blob: cf1ea48d5c64ee76b66997f614cb32bb232e9f5f [file] [log] [blame]
/*
* Copyright (c) 2016, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bakery_lock.h>
#include <debug.h>
#include <delay_timer.h>
#include <dfs.h>
#include <errno.h>
#include <gpio.h>
#include <mmio.h>
#include <m0_ctl.h>
#include <platform.h>
#include <platform_def.h>
#include <plat_params.h>
#include <plat_private.h>
#include <rk3399_def.h>
#include <secure.h>
#include <soc.h>
#include <pmu.h>
#include <pmu_com.h>
#include <pwm.h>
#include <bl31.h>
#include <suspend.h>
DEFINE_BAKERY_LOCK(rockchip_pd_lock);
static uint32_t cpu_warm_boot_addr;
/*
* There are two ways to powering on or off on core.
* 1) Control it power domain into on or off in PMU_PWRDN_CON reg,
* it is core_pwr_pd mode
* 2) Enable the core power manage in PMU_CORE_PM_CON reg,
* then, if the core enter into wfi, it power domain will be
* powered off automatically. it is core_pwr_wfi or core_pwr_wfi_int mode
* so we need core_pm_cfg_info to distinguish which method be used now.
*/
static uint32_t core_pm_cfg_info[PLATFORM_CORE_COUNT]
#if USE_COHERENT_MEM
__attribute__ ((section("tzfw_coherent_mem")))
#endif
;/* coheront */
static void pmu_bus_idle_req(uint32_t bus, uint32_t state)
{
uint32_t bus_id = BIT(bus);
uint32_t bus_req;
uint32_t wait_cnt = 0;
uint32_t bus_state, bus_ack;
if (state)
bus_req = BIT(bus);
else
bus_req = 0;
mmio_clrsetbits_32(PMU_BASE + PMU_BUS_IDLE_REQ, bus_id, bus_req);
do {
bus_state = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST) & bus_id;
bus_ack = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK) & bus_id;
wait_cnt++;
} while ((bus_state != bus_req || bus_ack != bus_req) &&
(wait_cnt < MAX_WAIT_COUNT));
if (bus_state != bus_req || bus_ack != bus_req) {
INFO("%s:st=%x(%x)\n", __func__,
mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST),
bus_state);
INFO("%s:st=%x(%x)\n", __func__,
mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK),
bus_ack);
}
}
struct pmu_slpdata_s pmu_slpdata;
static void qos_save(void)
{
if (pmu_power_domain_st(PD_GPU) == pmu_pd_on)
RESTORE_QOS(pmu_slpdata.gpu_qos, GPU);
if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) {
RESTORE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0);
RESTORE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1);
}
if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) {
RESTORE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0);
RESTORE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1);
}
if (pmu_power_domain_st(PD_VO) == pmu_pd_on) {
RESTORE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R);
RESTORE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W);
RESTORE_QOS(pmu_slpdata.vop_little, VOP_LITTLE);
}
if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on)
RESTORE_QOS(pmu_slpdata.hdcp_qos, HDCP);
if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on)
RESTORE_QOS(pmu_slpdata.gmac_qos, GMAC);
if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) {
RESTORE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0);
RESTORE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1);
}
if (pmu_power_domain_st(PD_SD) == pmu_pd_on)
RESTORE_QOS(pmu_slpdata.sdmmc_qos, SDMMC);
if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on)
RESTORE_QOS(pmu_slpdata.emmc_qos, EMMC);
if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on)
RESTORE_QOS(pmu_slpdata.sdio_qos, SDIO);
if (pmu_power_domain_st(PD_GIC) == pmu_pd_on)
RESTORE_QOS(pmu_slpdata.gic_qos, GIC);
if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) {
RESTORE_QOS(pmu_slpdata.rga_r_qos, RGA_R);
RESTORE_QOS(pmu_slpdata.rga_w_qos, RGA_W);
}
if (pmu_power_domain_st(PD_IEP) == pmu_pd_on)
RESTORE_QOS(pmu_slpdata.iep_qos, IEP);
if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) {
RESTORE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0);
RESTORE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1);
}
if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) {
RESTORE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0);
RESTORE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1);
RESTORE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP);
}
if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) {
RESTORE_QOS(pmu_slpdata.dmac0_qos, DMAC0);
RESTORE_QOS(pmu_slpdata.dmac1_qos, DMAC1);
RESTORE_QOS(pmu_slpdata.dcf_qos, DCF);
RESTORE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0);
RESTORE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1);
RESTORE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP);
RESTORE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP);
RESTORE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1);
}
if (pmu_power_domain_st(PD_VDU) == pmu_pd_on)
RESTORE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0);
if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) {
RESTORE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R);
RESTORE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W);
}
}
static void qos_restore(void)
{
if (pmu_power_domain_st(PD_GPU) == pmu_pd_on)
SAVE_QOS(pmu_slpdata.gpu_qos, GPU);
if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) {
SAVE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0);
SAVE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1);
}
if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) {
