blob: 544228a63f80490b5e2cd1d1c2b7de232df514c6 [file] [log] [blame]
/** @file
*
* Copyright (c) 2011-2015, ARM Limited. All rights reserved.
* Copyright (c) 2015, Hisilicon Limited. All rights reserved.
* Copyright (c) 2015, Linaro Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
* Based on files under ArmPlatformPkg/Drivers/NorFlashDxe/
**/
#include "FlashFvbDxe.h"
STATIC EFI_EVENT mFlashFvbVirtualAddrChangeEvent;
STATIC UINTN mFlashNvStorageVariableBase;
//
// Global variable declarations
//
FLASH_DESCRIPTION mFlashDevices[FLASH_DEVICE_COUNT] =
{
{
// UEFI Variable Services non-volatile storage
0xa4000000,
FixedPcdGet32(PcdFlashNvStorageVariableBase),
0x20000,
SIZE_64KB,
{0xCC2CBF29, 0x1498, 0x4CDD, {0x81, 0x71, 0xF8, 0xB6, 0xB4, 0x1D, 0x09, 0x09}}
}
};
FLASH_INSTANCE** mFlashInstances;
FLASH_INSTANCE mFlashInstanceTemplate =
{
FLASH_SIGNATURE, // Signature
NULL, // Handle ... NEED TO BE FILLED
FALSE, // Initialized
NULL, // Initialize
0, // DeviceBaseAddress ... NEED TO BE FILLED
0, // RegionBaseAddress ... NEED TO BE FILLED
0, // Size ... NEED TO BE FILLED
0, // StartLba
{
EFI_BLOCK_IO_PROTOCOL_REVISION2, // Revision
NULL, // Media ... NEED TO BE FILLED
NULL, //NorFlashBlockIoReset
FlashBlockIoReadBlocks,
FlashBlockIoWriteBlocks,
FlashBlockIoFlushBlocks
}, // BlockIoProtocol
{
0, // MediaId ... NEED TO BE FILLED
FALSE, // RemovableMedia
TRUE, // MediaPresent
FALSE, // LogicalPartition
FALSE, // ReadOnly
FALSE, // WriteCaching;
SIZE_64KB, // BlockSize ... NEED TO BE FILLED
4, // IoAlign
0, // LastBlock ... NEED TO BE FILLED
0, // LowestAlignedLba
1, // LogicalBlocksPerPhysicalBlock
}, //Media;
FALSE, // SupportFvb ... NEED TO BE FILLED
{
FvbGetAttributes,
FvbSetAttributes,
FvbGetPhysicalAddress,
FvbGetBlockSize,
FvbRead,
FvbWrite,
FvbEraseBlocks,
NULL, //ParentHandle
}, // FvbProtoccol;
{
{
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{(UINT8)(sizeof(VENDOR_DEVICE_PATH)),
(UINT8)((sizeof(VENDOR_DEVICE_PATH)) >> 8)},
},
{ 0x0, 0x0, 0x0, {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }}, // GUID ... NEED TO BE FILLED
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{sizeof (EFI_DEVICE_PATH_PROTOCOL),
0}
}
} // DevicePath
};
HISI_SPI_FLASH_PROTOCOL* mFlash;
///
/// The Firmware Volume Block Protocol is the low-level interface
/// to a firmware volume. File-level access to a firmware volume
/// should not be done using the Firmware Volume Block Protocol.
/// Normal access to a firmware volume must use the Firmware
/// Volume Protocol. Typically, only the file system driver that
/// produces the Firmware Volume Protocol will bind to the
/// Firmware Volume Block Protocol.
///
/**
Initialises the FV Header and Variable Store Header
to support variable operations.
@param[in] Ptr - Location to initialise the headers
**/
EFI_STATUS
InitializeFvAndVariableStoreHeaders (
IN FLASH_INSTANCE* Instance
)
{
EFI_STATUS Status;
VOID* Headers;
UINTN HeadersLength;
EFI_FIRMWARE_VOLUME_HEADER* FirmwareVolumeHeader;
VARIABLE_STORE_HEADER* VariableStoreHeader;
if (!Instance->Initialized && Instance->Initialize)
{
Instance->Initialize (Instance);
}
HeadersLength = sizeof(EFI_FIRMWARE_VOLUME_HEADER) + sizeof(EFI_FV_BLOCK_MAP_ENTRY) + sizeof(VARIABLE_STORE_HEADER);
Headers = AllocateZeroPool(HeadersLength);
// FirmwareVolumeHeader->FvLength is declared to have the Variable area AND the FTW working area AND the FTW Spare contiguous.
