blob: d9e9ccee0f7bda53512cebaa51c2111475d6751c [file] [log] [blame]
/*
* Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include <platform.h>
#include <string.h>
#include "psci_private.h"
/*
* SPD power management operations, expected to be supplied by the registered
* SPD on successful SP initialization
*/
const spd_pm_ops_t *psci_spd_pm;
/*******************************************************************************
* Grand array that holds the platform's topology information for state
* management of power domain instances. Each node (pwr_map_node) in the array
* corresponds to a power domain instance e.g. cluster, cpu within an mpidr
******************************************************************************/
pwr_map_node_t psci_pwr_domain_map[PSCI_NUM_PWR_DOMAINS]
#if USE_COHERENT_MEM
__attribute__ ((section("tzfw_coherent_mem")))
#endif
;
/*******************************************************************************
* Pointer to functions exported by the platform to complete power mgmt. ops
******************************************************************************/
const plat_pm_ops_t *psci_plat_pm_ops;
/*******************************************************************************
* Check that the maximum power level supported by the platform makes sense
* ****************************************************************************/
CASSERT(PLAT_MAX_PWR_LVL <= MPIDR_MAX_AFFLVL && \
PLAT_MAX_PWR_LVL >= MPIDR_AFFLVL0, \
assert_platform_max_pwrlvl_check);
/*******************************************************************************
* This function is passed an array of pointers to power domain nodes in the
* topology tree for an mpidr. It iterates through the nodes to find the
* highest power level where the power domain is marked as physically powered
* off.
******************************************************************************/
uint32_t psci_find_max_phys_off_pwrlvl(uint32_t start_pwrlvl,
uint32_t end_pwrlvl,
pwr_map_node_t *mpidr_nodes[])
{
uint32_t max_pwrlvl = PSCI_INVALID_DATA;
for (; start_pwrlvl <= end_pwrlvl; start_pwrlvl++) {
if (mpidr_nodes[start_pwrlvl] == NULL)
continue;
if (psci_get_phys_state(mpidr_nodes[start_pwrlvl]) ==
PSCI_STATE_OFF)
max_pwrlvl = start_pwrlvl;
}
return max_pwrlvl;
}
/*******************************************************************************
* This function verifies that the all the other cores in the system have been
* turned OFF and the current CPU is the last running CPU in the system.
* Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
* otherwise.
******************************************************************************/
unsigned int psci_is_last_on_cpu(void)
{
unsigned long mpidr = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
unsigned int i;
for (i = psci_pwr_lvl_limits[MPIDR_AFFLVL0].min;
i <= psci_pwr_lvl_limits[MPIDR_AFFLVL0].max; i++) {
assert(psci_pwr_domain_map[i].level == MPIDR_AFFLVL0);
if (!(psci_pwr_domain_map[i].state & PSCI_AFF_PRESENT))
continue;
if (psci_pwr_domain_map[i].mpidr == mpidr) {
assert(psci_get_state(&psci_pwr_domain_map[i])
== PSCI_STATE_ON);
continue;
}
if (psci_get_state(&psci_pwr_domain_map[i]) != PSCI_STATE_OFF)
return 0;
}
return 1;
}
/*******************************************************************************
* Routine to return the maximum power level to traverse to after a cpu has
* been physically powered up. It is expected to be called immediately after
* reset from assembler code.
******************************************************************************/
int get_power_on_target_pwrlvl(void)
{
int pwrlvl;
#if DEBUG
unsigned int state;
pwr_map_node_t *node;
/* Retrieve our node from the topology tree */
node = psci_get_pwr_map_node(read_mpidr_el1() & MPIDR_AFFINITY_MASK,
MPIDR_AFFLVL0);
assert(node);
/*
* Sanity check the state of the cpu. It should be either suspend or "on
* pending"
*/
state = psci_get_state(node);
assert(state == PSCI_STATE_SUSPEND || state == PSCI_STATE_ON_PENDING);
#endif
/*
* Assume that this cpu was suspended and retrieve its target power
* level. If it is invalid then it could only have been turned off
* earlier. PLAT_MAX_PWR_LVL will be the highest power level a
* cpu can be turned off to.