SAVE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0);
SAVE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1);
}
if (pmu_power_domain_st(PD_VO) == pmu_pd_on) {
SAVE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R);
SAVE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W);
SAVE_QOS(pmu_slpdata.vop_little, VOP_LITTLE);
}
if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on)
SAVE_QOS(pmu_slpdata.hdcp_qos, HDCP);
if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on)
SAVE_QOS(pmu_slpdata.gmac_qos, GMAC);
if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) {
SAVE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0);
SAVE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1);
}
if (pmu_power_domain_st(PD_SD) == pmu_pd_on)
SAVE_QOS(pmu_slpdata.sdmmc_qos, SDMMC);
if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on)
SAVE_QOS(pmu_slpdata.emmc_qos, EMMC);
if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on)
SAVE_QOS(pmu_slpdata.sdio_qos, SDIO);
if (pmu_power_domain_st(PD_GIC) == pmu_pd_on)
SAVE_QOS(pmu_slpdata.gic_qos, GIC);
if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) {
SAVE_QOS(pmu_slpdata.rga_r_qos, RGA_R);
SAVE_QOS(pmu_slpdata.rga_w_qos, RGA_W);
}
if (pmu_power_domain_st(PD_IEP) == pmu_pd_on)
SAVE_QOS(pmu_slpdata.iep_qos, IEP);
if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) {
SAVE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0);
SAVE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1);
}
if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) {
SAVE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0);
SAVE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1);
SAVE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP);
}
if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) {
SAVE_QOS(pmu_slpdata.dmac0_qos, DMAC0);
SAVE_QOS(pmu_slpdata.dmac1_qos, DMAC1);
SAVE_QOS(pmu_slpdata.dcf_qos, DCF);
SAVE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0);
SAVE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1);
SAVE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP);
SAVE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP);
SAVE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1);
}
if (pmu_power_domain_st(PD_VDU) == pmu_pd_on)
SAVE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0);
if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) {
SAVE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R);
SAVE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W);
}
}
static int pmu_set_power_domain(uint32_t pd_id, uint32_t pd_state)
{
uint32_t state;
if (pmu_power_domain_st(pd_id) == pd_state)
goto out;
if (pd_state == pmu_pd_on)
pmu_power_domain_ctr(pd_id, pd_state);
state = (pd_state == pmu_pd_off) ? BUS_IDLE : BUS_ACTIVE;
switch (pd_id) {
case PD_GPU:
pmu_bus_idle_req(BUS_ID_GPU, state);
break;
case PD_VIO:
pmu_bus_idle_req(BUS_ID_VIO, state);
break;
case PD_ISP0:
pmu_bus_idle_req(BUS_ID_ISP0, state);
break;
case PD_ISP1:
pmu_bus_idle_req(BUS_ID_ISP1, state);
break;
case PD_VO:
pmu_bus_idle_req(BUS_ID_VOPB, state);
pmu_bus_idle_req(BUS_ID_VOPL, state);
break;
case PD_HDCP:
pmu_bus_idle_req(BUS_ID_HDCP, state);
break;
case PD_TCPD0:
break;
case PD_TCPD1:
break;
case PD_GMAC:
pmu_bus_idle_req(BUS_ID_GMAC, state);
break;
case PD_CCI:
pmu_bus_idle_req(BUS_ID_CCIM0, state);
pmu_bus_idle_req(BUS_ID_CCIM1, state);
break;
case PD_SD:
pmu_bus_idle_req(BUS_ID_SD, state);
break;
case PD_EMMC:
pmu_bus_idle_req(BUS_ID_EMMC, state);
break;
case PD_EDP:
pmu_bus_idle_req(BUS_ID_EDP, state);
break;
case PD_SDIOAUDIO:
pmu_bus_idle_req(BUS_ID_SDIOAUDIO, state);
break;
case PD_GIC:
pmu_bus_idle_req(BUS_ID_GIC, state);
break;
case PD_RGA:
pmu_bus_idle_req(BUS_ID_RGA, state);
break;
case PD_VCODEC:
pmu_bus_idle_req(BUS_ID_VCODEC, state);
break;
case PD_VDU:
pmu_bus_idle_req(BUS_ID_VDU, state);
break;
case PD_IEP:
pmu_bus_idle_req(BUS_ID_IEP, state);
break;
case PD_USB3:
pmu_bus_idle_req(BUS_ID_USB3, state);
break;
case PD_PERIHP:
pmu_bus_idle_req(BUS_ID_PERIHP, state);
break;
default:
break;
}
if (pd_state == pmu_pd_off)
pmu_power_domain_ctr(pd_id, pd_state);
out:
return 0;
}
static uint32_t pmu_powerdomain_state;
static void pmu_power_domains_suspend(void)
{
clk_gate_con_save();
clk_gate_con_disable();
qos_save();
pmu_powerdomain_state = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
pmu_set_power_domain(PD_GPU, pmu_pd_off);
pmu_set_power_domain(PD_TCPD0, pmu_pd_off);
pmu_set_power_domain(PD_TCPD1, pmu_pd_off);
pmu_set_power_domain(PD_VO, pmu_pd_off);
pmu_set_power_domain(PD_ISP0, pmu_pd_off);
pmu_set_power_domain(PD_ISP1, pmu_pd_off);
pmu_set_power_domain(PD_HDCP, pmu_pd_off);
pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_off);
pmu_set_power_domain(PD_GMAC, pmu_pd_off);
pmu_set_power_domain(PD_EDP, pmu_pd_off);
pmu_set_power_domain(PD_IEP, pmu_pd_off);
pmu_set_power_domain(PD_RGA, pmu_pd_off);
pmu_set_power_domain(PD_VCODEC, pmu_pd_off);
pmu_set_power_domain(PD_VDU, pmu_pd_off);
clk_gate_con_restore();
}
static void pmu_power_domains_resume(void)
{
clk_gate_con_save();
clk_gate_con_disable();
if (!(pmu_powerdomain_state & BIT(PD_VDU)))
pmu_set_power_domain(PD_VDU, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_VCODEC)))
pmu_set_power_domain(PD_VCODEC, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_RGA)))