ASSERT(PcdGet32(PcdFlashNvStorageVariableBase) + PcdGet32(PcdFlashNvStorageVariableSize) == PcdGet32(PcdFlashNvStorageFtwWorkingBase));
ASSERT(PcdGet32(PcdFlashNvStorageFtwWorkingBase) + PcdGet32(PcdFlashNvStorageFtwWorkingSize) == PcdGet32(PcdFlashNvStorageFtwSpareBase));
// Check if the size of the area is at least one block size
ASSERT((PcdGet32(PcdFlashNvStorageVariableSize) > 0) && ((UINT32)PcdGet32(PcdFlashNvStorageVariableSize) / Instance->Media.BlockSize > 0));
ASSERT((PcdGet32(PcdFlashNvStorageFtwWorkingSize) > 0) && ((UINT32)PcdGet32(PcdFlashNvStorageFtwWorkingSize) / Instance->Media.BlockSize > 0));
ASSERT((PcdGet32(PcdFlashNvStorageFtwSpareSize) > 0) && ((UINT32)PcdGet32(PcdFlashNvStorageFtwSpareSize) / Instance->Media.BlockSize > 0));
// Ensure the Variable area Base Addresses are aligned on a block size boundaries
ASSERT((UINT32)PcdGet32(PcdFlashNvStorageVariableBase) % Instance->Media.BlockSize == 0);
ASSERT((UINT32)PcdGet32(PcdFlashNvStorageFtwWorkingBase) % Instance->Media.BlockSize == 0);
ASSERT((UINT32)PcdGet32(PcdFlashNvStorageFtwSpareBase) % Instance->Media.BlockSize == 0);
//
// EFI_FIRMWARE_VOLUME_HEADER
//
FirmwareVolumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*)Headers;
CopyGuid (&FirmwareVolumeHeader->FileSystemGuid, &gEfiSystemNvDataFvGuid);
FirmwareVolumeHeader->FvLength =
PcdGet32(PcdFlashNvStorageVariableSize) +
PcdGet32(PcdFlashNvStorageFtwWorkingSize) +
PcdGet32(PcdFlashNvStorageFtwSpareSize);
FirmwareVolumeHeader->Signature = EFI_FVH_SIGNATURE;
FirmwareVolumeHeader->Attributes = (EFI_FVB_ATTRIBUTES_2) (
EFI_FVB2_READ_ENABLED_CAP | // Reads may be enabled
EFI_FVB2_READ_STATUS | // Reads are currently enabled
EFI_FVB2_STICKY_WRITE | // A block erase is required to flip bits into EFI_FVB2_ERASE_POLARITY
EFI_FVB2_MEMORY_MAPPED | // It is memory mapped
EFI_FVB2_ERASE_POLARITY | // After erasure all bits take this value (i.e. '1')
EFI_FVB2_WRITE_STATUS | // Writes are currently enabled
EFI_FVB2_WRITE_ENABLED_CAP // Writes may be enabled
);
FirmwareVolumeHeader->HeaderLength = sizeof(EFI_FIRMWARE_VOLUME_HEADER) + sizeof(EFI_FV_BLOCK_MAP_ENTRY);
FirmwareVolumeHeader->Revision = EFI_FVH_REVISION;
FirmwareVolumeHeader->BlockMap[0].NumBlocks = Instance->Media.LastBlock + 1;
FirmwareVolumeHeader->BlockMap[0].Length = Instance->Media.BlockSize;
FirmwareVolumeHeader->BlockMap[1].NumBlocks = 0;
FirmwareVolumeHeader->BlockMap[1].Length = 0;
FirmwareVolumeHeader->Checksum = CalculateCheckSum16 ((UINT16*)FirmwareVolumeHeader, FirmwareVolumeHeader->HeaderLength);
//
// VARIABLE_STORE_HEADER
//
VariableStoreHeader = (VARIABLE_STORE_HEADER*)((UINTN)Headers + (UINTN)FirmwareVolumeHeader->HeaderLength);
CopyGuid (&VariableStoreHeader->Signature, &gEfiVariableGuid);
VariableStoreHeader->Size = PcdGet32(PcdFlashNvStorageVariableSize) - FirmwareVolumeHeader->HeaderLength;
VariableStoreHeader->Format = VARIABLE_STORE_FORMATTED;
VariableStoreHeader->State = VARIABLE_STORE_HEALTHY;
// Install the combined super-header in the NorFlash
Status = FvbWrite (&Instance->FvbProtocol, 0, 0, &HeadersLength, Headers);
FreePool (Headers);
return Status;
}
/**
Check the integrity of firmware volume header.
