%x\n", CbFbRec->x_resolution));
|
| DEBUG ((EFI_D_INFO, "y_resolution: 0x%x\n", CbFbRec->y_resolution));
|
| DEBUG ((EFI_D_INFO, "bits_per_pixel: 0x%x\n", CbFbRec->bits_per_pixel));
|
| DEBUG ((EFI_D_INFO, "bytes_per_line: 0x%x\n", CbFbRec->bytes_per_line));
|
|
|
| DEBUG ((EFI_D_INFO, "red_mask_size: 0x%x\n", CbFbRec->red_mask_size));
|
| DEBUG ((EFI_D_INFO, "red_mask_pos: 0x%x\n", CbFbRec->red_mask_pos));
|
| DEBUG ((EFI_D_INFO, "green_mask_size: 0x%x\n", CbFbRec->green_mask_size));
|
| DEBUG ((EFI_D_INFO, "green_mask_pos: 0x%x\n", CbFbRec->green_mask_pos));
|
| DEBUG ((EFI_D_INFO, "blue_mask_size: 0x%x\n", CbFbRec->blue_mask_size));
|
| DEBUG ((EFI_D_INFO, "blue_mask_pos: 0x%x\n", CbFbRec->blue_mask_pos));
|
| DEBUG ((EFI_D_INFO, "reserved_mask_size: 0x%x\n", CbFbRec->reserved_mask_size));
|
| DEBUG ((EFI_D_INFO, "reserved_mask_pos: 0x%x\n", CbFbRec->reserved_mask_pos));
|
|
|
| pFbInfo->LinearFrameBuffer = CbFbRec->physical_address;
|
| pFbInfo->HorizontalResolution = CbFbRec->x_resolution;
|
| pFbInfo->VerticalResolution = CbFbRec->y_resolution;
|
| pFbInfo->BitsPerPixel = CbFbRec->bits_per_pixel;
|
| pFbInfo->BytesPerScanLine = (UINT16)CbFbRec->bytes_per_line;
|
| pFbInfo->Red.Mask = (1 << CbFbRec->red_mask_size) - 1;
|
| pFbInfo->Red.Position = CbFbRec->red_mask_pos;
|
| pFbInfo->Green.Mask = (1 << CbFbRec->green_mask_size) - 1;
|
| pFbInfo->Green.Position = CbFbRec->green_mask_pos;
|
| pFbInfo->Blue.Mask = (1 << CbFbRec->blue_mask_size) - 1;
|
| pFbInfo->Blue.Position = CbFbRec->blue_mask_pos;
|
| pFbInfo->Reserved.Mask = (1 << CbFbRec->reserved_mask_size) - 1;
|
| pFbInfo->Reserved.Position = CbFbRec->reserved_mask_pos;
|
|
|
| return RETURN_SUCCESS;
|
| }
|
|
|