pmu_set_power_domain(PD_RGA, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_IEP)))
pmu_set_power_domain(PD_IEP, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_EDP)))
pmu_set_power_domain(PD_EDP, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_GMAC)))
pmu_set_power_domain(PD_GMAC, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_SDIOAUDIO)))
pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_HDCP)))
pmu_set_power_domain(PD_HDCP, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_ISP1)))
pmu_set_power_domain(PD_ISP1, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_ISP0)))
pmu_set_power_domain(PD_ISP0, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_VO)))
pmu_set_power_domain(PD_VO, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_TCPD1)))
pmu_set_power_domain(PD_TCPD1, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_TCPD0)))
pmu_set_power_domain(PD_TCPD0, pmu_pd_on);
if (!(pmu_powerdomain_state & BIT(PD_GPU)))
pmu_set_power_domain(PD_GPU, pmu_pd_on);
qos_restore();
clk_gate_con_restore();
}
void rk3399_flash_l2_b(void)
{
uint32_t wait_cnt = 0;
mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B));
dsb();
while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) &
BIT(L2_FLUSHDONE_CLUSTER_B))) {
wait_cnt++;
if (wait_cnt >= MAX_WAIT_COUNT)
WARN("%s:reg %x,wait\n", __func__,
mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST));
}
mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B));
}
static void pmu_scu_b_pwrdn(void)
{
uint32_t wait_cnt = 0;
if ((mmio_read_32(PMU_BASE + PMU_PWRDN_ST) &
(BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) !=
(BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) {
ERROR("%s: not all cpus is off\n", __func__);
return;
}
rk3399_flash_l2_b();
mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG));
while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) &
BIT(STANDBY_BY_WFIL2_CLUSTER_B))) {
wait_cnt++;
if (wait_cnt >= MAX_WAIT_COUNT)
ERROR("%s:wait cluster-b l2(%x)\n", __func__,
mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST));
}
}
static void pmu_scu_b_pwrup(void)
{
mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG));
}
static inline uint32_t get_cpus_pwr_domain_cfg_info(uint32_t cpu_id)
{
assert(cpu_id < PLATFORM_CORE_COUNT);
return core_pm_cfg_info[cpu_id];
}
static inline void set_cpus_pwr_domain_cfg_info(uint32_t cpu_id, uint32_t value)
{
assert(cpu_id < PLATFORM_CORE_COUNT);
core_pm_cfg_info[cpu_id] = value;
#if !USE_COHERENT_MEM
flush_dcache_range((uintptr_t)&core_pm_cfg_info[cpu_id],
sizeof(uint32_t));
#endif
}
static int cpus_power_domain_on(uint32_t cpu_id)
{
uint32_t cfg_info;
uint32_t cpu_pd = PD_CPUL0 + cpu_id;
/*
* There are two ways to powering on or off on core.
* 1) Control it power domain into on or off in PMU_PWRDN_CON reg
* 2) Enable the core power manage in PMU_CORE_PM_CON reg,
* then, if the core enter into wfi, it power domain will be
* powered off automatically.
*/
cfg_info = get_cpus_pwr_domain_cfg_info(cpu_id);
if (cfg_info == core_pwr_pd) {
/* disable core_pm cfg */
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
CORES_PM_DISABLE);
/* if the cores have be on, power off it firstly */
if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) {
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), 0);
pmu_power_domain_ctr(cpu_pd, pmu_pd_off);
}
pmu_power_domain_ctr(cpu_pd, pmu_pd_on);
} else {
if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) {
WARN("%s: cpu%d is not in off,!\n", __func__, cpu_id);
return -EINVAL;
}
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
BIT(core_pm_sft_wakeup_en));
dsb();
}
return 0;
}
static int cpus_power_domain_off(uint32_t cpu_id, uint32_t pd_cfg)
{
uint32_t cpu_pd;
uint32_t core_pm_value;
cpu_pd = PD_CPUL0 + cpu_id;
if (pmu_power_domain_st(cpu_pd) == pmu_pd_off)
return 0;
if (pd_cfg == core_pwr_pd) {
if (check_cpu_wfie(cpu_id, CKECK_WFEI_MSK))
return -EINVAL;
/* disable core_pm cfg */
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
CORES_PM_DISABLE);
set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg);
pmu_power_domain_ctr(cpu_pd, pmu_pd_off);
} else {
set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg);
core_pm_value = BIT(core_pm_en);
if (pd_cfg == core_pwr_wfi_int)
core_pm_value |= BIT(core_pm_int_wakeup_en);
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
core_pm_value);
dsb();
}
return 0;
}
static inline void clst_pwr_domain_suspend(plat_local_state_t lvl_state)
{
uint32_t cpu_id = plat_my_core_pos();
uint32_t pll_id, clst_st_msk, clst_st_chk_msk, pmu_st;
assert(cpu_id < PLATFORM_CORE_COUNT);
if (lvl_state == PLAT_MAX_OFF_STATE) {
if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT) {
pll_id = ALPLL_ID;
clst_st_msk = CLST_L_CPUS_MSK;
} else {
pll_id = ABPLL_ID;
clst_st_msk = CLST_B_CPUS_MSK <<
PLATFORM_CLUSTER0_CORE_COUNT;
}
clst_st_chk_msk = clst_st_msk & ~(BIT(cpu_id));
pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
pmu_st &= clst_st_msk;
if (pmu_st == clst_st_chk_msk) {
mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3),
PLL_SLOW_MODE);
clst_warmboot_data[pll_id] = PMU_CLST_RET;
pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
pmu_st &= clst_st_msk;
if (pmu_st == clst_st_chk_msk)
return;
/*
* it is mean that others cpu is up again,
* we must resume the cfg at once.