@param[in] FwVolHeader - A pointer to a firmware volume header
@retval EFI_SUCCESS - The firmware volume is consistent
@retval EFI_NOT_FOUND - The firmware volume has been corrupted.
**/
EFI_STATUS
ValidateFvHeader (
IN FLASH_INSTANCE* Instance
)
{
UINT16 Checksum;
EFI_FIRMWARE_VOLUME_HEADER* FwVolHeader;
VARIABLE_STORE_HEADER* VariableStoreHeader;
UINTN VariableStoreLength;
UINTN FvLength;
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER*)Instance->RegionBaseAddress;
FvLength = PcdGet32(PcdFlashNvStorageVariableSize) + PcdGet32(PcdFlashNvStorageFtwWorkingSize) +
PcdGet32(PcdFlashNvStorageFtwSpareSize);
//
// Verify the header revision, header signature, length
// Length of FvBlock cannot be 2**64-1
// HeaderLength cannot be an odd number
//
if ( (FwVolHeader->Revision != EFI_FVH_REVISION)
|| (FwVolHeader->Signature != EFI_FVH_SIGNATURE)
|| (FwVolHeader->FvLength != FvLength)
)
{
DEBUG ((EFI_D_ERROR, "ValidateFvHeader: No Firmware Volume header present\n"));
return EFI_NOT_FOUND;
}
// Check the Firmware Volume Guid
if ( CompareGuid (&FwVolHeader->FileSystemGuid, &gEfiSystemNvDataFvGuid) == FALSE )
{
DEBUG ((EFI_D_ERROR, "ValidateFvHeader: Firmware Volume Guid non-compatible\n"));
return EFI_NOT_FOUND;
}
// Verify the header checksum
Checksum = CalculateSum16((UINT16*)FwVolHeader, FwVolHeader->HeaderLength);
if (Checksum != 0)
{
DEBUG ((EFI_D_ERROR, "ValidateFvHeader: FV checksum is invalid (Checksum:0x%X)\n", Checksum));
return EFI_NOT_FOUND;
}
VariableStoreHeader = (VARIABLE_STORE_HEADER*)((UINTN)FwVolHeader + (UINTN)FwVolHeader->HeaderLength);
// Check the Variable Store Guid
if ( CompareGuid (&VariableStoreHeader->Signature, &gEfiVariableGuid) == FALSE )
{
DEBUG ((EFI_D_ERROR, "ValidateFvHeader: Variable Store Guid non-compatible\n"));
return EFI_NOT_FOUND;
}
VariableStoreLength = PcdGet32 (PcdFlashNvStorageVariableSize) - FwVolHeader->HeaderLength;
if (VariableStoreHeader->Size != VariableStoreLength)
{
DEBUG ((EFI_D_ERROR, "ValidateFvHeader: Variable Store Length does not match\n"));
return EFI_NOT_FOUND;
}
return EFI_SUCCESS;
}
/**
The FvbGetAttributes() function retrieves the attributes and
current settings of the block.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Attributes Pointer to EFI_FVB_ATTRIBUTES_2 in which the attributes and
current settings are returned.
Type EFI_FVB_ATTRIBUTES_2 is defined in EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were returned.