*/
pwrlvl = psci_get_suspend_pwrlvl();
if (pwrlvl == PSCI_INVALID_DATA)
pwrlvl = PLAT_MAX_PWR_LVL;
return pwrlvl;
}
/*******************************************************************************
* Simple routine to set the id of a power domain instance at a given level
* in the mpidr. The assumption is that the affinity level and the power
* level are the same.
******************************************************************************/
unsigned long mpidr_set_pwr_domain_inst(unsigned long mpidr,
unsigned char pwr_inst,
int pwr_lvl)
{
unsigned long aff_shift;
assert(pwr_lvl <= MPIDR_AFFLVL3);
/*
* Decide the number of bits to shift by depending upon
* the power level
*/
aff_shift = get_afflvl_shift(pwr_lvl);
/* Clear the existing affinity instance & set the new one*/
mpidr &= ~(((unsigned long)MPIDR_AFFLVL_MASK) << aff_shift);
mpidr |= ((unsigned long)pwr_inst) << aff_shift;
return mpidr;
}
/*******************************************************************************
* This function sanity checks a range of power levels.
******************************************************************************/
int psci_check_pwrlvl_range(int start_pwrlvl, int end_pwrlvl)
{
/* Sanity check the parameters passed */
if (end_pwrlvl > PLAT_MAX_PWR_LVL)
return PSCI_E_INVALID_PARAMS;
if (start_pwrlvl < MPIDR_AFFLVL0)
return PSCI_E_INVALID_PARAMS;
if (end_pwrlvl < start_pwrlvl)
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function is passed an array of pointers to power domain nodes in the
* topology tree for an mpidr and the state which each node should transition
* to. It updates the state of each node between the specified power levels.
******************************************************************************/
void psci_do_state_coordination(uint32_t start_pwrlvl,
uint32_t end_pwrlvl,
pwr_map_node_t *mpidr_nodes[],
uint32_t state)
{
uint32_t level;
for (level = start_pwrlvl; level <= end_pwrlvl; level++) {
if (mpidr_nodes[level] == NULL)
continue;
psci_set_state(mpidr_nodes[level], state);
}
}
/*******************************************************************************
* This function is passed an array of pointers to power domain nodes in the
* topology tree for an mpidr. It picks up locks for each power level bottom
* up in the range specified.
******************************************************************************/
void psci_acquire_pwr_domain_locks(int start_pwrlvl,
int end_pwrlvl,
pwr_map_node_t *mpidr_nodes[])
{
int level;
for (level = start_pwrlvl; level <= end_pwrlvl; level++) {
if (mpidr_nodes[level] == NULL)
continue;
psci_lock_get(mpidr_nodes[level]);
}
}
/*******************************************************************************
* This function is passed an array of pointers to power domain nodes in the
* topology tree for an mpidr. It releases the lock for each power level top
* down in the range specified.
******************************************************************************/
void psci_release_pwr_domain_locks(int start_pwrlvl,
int end_pwrlvl,
pwr_map_node_t *mpidr_nodes[])
{
int level;
for (level = end_pwrlvl; level >= start_pwrlvl; level--) {
if (mpidr_nodes[level] == NULL)
continue;
psci_lock_release(mpidr_nodes[level]);
}
}
/*******************************************************************************
* Simple routine to determine whether a mpidr is valid or not.
******************************************************************************/
int psci_validate_mpidr(unsigned long mpidr)
{
if (plat_core_pos_by_mpidr(mpidr) < 0)
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function determines the full entrypoint information for the requested
* PSCI entrypoint on power on/resume and returns it.