*/
mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3),
PLL_NOMAL_MODE);
clst_warmboot_data[pll_id] = 0;
}
}
}
static int clst_pwr_domain_resume(plat_local_state_t lvl_state)
{
uint32_t cpu_id = plat_my_core_pos();
uint32_t pll_id, pll_st;
assert(cpu_id < PLATFORM_CORE_COUNT);
if (lvl_state == PLAT_MAX_OFF_STATE) {
if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT)
pll_id = ALPLL_ID;
else
pll_id = ABPLL_ID;
pll_st = mmio_read_32(CRU_BASE + CRU_PLL_CON(pll_id, 3)) >>
PLL_MODE_SHIFT;
if (pll_st != NORMAL_MODE) {
WARN("%s: clst (%d) is in error mode (%d)\n",
__func__, pll_id, pll_st);
return -1;
}
}
return 0;
}
static void nonboot_cpus_off(void)
{
uint32_t boot_cpu, cpu;
boot_cpu = plat_my_core_pos();
/* turn off noboot cpus */
for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++) {
if (cpu == boot_cpu)
continue;
cpus_power_domain_off(cpu, core_pwr_pd);
}
}
int rockchip_soc_cores_pwr_dm_on(unsigned long mpidr, uint64_t entrypoint)
{
uint32_t cpu_id = plat_core_pos_by_mpidr(mpidr);
assert(cpu_id < PLATFORM_CORE_COUNT);
assert(cpuson_flags[cpu_id] == 0);
cpuson_flags[cpu_id] = PMU_CPU_HOTPLUG;
cpuson_entry_point[cpu_id] = entrypoint;
dsb();
cpus_power_domain_on(cpu_id);
return PSCI_E_SUCCESS;
}
int rockchip_soc_cores_pwr_dm_off(void)
{
uint32_t cpu_id = plat_my_core_pos();
cpus_power_domain_off(cpu_id, core_pwr_wfi);
return PSCI_E_SUCCESS;
}
int rockchip_soc_hlvl_pwr_dm_off(uint32_t lvl,
plat_local_state_t lvl_state)
{
switch (lvl) {
case MPIDR_AFFLVL1:
clst_pwr_domain_suspend(lvl_state);
break;
default:
break;
}
return PSCI_E_SUCCESS;
}
int rockchip_soc_cores_pwr_dm_suspend(void)
{
uint32_t cpu_id = plat_my_core_pos();
assert(cpu_id < PLATFORM_CORE_COUNT);
assert(cpuson_flags[cpu_id] == 0);
cpuson_flags[cpu_id] = PMU_CPU_AUTO_PWRDN;
cpuson_entry_point[cpu_id] = plat_get_sec_entrypoint();
dsb();
cpus_power_domain_off(cpu_id, core_pwr_wfi_int);
return PSCI_E_SUCCESS;
}
int rockchip_soc_hlvl_pwr_dm_suspend(uint32_t lvl, plat_local_state_t lvl_state)
{
switch (lvl) {
case MPIDR_AFFLVL1:
clst_pwr_domain_suspend(lvl_state);
break;
default:
break;
}
return PSCI_E_SUCCESS;
}
int rockchip_soc_cores_pwr_dm_on_finish(void)
{
uint32_t cpu_id = plat_my_core_pos();
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
CORES_PM_DISABLE);
return PSCI_E_SUCCESS;
}
int rockchip_soc_hlvl_pwr_dm_on_finish(uint32_t lvl,
plat_local_state_t lvl_state)
{
switch (lvl) {
case MPIDR_AFFLVL1:
clst_pwr_domain_resume(lvl_state);
break;
default:
break;
}
return PSCI_E_SUCCESS;
}
int rockchip_soc_cores_pwr_dm_resume(void)
{
uint32_t cpu_id = plat_my_core_pos();
/* Disable core_pm */
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), CORES_PM_DISABLE);
return PSCI_E_SUCCESS;
}
int rockchip_soc_hlvl_pwr_dm_resume(uint32_t lvl, plat_local_state_t lvl_state)
{
switch (lvl) {
case MPIDR_AFFLVL1:
clst_pwr_domain_resume(lvl_state);
default:
break;
}
return PSCI_E_SUCCESS;
}
/**
* init_pmu_counts - Init timing counts in the PMU register area
*
* At various points when we power up or down parts of the system we need
* a delay to wait for power / clocks to become stable. The PMU has counters
* to help software do the delay properly. Basically, it works like this:
* - Software sets up counter values
* - When software turns on something in the PMU, the counter kicks off
* - The hardware sets a bit automatically when the counter has finished and
* software knows that the initialization is done.
*
* It's software's job to setup these counters. The hardware power on default
* for these settings is conservative, setting everything to 0x5dc0
* (750 ms in 32 kHz counts or 1 ms in 24 MHz counts).
*
* Note that some of these counters are only really used at suspend/resume
* time (for instance, that's the only time we turn off/on the oscillator) and
* others are used during normal runtime (like turning on/off a CPU or GPU) but
* it doesn't hurt to init everything at boot.
*
* Also note that these counters can run off the 32 kHz clock or the 24 MHz
* clock. While the 24 MHz clock can give us more precision, it's not always
* available (like when we turn the oscillator off at sleep time). The
* pmu_use_lf (lf: low freq) is available in power mode. Current understanding
* is that counts work like this:
* IF (pmu_use_lf == 0) || (power_mode_en == 0)
* use the 24M OSC for counts
* ELSE
* use the 32K OSC for counts
*
* Notes:
* - There is a separate bit for the PMU called PMU_24M_EN_CFG. At the moment
* we always keep that 0. This apparently choose between using the PLL as
* the source for the PMU vs. the 24M clock. If we ever set it to 1 we
* should consider how it affects these counts (if at all).