**/
EFI_STATUS
EFIAPI
FvbGetAttributes(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL* This,
OUT EFI_FVB_ATTRIBUTES_2* Attributes
)
{
EFI_FVB_ATTRIBUTES_2 FlashFvbAttributes;
FLASH_INSTANCE* Instance;
Instance = INSTANCE_FROM_FVB_THIS(This);
FlashFvbAttributes = (EFI_FVB_ATTRIBUTES_2) (
EFI_FVB2_READ_ENABLED_CAP | // Reads may be enabled
EFI_FVB2_READ_STATUS | // Reads are currently enabled
EFI_FVB2_STICKY_WRITE | // A block erase is required to flip bits into EFI_FVB2_ERASE_POLARITY
EFI_FVB2_MEMORY_MAPPED | // It is memory mapped
EFI_FVB2_ERASE_POLARITY // After erasure all bits take this value (i.e. '1')
);
// Check if it is write protected
if (Instance->Media.ReadOnly != TRUE)
{
FlashFvbAttributes = FlashFvbAttributes |
EFI_FVB2_WRITE_STATUS | // Writes are currently enabled
EFI_FVB2_WRITE_ENABLED_CAP; // Writes may be enabled
}
*Attributes = FlashFvbAttributes;
return EFI_SUCCESS;
}
/**
The FvbSetAttributes() function sets configurable firmware volume attributes
and returns the new settings of the firmware volume.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Attributes On input, Attributes is a pointer to EFI_FVB_ATTRIBUTES_2
that contains the desired firmware volume settings.
On successful return, it contains the new settings of
the firmware volume.
Type EFI_FVB_ATTRIBUTES_2 is defined in EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were returned.
@retval EFI_INVALID_PARAMETER The attributes requested are in conflict with the capabilities
as declared in the firmware volume header.
**/
EFI_STATUS
EFIAPI
FvbSetAttributes(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL* This,
IN OUT EFI_FVB_ATTRIBUTES_2* Attributes
)
{
DEBUG ((EFI_D_ERROR, "FvbSetAttributes(0x%X) is not supported\n", *Attributes));
return EFI_UNSUPPORTED;
}
/**
The GetPhysicalAddress() function retrieves the base address of
a memory-mapped firmware volume. This function should be called
only for memory-mapped firmware volumes.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Address Pointer to a caller-allocated
EFI_PHYSICAL_ADDRESS that, on successful
return from GetPhysicalAddress(), contains the
base address of the firmware volume.
@retval EFI_SUCCESS The firmware volume base address was returned.
@retval EFI_NOT_SUPPORTED The firmware volume is not memory mapped.
**/
EFI_STATUS
EFIAPI
FvbGetPhysicalAddress (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL* This,
OUT EFI_PHYSICAL_ADDRESS* Address
)
{
if(NULL == Address)
{
return EFI_UNSUPPORTED;
};
*Address = mFlashNvStorageVariableBase;
return EFI_SUCCESS;
}
/**
The GetBlockSize() function retrieves the size of the requested
block. It also returns the number of additional blocks with
the identical size. The GetBlockSize() function is used to
retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER).
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba Indicates the block for which to return the size.
@param BlockSize Pointer to a caller-allocated UINTN in which
the size of the block is returned.
@param NumberOfBlocks Pointer to a caller-allocated UINTN in
which the number of consecutive blocks,
starting with Lba, is returned. All
blocks in this range have a size of
BlockSize.
@retval EFI_SUCCESS The firmware volume base address was returned.
@retval EFI_INVALID_PARAMETER The requested LBA is out of range.
**/
EFI_STATUS
EFIAPI
FvbGetBlockSize (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL* This,
IN EFI_LBA Lba,
OUT UINTN* BlockSize,
OUT UINTN* NumberOfBlocks
)
{
EFI_STATUS Status;
FLASH_INSTANCE* Instance;
Instance = INSTANCE_FROM_FVB_THIS(This);
if (Lba > Instance->Media.LastBlock)
{
Status = EFI_INVALID_PARAMETER;
}
else
{
// This is easy because in this platform each NorFlash device has equal sized blocks.
*BlockSize = (UINTN) Instance->Media.BlockSize;
*NumberOfBlocks = (UINTN) (Instance->Media.LastBlock - Lba + 1);
Status = EFI_SUCCESS;
}
return Status;
}
/**
Reads the specified number of bytes into a buffer from the specified block.
The Read() function reads the requested number of bytes from the
requested block and stores them in the provided buffer.
Implementations should be mindful that the firmware volume
might be in the ReadDisabled state. If it is in this state,
the Read() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the
buffer. The Read() function must also prevent spanning block
boundaries. If a read is requested that would span a block
boundary, the read must read up to the boundary but not
beyond. The output parameter NumBytes must be set to correctly
indicate the number of bytes actually read. The caller must be
aware that a read may be partially completed.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba The starting logical block index from which to read.
@param Offset Offset into the block at which to begin reading.
@param NumBytes Pointer to a UINTN.
At entry, *NumBytes contains the total size of the buffer.
At exit, *NumBytes contains the total number of bytes read.