******************************************************************************/
int psci_get_ns_ep_info(entry_point_info_t *ep,
uint64_t entrypoint, uint64_t context_id)
{
uint32_t ep_attr, mode, sctlr, daif, ee;
uint32_t ns_scr_el3 = read_scr_el3();
uint32_t ns_sctlr_el1 = read_sctlr_el1();
sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
ee = 0;
ep_attr = NON_SECURE | EP_ST_DISABLE;
if (sctlr & SCTLR_EE_BIT) {
ep_attr |= EP_EE_BIG;
ee = 1;
}
SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
ep->pc = entrypoint;
memset(&ep->args, 0, sizeof(ep->args));
ep->args.arg0 = context_id;
/*
* Figure out whether the cpu enters the non-secure address space
* in aarch32 or aarch64
*/
if (ns_scr_el3 & SCR_RW_BIT) {
/*
* Check whether a Thumb entry point has been provided for an
* aarch64 EL
*/
if (entrypoint & 0x1)
return PSCI_E_INVALID_PARAMS;
mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
} else {
mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
/*
* TODO: Choose async. exception bits if HYP mode is not
* implemented according to the values of SCR.{AW, FW} bits
*/
daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
}
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function takes a pointer to a power domain node in the topology tree
* and returns its state. State of a non-leaf node needs to be calculated.
******************************************************************************/
unsigned short psci_get_state(pwr_map_node_t *node)
{
#if !USE_COHERENT_MEM
flush_dcache_range((uint64_t) node, sizeof(*node));
#endif
assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL);
/* A cpu node just contains the state which can be directly returned */
if (node->level == MPIDR_AFFLVL0)
return (node->state >> PSCI_STATE_SHIFT) & PSCI_STATE_MASK;
/*
* For a power level higher than a cpu, the state has to be
* calculated. It depends upon the value of the reference count
* which is managed by each node at the next lower power level
* e.g. for a cluster, each cpu increments/decrements the reference
* count. If the reference count is 0 then the power level is
* OFF else ON.
*/
if (node->ref_count)
return PSCI_STATE_ON;
else
return PSCI_STATE_OFF;
}
/*******************************************************************************
* This function takes a pointer to a power domain node in the topology
* tree and a target state. State of a non-leaf node needs to be converted
* to a reference count. State of a leaf node can be set directly.
******************************************************************************/
void psci_set_state(pwr_map_node_t *node, unsigned short state)
{
assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL);
/*
* For a power level higher than a cpu, the state is used
* to decide whether the reference count is incremented or
* decremented. Entry into the ON_PENDING state does not have
* effect.
*/
if (node->level > MPIDR_AFFLVL0) {
switch (state) {
case PSCI_STATE_ON:
node->ref_count++;
break;
case PSCI_STATE_OFF:
case PSCI_STATE_SUSPEND:
node->ref_count--;
break;
case PSCI_STATE_ON_PENDING:
/*
* A power level higher than a cpu will not undergo
* a state change when it is about to be turned on
*/
return;
default:
assert(0);
}
} else {
node->state &= ~(PSCI_STATE_MASK << PSCI_STATE_SHIFT);
node->state |= (state & PSCI_STATE_MASK) << PSCI_STATE_SHIFT;
}
#if !USE_COHERENT_MEM
flush_dcache_range((uint64_t) node, sizeof(*node));
#endif
}
/*******************************************************************************
* A power domain could be on, on_pending, suspended or off. These are the
* logical states it can be in. Physically either it is off or on. When it is in
* the state on_pending then it is about to be turned on. It is not possible to
* tell whether that's actually happened or not. So we err on the side of
* caution & treat the power domain as being turned off.
******************************************************************************/
unsigned short psci_get_phys_state(pwr_map_node_t *node)
{
unsigned int state;
state = psci_get_state(node);
return get_phys_state(state);
}
/*******************************************************************************
* Generic handler which is called when a cpu is physically powered on. It
* traverses the node information and finds the highest power level powered
* off and performs generic, architectural, platform setup and state management
* to power on that power level and power levels below it.