* - The power_mode_en is documented to auto-clear automatically when we leave
* "power mode". That's why most clocks are on 24M. Only timings used when
* in "power mode" are 32k.
* - In some cases the kernel may override these counts.
*
* The PMU_STABLE_CNT / PMU_OSC_CNT / PMU_PLLLOCK_CNT are important CNTs
* in power mode, we need to ensure that they are available.
*/
static void init_pmu_counts(void)
{
/* COUNTS FOR INSIDE POWER MODE */
/*
* From limited testing, need PMU stable >= 2ms, but go overkill
* and choose 30 ms to match testing on past SoCs. Also let
* OSC have 30 ms for stabilization.
*/
mmio_write_32(PMU_BASE + PMU_STABLE_CNT, CYCL_32K_CNT_MS(30));
mmio_write_32(PMU_BASE + PMU_OSC_CNT, CYCL_32K_CNT_MS(30));
/* Unclear what these should be; try 3 ms */
mmio_write_32(PMU_BASE + PMU_WAKEUP_RST_CLR_CNT, CYCL_32K_CNT_MS(3));
/* Unclear what this should be, but set the default explicitly */
mmio_write_32(PMU_BASE + PMU_TIMEOUT_CNT, 0x5dc0);
/* COUNTS FOR OUTSIDE POWER MODE */
/* Put something sorta conservative here until we know better */
mmio_write_32(PMU_BASE + PMU_PLLLOCK_CNT, CYCL_24M_CNT_MS(3));
mmio_write_32(PMU_BASE + PMU_DDRIO_PWRON_CNT, CYCL_24M_CNT_MS(1));
mmio_write_32(PMU_BASE + PMU_CENTER_PWRDN_CNT, CYCL_24M_CNT_MS(1));
mmio_write_32(PMU_BASE + PMU_CENTER_PWRUP_CNT, CYCL_24M_CNT_MS(1));
/*
* Set CPU/GPU to 1 us.
*
* NOTE: Even though ATF doesn't configure the GPU we'll still setup
* counts here. After all ATF controls all these other bits and also
* chooses which clock these counters use.
*/
mmio_write_32(PMU_BASE + PMU_SCU_L_PWRDN_CNT, CYCL_24M_CNT_US(1));
mmio_write_32(PMU_BASE + PMU_SCU_L_PWRUP_CNT, CYCL_24M_CNT_US(1));
mmio_write_32(PMU_BASE + PMU_SCU_B_PWRDN_CNT, CYCL_24M_CNT_US(1));
mmio_write_32(PMU_BASE + PMU_SCU_B_PWRUP_CNT, CYCL_24M_CNT_US(1));
mmio_write_32(PMU_BASE + PMU_GPU_PWRDN_CNT, CYCL_24M_CNT_US(1));
mmio_write_32(PMU_BASE + PMU_GPU_PWRUP_CNT, CYCL_24M_CNT_US(1));
}
static uint32_t clk_ddrc_save;
static void sys_slp_config(void)
{
uint32_t slp_mode_cfg = 0;
/* keep enabling clk_ddrc_bpll_src_en gate for DDRC */
clk_ddrc_save = mmio_read_32(CRU_BASE + CRU_CLKGATE_CON(3));
mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(3), WMSK_BIT(1));
prepare_abpll_for_ddrctrl();
sram_func_set_ddrctl_pll(ABPLL_ID);
mmio_write_32(GRF_BASE + GRF_SOC_CON4, CCI_FORCE_WAKEUP);
mmio_write_32(PMU_BASE + PMU_CCI500_CON,
BIT_WITH_WMSK(PMU_CLR_PREQ_CCI500_HW) |
BIT_WITH_WMSK(PMU_CLR_QREQ_CCI500_HW) |
BIT_WITH_WMSK(PMU_QGATING_CCI500_CFG));
mmio_write_32(PMU_BASE + PMU_ADB400_CON,
BIT_WITH_WMSK(PMU_CLR_CORE_L_HW) |
BIT_WITH_WMSK(PMU_CLR_CORE_L_2GIC_HW) |
BIT_WITH_WMSK(PMU_CLR_GIC2_CORE_L_HW));
slp_mode_cfg = BIT(PMU_PWR_MODE_EN) |
BIT(PMU_POWER_OFF_REQ_CFG) |
BIT(PMU_CPU0_PD_EN) |
BIT(PMU_L2_FLUSH_EN) |
BIT(PMU_L2_IDLE_EN) |
BIT(PMU_SCU_PD_EN) |
BIT(PMU_CCI_PD_EN) |
BIT(PMU_CLK_CORE_SRC_GATE_EN) |
BIT(PMU_ALIVE_USE_LF) |
BIT(PMU_SREF0_ENTER_EN) |
BIT(PMU_SREF1_ENTER_EN) |
BIT(PMU_DDRC0_GATING_EN) |
BIT(PMU_DDRC1_GATING_EN) |
BIT(PMU_DDRIO0_RET_EN) |
BIT(PMU_DDRIO1_RET_EN) |
BIT(PMU_DDRIO_RET_HW_DE_REQ) |
BIT(PMU_CENTER_PD_EN) |
BIT(PMU_PLL_PD_EN) |
BIT(PMU_CLK_CENTER_SRC_GATE_EN) |
BIT(PMU_OSC_DIS) |
BIT(PMU_PMU_USE_LF);
mmio_setbits_32(PMU_BASE + PMU_WKUP_CFG4, BIT(PMU_GPIO_WKUP_EN));
mmio_write_32(PMU_BASE + PMU_PWRMODE_CON, slp_mode_cfg);
mmio_write_32(PMU_BASE + PMU_PLL_CON, PLL_PD_HW);
mmio_write_32(PMUGRF_BASE + PMUGRF_SOC_CON0, EXTERNAL_32K);
mmio_write_32(PMUGRF_BASE, IOMUX_CLK_32K); /* 32k iomux */
}
static void set_hw_idle(uint32_t hw_idle)
{
mmio_setbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle);
}
static void clr_hw_idle(uint32_t hw_idle)
{
mmio_clrbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle);
}
static uint32_t iomux_status[12];