@param Buffer Pointer to a caller-allocated buffer that will be used
to hold the data that is read.
@retval EFI_SUCCESS The firmware volume was read successfully, and contents are
in Buffer.
@retval EFI_BAD_BUFFER_SIZE Read attempted across an LBA boundary.
On output, NumBytes contains the total number of bytes
returned in Buffer.
@retval EFI_ACCESS_DENIED The firmware volume is in the ReadDisabled state.
@retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be read.
**/
EFI_STATUS
EFIAPI
FvbRead (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL* This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN* NumBytes,
IN OUT UINT8* Buffer
)
{
EFI_STATUS Status;
UINTN BlockSize;
FLASH_INSTANCE* Instance;
UINTN StartAddress;
UINTN ReadAddress;
Instance = INSTANCE_FROM_FVB_THIS(This);
if (!Instance->Initialized && Instance->Initialize)
{
if (EfiAtRuntime ()) {
DEBUG ((EFI_D_ERROR, "[%a]:[%dL] Initialize at runtime is not supported!\n", __FUNCTION__, __LINE__));
return EFI_UNSUPPORTED;
}
Instance->Initialize(Instance);
}
Status = EFI_SUCCESS;
// Cache the block size to avoid de-referencing pointers all the time
BlockSize = Instance->Media.BlockSize;
// The read must not span block boundaries.
// We need to check each variable individually because adding two large values together overflows.
if ((Offset >= BlockSize) ||
(*NumBytes > BlockSize) ||
((Offset + *NumBytes) > BlockSize))
{
DEBUG ((EFI_D_ERROR, "[%a]:[%dL] ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", __FUNCTION__, __LINE__, Offset, *NumBytes, BlockSize ));
return EFI_BAD_BUFFER_SIZE;
}
// We must have some bytes to read
if (*NumBytes == 0)
{
return EFI_BAD_BUFFER_SIZE;
}
// Get the address to start reading from
StartAddress = GET_BLOCK_ADDRESS (Instance->RegionBaseAddress,
Lba,
BlockSize
);
ReadAddress = StartAddress - Instance->DeviceBaseAddress + Offset;
Status = mFlash->Read(mFlash, (UINT32)ReadAddress, Buffer, *NumBytes);
if (EFI_SUCCESS != Status)
{
// Return one of the pre-approved error statuses
Status = EFI_DEVICE_ERROR;
return Status;
}
return Status;
}
/**
Writes the specified number of bytes from the input buffer to the block.
The Write() function writes the specified number of bytes from
the provided buffer to the specified block and offset. If the
firmware volume is sticky write, the caller must ensure that
all the bits of the specified range to write are in the
EFI_FVB_ERASE_POLARITY state before calling the Write()
function, or else the result will be unpredictable. This
unpredictability arises because, for a sticky-write firmware
volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY
state but cannot flip it back again. Before calling the
Write() function, it is recommended for the caller to first call
the EraseBlocks() function to erase the specified block to
write. A block erase cycle will transition bits from the
(NOT)EFI_FVB_ERASE_POLARITY state back to the
EFI_FVB_ERASE_POLARITY state. Implementations should be
mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the Write() function must
return the status code EFI_ACCESS_DENIED without modifying the
contents of the firmware volume. The Write() function must
also prevent spanning block boundaries. If a write is
requested that spans a block boundary, the write must store up
to the boundary but not beyond. The output parameter NumBytes
must be set to correctly indicate the number of bytes actually
written. The caller must be aware that a write may be
partially completed. All writes, partial or otherwise, must be
fully flushed to the hardware before the Write() service
returns.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba The starting logical block index to write to.
@param Offset Offset into the block at which to begin writing.
@param NumBytes The pointer to a UINTN.
At entry, *NumBytes contains the total size of the buffer.
At exit, *NumBytes contains the total number of bytes actually written.
@param Buffer The pointer to a caller-allocated buffer that contains the source for the write.
@retval EFI_SUCCESS The firmware volume was written successfully.
@retval EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary.
On output, NumBytes contains the total number of bytes
actually written.
@retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is malfunctioning and could not be written.