* e.g. For a cpu that's been powered on, it will call the platform specific
* code to enable the gic cpu interface and for a cluster it will enable
* coherency at the interconnect level in addition to gic cpu interface.
******************************************************************************/
void psci_power_up_finish(int end_pwrlvl,
pwrlvl_power_on_finisher_t pon_handler)
{
mpidr_pwr_map_nodes_t mpidr_nodes;
int rc;
unsigned int max_phys_off_pwrlvl;
/*
* Collect the pointers to the nodes in the topology tree for
* each power domain instances in the mpidr. If this function does
* not return successfully then either the mpidr or the power
* levels are incorrect. Either case is an irrecoverable error.
*/
rc = psci_get_pwr_map_nodes(read_mpidr_el1() & MPIDR_AFFINITY_MASK,
MPIDR_AFFLVL0,
end_pwrlvl,
mpidr_nodes);
if (rc != PSCI_E_SUCCESS)
panic();
/*
* This function acquires the lock corresponding to each power
* level so that by the time all locks are taken, the system topology
* is snapshot and state management can be done safely.
*/
psci_acquire_pwr_domain_locks(MPIDR_AFFLVL0,
end_pwrlvl,
mpidr_nodes);
max_phys_off_pwrlvl = psci_find_max_phys_off_pwrlvl(MPIDR_AFFLVL0,
end_pwrlvl,
mpidr_nodes);
assert(max_phys_off_pwrlvl != PSCI_INVALID_DATA);
/* Perform generic, architecture and platform specific handling */
pon_handler(mpidr_nodes, max_phys_off_pwrlvl);
/*
* This function updates the state of each power instance
* corresponding to the mpidr in the range of power levels
* specified.
*/
psci_do_state_coordination(MPIDR_AFFLVL0,
end_pwrlvl,
mpidr_nodes,
PSCI_STATE_ON);
/*
* This loop releases the lock corresponding to each power level
* in the reverse order to which they were acquired.
*/
psci_release_pwr_domain_locks(MPIDR_AFFLVL0,
end_pwrlvl,
mpidr_nodes);
}
/*******************************************************************************
* This function initializes the set of hooks that PSCI invokes as part of power
* management operation. The power management hooks are expected to be provided
* by the SPD, after it finishes all its initialization
******************************************************************************/
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
{
assert(pm);
psci_spd_pm = pm;
if (pm->svc_migrate)
psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
if (pm->svc_migrate_info)
psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
| define_psci_cap(PSCI_MIG_INFO_TYPE);
}
/*******************************************************************************
* This function invokes the migrate info hook in the spd_pm_ops. It performs
* the necessary return value validation. If the Secure Payload is UP and
* migrate capable, it returns the mpidr of the CPU on which the Secure payload
* is resident through the mpidr parameter. Else the value of the parameter on
* return is undefined.
******************************************************************************/
int psci_spd_migrate_info(uint64_t *mpidr)
{
int rc;
if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
return PSCI_E_NOT_SUPPORTED;
rc = psci_spd_pm->svc_migrate_info(mpidr);
assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
|| rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);
return rc;
}
/*******************************************************************************
* This function prints the state of all power domains present in the
* system
******************************************************************************/
void psci_print_power_domain_map(void)
{
#if LOG_LEVEL >= LOG_LEVEL_INFO
pwr_map_node_t *node;
unsigned int idx;
/* This array maps to the PSCI_STATE_X definitions in psci.h */
static const char *psci_state_str[] = {
"ON",
"OFF",
"ON_PENDING",
"SUSPEND"
};
INFO("PSCI Power Domain Map:\n");
for (idx = 0; idx < PSCI_NUM_PWR_DOMAINS; idx++) {
node = &psci_pwr_domain_map[idx];
if (!(node->state & PSCI_PWR_DOMAIN_PRESENT)) {
continue;
}
INFO(" pwrInst: Level %u, MPID 0x%lx, State %s\n",
node->level, node->mpidr,
psci_state_str[psci_get_state(node)]);
}
#endif
}