static uint32_t pull_mode_status[12];
static uint32_t gpio_direction[3];
static uint32_t gpio_2_4_clk_gate;
static void suspend_apio(void)
{
struct apio_info *suspend_apio;
int i;
suspend_apio = plat_get_rockchip_suspend_apio();
if (!suspend_apio)
return;
/* save gpio2 ~ gpio4 iomux and pull mode */
for (i = 0; i < 12; i++) {
iomux_status[i] = mmio_read_32(GRF_BASE +
GRF_GPIO2A_IOMUX + i * 4);
pull_mode_status[i] = mmio_read_32(GRF_BASE +
GRF_GPIO2A_P + i * 4);
}
/* store gpio2 ~ gpio4 clock gate state */
gpio_2_4_clk_gate = (mmio_read_32(CRU_BASE + CRU_CLKGATE_CON(31)) >>
PCLK_GPIO2_GATE_SHIFT) & 0x07;
/* enable gpio2 ~ gpio4 clock gate */
mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(31),
BITS_WITH_WMASK(0, 0x07, PCLK_GPIO2_GATE_SHIFT));
/* save gpio2 ~ gpio4 direction */
gpio_direction[0] = mmio_read_32(GPIO2_BASE + 0x04);
gpio_direction[1] = mmio_read_32(GPIO3_BASE + 0x04);
gpio_direction[2] = mmio_read_32(GPIO4_BASE + 0x04);
/* apio1 charge gpio3a0 ~ gpio3c7 */
if (suspend_apio->apio1) {
/* set gpio3a0 ~ gpio3c7 iomux to gpio */
mmio_write_32(GRF_BASE + GRF_GPIO3A_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
mmio_write_32(GRF_BASE + GRF_GPIO3B_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
mmio_write_32(GRF_BASE + GRF_GPIO3C_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
/* set gpio3a0 ~ gpio3c7 pull mode to pull none */
mmio_write_32(GRF_BASE + GRF_GPIO3A_P, REG_SOC_WMSK | 0);
mmio_write_32(GRF_BASE + GRF_GPIO3B_P, REG_SOC_WMSK | 0);
mmio_write_32(GRF_BASE + GRF_GPIO3C_P, REG_SOC_WMSK | 0);
/* set gpio3a0 ~ gpio3c7 to input */
mmio_clrbits_32(GPIO3_BASE + 0x04, 0x00ffffff);
}
/* apio2 charge gpio2a0 ~ gpio2b4 */
if (suspend_apio->apio2) {
/* set gpio2a0 ~ gpio2b4 iomux to gpio */
mmio_write_32(GRF_BASE + GRF_GPIO2A_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
mmio_write_32(GRF_BASE + GRF_GPIO2B_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
/* set gpio2a0 ~ gpio2b4 pull mode to pull none */
mmio_write_32(GRF_BASE + GRF_GPIO2A_P, REG_SOC_WMSK | 0);
mmio_write_32(GRF_BASE + GRF_GPIO2B_P, REG_SOC_WMSK | 0);
/* set gpio2a0 ~ gpio2b4 to input */
mmio_clrbits_32(GPIO2_BASE + 0x04, 0x00001fff);
}
/* apio3 charge gpio2c0 ~ gpio2d4*/
if (suspend_apio->apio3) {
/* set gpio2a0 ~ gpio2b4 iomux to gpio */
mmio_write_32(GRF_BASE + GRF_GPIO2C_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
mmio_write_32(GRF_BASE + GRF_GPIO2D_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
/* set gpio2c0 ~ gpio2d4 pull mode to pull none */
mmio_write_32(GRF_BASE + GRF_GPIO2C_P, REG_SOC_WMSK | 0);
mmio_write_32(GRF_BASE + GRF_GPIO2D_P, REG_SOC_WMSK | 0);
/* set gpio2c0 ~ gpio2d4 to input */
mmio_clrbits_32(GPIO2_BASE + 0x04, 0x1fff0000);
}
/* apio4 charge gpio4c0 ~ gpio4c7, gpio4d0 ~ gpio4d6 */
if (suspend_apio->apio4) {
/* set gpio4c0 ~ gpio4d6 iomux to gpio */
mmio_write_32(GRF_BASE + GRF_GPIO4C_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
mmio_write_32(GRF_BASE + GRF_GPIO4D_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
/* set gpio4c0 ~ gpio4d6 pull mode to pull none */
mmio_write_32(GRF_BASE + GRF_GPIO4C_P, REG_SOC_WMSK | 0);
mmio_write_32(GRF_BASE + GRF_GPIO4D_P, REG_SOC_WMSK | 0);
/* set gpio4c0 ~ gpio4d6 to input */
mmio_clrbits_32(GPIO4_BASE + 0x04, 0x7fff0000);
}
/* apio5 charge gpio3d0 ~ gpio3d7, gpio4a0 ~ gpio4a7*/
if (suspend_apio->apio5) {
/* set gpio3d0 ~ gpio4a7 iomux to gpio */
mmio_write_32(GRF_BASE + GRF_GPIO3D_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
mmio_write_32(GRF_BASE + GRF_GPIO4A_IOMUX,
REG_SOC_WMSK | GRF_IOMUX_GPIO);
/* set gpio3d0 ~ gpio4a7 pull mode to pull none */
mmio_write_32(GRF_BASE + GRF_GPIO3D_P, REG_SOC_WMSK | 0);
mmio_write_32(GRF_BASE + GRF_GPIO4A_P, REG_SOC_WMSK | 0);
/* set gpio4c0 ~ gpio4d6 to input */
mmio_clrbits_32(GPIO3_BASE + 0x04, 0xff000000);
mmio_clrbits_32(GPIO4_BASE + 0x04, 0x000000ff);
}
}
static void resume_apio(void)
{
struct apio_info *suspend_apio;
int i;
suspend_apio = plat_get_rockchip_suspend_apio();
if (!suspend_apio)
return;
for (i = 0; i < 12; i++) {
mmio_write_32(GRF_BASE + GRF_GPIO2A_P + i * 4,
REG_SOC_WMSK | pull_mode_status[i]);
mmio_write_32(GRF_BASE + GRF_GPIO2A_IOMUX + i * 4,
REG_SOC_WMSK | iomux_status[i]);
}
/* set gpio2 ~ gpio4 direction back to store value */
mmio_write_32(GPIO2_BASE + 0x04, gpio_direction[0]);
mmio_write_32(GPIO3_BASE + 0x04, gpio_direction[1]);
mmio_write_32(GPIO4_BASE + 0x04, gpio_direction[2]);
/* set gpio2 ~ gpio4 clock gate back to store value */
mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(31),
BITS_WITH_WMASK(gpio_2_4_clk_gate, 0x07,
PCLK_GPIO2_GATE_SHIFT));
}
static void suspend_gpio(void)
{
struct gpio_info *suspend_gpio;
uint32_t count;
int i;
suspend_gpio = plat_get_rockchip_suspend_gpio(&count);
for (i = 0; i < count; i++) {
gpio_set_value(suspend_gpio[i].index, suspend_gpio[i].polarity);
gpio_set_direction(suspend_gpio[i].index, GPIO_DIR_OUT);
udelay(1);
}
}
static void resume_gpio(void)
{
struct gpio_info *suspend_gpio;
uint32_t count;
int i;
suspend_gpio = plat_get_rockchip_suspend_gpio(&count);
for (i = count - 1; i >= 0; i--) {
gpio_set_value(suspend_gpio[i].index,
!suspend_gpio[i].polarity);
gpio_set_direction(suspend_gpio[i].index, GPIO_DIR_OUT);
udelay(1);
}
}
static void m0_configure_suspend(void)
{
/* set PARAM to M0_FUNC_SUSPEND */
mmio_write_32(M0_PARAM_ADDR + PARAM_M0_FUNC, M0_FUNC_SUSPEND);
}
int rockchip_soc_sys_pwr_dm_suspend(void)
{
uint32_t wait_cnt = 0;
uint32_t status = 0;
ddr_prepare_for_sys_suspend();
dmc_save();
pmu_scu_b_pwrdn();
pmu_power_domains_suspend();
set_hw_idle(BIT(PMU_CLR_CENTER1) |
BIT(PMU_CLR_ALIVE) |
BIT(PMU_CLR_MSCH0) |
BIT(PMU_CLR_MSCH1) |
BIT(PMU_CLR_CCIM0) |
BIT(PMU_CLR_CCIM1) |
BIT(PMU_CLR_CENTER) |
BIT(PMU_CLR_GIC));
sys_slp_config();
m0_configure_suspend();
m0_start();
pmu_sgrf_rst_hld();
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1),
((uintptr_t)&pmu_cpuson_entrypoint >>
CPU_BOOT_ADDR_ALIGN) | CPU_BOOT_ADDR_WMASK);
mmio_write_32(PMU_BASE + PMU_ADB400_CON,
BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) |
BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_SW) |
BIT_WITH_WMSK(PMU_PWRDWN_REQ_GIC2_CORE_B_SW));
dsb();
status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) |
BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) |
BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST);
while ((mmio_read_32(PMU_BASE +
PMU_ADB400_ST) & status) != status) {
wait_cnt++;
if (wait_cnt >= MAX_WAIT_COUNT) {
ERROR("%s:wait cluster-b l2(%x)\n", __func__,
mmio_read_32(PMU_BASE + PMU_ADB400_ST));
panic();
}
}
mmio_setbits_32(PMU_BASE + PMU_PWRDN_CON, BIT(PMU_SCU_B_PWRDWN_EN));
secure_watchdog_disable();
/*
* Disabling PLLs/PWM/DVFS is approaching WFI which is
* the last steps in suspend.
*/
disable_dvfs_plls();
disable_pwms();
disable_nodvfs_plls();
suspend_apio();
suspend_gpio();
return 0;
}
int rockchip_soc_sys_pwr_dm_resume(void)
{
uint32_t wait_cnt = 0;
uint32_t status = 0;
resume_apio();
resume_gpio();
enable_nodvfs_plls();
enable_pwms();
/* PWM regulators take time to come up; give 300us to be safe. */
udelay(300);
enable_dvfs_plls();
secure_watchdog_enable();
/* restore clk_ddrc_bpll_src_en gate */
mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(3),
BITS_WITH_WMASK(clk_ddrc_save, 0xff, 0));
/*
* The wakeup status is not cleared by itself, we need to clear it
* manually. Otherwise we will alway query some interrupt next time.
*
* NOTE: If the kernel needs to query this, we might want to stash it
* somewhere.
*/
mmio_write_32(PMU_BASE + PMU_WAKEUP_STATUS, 0xffffffff);
mmio_write_32(PMU_BASE + PMU_WKUP_CFG4, 0x00);
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1),
(cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) |
CPU_BOOT_ADDR_WMASK);
mmio_write_32(PMU_BASE + PMU_CCI500_CON,
WMSK_BIT(PMU_CLR_PREQ_CCI500_HW) |
WMSK_BIT(PMU_CLR_QREQ_CCI500_HW) |
WMSK_BIT(PMU_QGATING_CCI500_CFG));
dsb();
mmio_clrbits_32(PMU_BASE + PMU_PWRDN_CON,
BIT(PMU_SCU_B_PWRDWN_EN));
mmio_write_32(PMU_BASE + PMU_ADB400_CON,
WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) |
WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_SW) |
WMSK_BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW) |
WMSK_BIT(PMU_CLR_CORE_L_HW) |
WMSK_BIT(PMU_CLR_CORE_L_2GIC_HW) |
WMSK_BIT(PMU_CLR_GIC2_CORE_L_HW));
status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) |
BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) |
BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST);
while ((mmio_read_32(PMU_BASE +
PMU_ADB400_ST) & status)) {
wait_cnt++;
if (wait_cnt >= MAX_WAIT_COUNT) {
ERROR("%s:wait cluster-b l2(%x)\n", __func__,
mmio_read_32(PMU_BASE + PMU_ADB400_ST));
panic();
}
}
pmu_sgrf_rst_hld_release();
pmu_scu_b_pwrup();
pmu_power_domains_resume();
restore_dpll();
sram_func_set_ddrctl_pll(DPLL_ID);
restore_abpll();
clr_hw_idle(BIT(PMU_CLR_CENTER1) |
BIT(PMU_CLR_ALIVE) |
BIT(PMU_CLR_MSCH0) |
BIT(PMU_CLR_MSCH1) |
BIT(PMU_CLR_CCIM0) |
BIT(PMU_CLR_CCIM1) |
BIT(PMU_CLR_CENTER) |
BIT(PMU_CLR_GIC));
plat_rockchip_gic_cpuif_enable();
m0_stop();
ddr_prepare_for_sys_resume();
return 0;
}
void __dead2 rockchip_soc_soft_reset(void)
{
struct gpio_info *rst_gpio;
rst_gpio = plat_get_rockchip_gpio_reset();
if (rst_gpio) {
gpio_set_direction(rst_gpio->index, GPIO_DIR_OUT);
gpio_set_value(rst_gpio->index, rst_gpio->polarity);
} else {
soc_global_soft_reset();
}
while (1)
;
}
void __dead2 rockchip_soc_system_off(void)
{
struct gpio_info *poweroff_gpio;
poweroff_gpio = plat_get_rockchip_gpio_poweroff();
if (poweroff_gpio) {
/*
* if use tsadc over temp pin(GPIO1A6) as shutdown gpio,
* need to set this pin iomux back to gpio function
*/
if (poweroff_gpio->index == TSADC_INT_PIN) {
mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO1A_IOMUX,
GPIO1A6_IOMUX);
}
gpio_set_direction(poweroff_gpio->index, GPIO_DIR_OUT);
gpio_set_value(poweroff_gpio->index, poweroff_gpio->polarity);
} else {
WARN("Do nothing when system off\n");
}
while (1)
;
}
void rockchip_plat_mmu_el3(void)
{
size_t sram_size;
/* sram.text size */
sram_size = (char *)&__bl31_sram_text_end -
(char *)&__bl31_sram_text_start;
mmap_add_region((unsigned long)&__bl31_sram_text_start,
(unsigned long)&__bl31_sram_text_start,
sram_size, MT_MEMORY | MT_RO | MT_SECURE);
/* sram.data size */
sram_size = (char *)&__bl31_sram_data_end -
(char *)&__bl31_sram_data_start;
mmap_add_region((unsigned long)&__bl31_sram_data_start,
(unsigned long)&__bl31_sram_data_start,
sram_size, MT_MEMORY | MT_RW | MT_SECURE);
sram_size = (char *)&__bl31_sram_stack_end -
(char *)&__bl31_sram_stack_start;
mmap_add_region((unsigned long)&__bl31_sram_stack_start,
(unsigned long)&__bl31_sram_stack_start,
sram_size, MT_MEMORY | MT_RW | MT_SECURE);
sram_size = (char *)&__sram_incbin_end - (char *)&__sram_incbin_start;
mmap_add_region((unsigned long)&__sram_incbin_start,
(unsigned long)&__sram_incbin_start,
sram_size, MT_NON_CACHEABLE | MT_RW | MT_SECURE);
}
void plat_rockchip_pmu_init(void)
{
uint32_t cpu;
rockchip_pd_lock_init();
/* register requires 32bits mode, switch it to 32 bits */
cpu_warm_boot_addr = (uint64_t)platform_cpu_warmboot;
for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++)
cpuson_flags[cpu] = 0;
for (cpu = 0; cpu < PLATFORM_CLUSTER_COUNT; cpu++)
clst_warmboot_data[cpu] = 0;
/* config cpu's warm boot address */
mmio_write_32(SGRF_BASE + SGRF_SOC_CON(1),
(cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) |
CPU_BOOT_ADDR_WMASK);
mmio_write_32(PMU_BASE + PMU_NOC_AUTO_ENA, NOC_AUTO_ENABLE);
/*
* Enable Schmitt trigger for better 32 kHz input signal, which is
* important for suspend/resume reliability among other things.
*/
mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO0A_SMT, GPIO0A0_SMT_ENABLE);
init_pmu_counts();
nonboot_cpus_off();
INFO("%s(%d): pd status %x\n", __func__, __LINE__,
mmio_read_32(PMU_BASE + PMU_PWRDN_ST));
}