**/
EFI_STATUS
EFIAPI
FvbWrite (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL* This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN* NumBytes,
IN UINT8* Buffer
)
{
EFI_STATUS Status;
UINTN BlockSize;
FLASH_INSTANCE* Instance;
UINTN BlockAddress;
UINTN WriteAddress;
Instance = INSTANCE_FROM_FVB_THIS(This);
if (NULL == Instance)
{
return EFI_INVALID_PARAMETER;
}
if (!Instance->Initialized && Instance->Initialize)
{
if (EfiAtRuntime ()) {
DEBUG ((EFI_D_ERROR, "[%a]:[%dL] Initialize at runtime is not supported!\n", __FUNCTION__, __LINE__));
return EFI_UNSUPPORTED;
}
Instance->Initialize(Instance);
}
Status = EFI_SUCCESS;
// Detect WriteDisabled state
if (Instance->Media.ReadOnly == TRUE)
{
DEBUG ((EFI_D_ERROR, "FvbWrite: ERROR - Can not write: Device is in WriteDisabled state.\n"));
// It is in WriteDisabled state, return an error right away
return EFI_ACCESS_DENIED;
}
// Cache the block size to avoid de-referencing pointers all the time
BlockSize = Instance->Media.BlockSize;
// The write must not span block boundaries.
// We need to check each variable individually because adding two large values together overflows.
if ( ( Offset >= BlockSize ) ||
( *NumBytes > BlockSize ) ||
( (Offset + *NumBytes) > BlockSize ) )
{
DEBUG ((EFI_D_ERROR, "FvbWrite: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize ));
return EFI_BAD_BUFFER_SIZE;
}
// We must have some bytes to write
if (*NumBytes == 0)
{
DEBUG ((EFI_D_ERROR, "FvbWrite: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize ));
return EFI_BAD_BUFFER_SIZE;
}
BlockAddress = GET_BLOCK_ADDRESS (Instance->RegionBaseAddress, Lba, BlockSize);
WriteAddress = BlockAddress - Instance->DeviceBaseAddress + Offset;
Status = mFlash->Write(mFlash, (UINT32)WriteAddress, (UINT8*)Buffer, *NumBytes);
if (EFI_SUCCESS != Status)
{
DEBUG((EFI_D_ERROR, "%s - %d Status=%r\n", __FILE__, __LINE__, Status));
return Status;
}
return Status;
}
/**
Erases and initialises a firmware volume block.
The EraseBlocks() function erases one or more blocks as denoted
by the variable argument list. The entire parameter list of
blocks must be verified before erasing any blocks. If a block is
requested that does not exist within the associated firmware
volume (it has a larger index than the last block of the
firmware volume), the EraseBlocks() function must return the
status code EFI_INVALID_PARAMETER without modifying the contents
of the firmware volume. Implementations should be mindful that
the firmware volume might be in the WriteDisabled state. If it
is in this state, the EraseBlocks() function must return the
status code EFI_ACCESS_DENIED without modifying the contents of
the firmware volume. All calls to EraseBlocks() must be fully
flushed to the hardware before the EraseBlocks() service
returns.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL
instance.
@param ... The variable argument list is a list of tuples.
Each tuple describes a range of LBAs to erase
and consists of the following:
- An EFI_LBA that indicates the starting LBA
- A UINTN that indicates the number of blocks to erase.
The list is terminated with an EFI_LBA_LIST_TERMINATOR.
For example, the following indicates that two ranges of blocks
(5-7 and 10-11) are to be erased:
EraseBlocks (This, 5, 3, 10, 2, EFI_LBA_LIST_TERMINATOR);
@retval EFI_SUCCESS The erase request successfully completed.
@retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be written.
The firmware device may have been partially erased.
@retval EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable argument list do
not exist in the firmware volume.
**/
EFI_STATUS
EFIAPI
FvbEraseBlocks (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL* This,
...
)
{
EFI_STATUS Status;
VA_LIST Args;
UINTN BlockAddress; // Physical address of Lba to erase
EFI_LBA StartingLba; // Lba from which we start erasing
UINTN NumOfLba; // Number of Lba blocks to erase
FLASH_INSTANCE* Instance;
Instance = INSTANCE_FROM_FVB_THIS(This);
Status = EFI_SUCCESS;
// Detect WriteDisabled state
if (Instance->Media.ReadOnly == TRUE)
{
// Firmware volume is in WriteDisabled state
return EFI_ACCESS_DENIED;
}
// Before erasing, check the entire list of parameters to ensure all specified blocks are valid
VA_START (Args, This);
do
{
// Get the Lba from which we start erasing
StartingLba = VA_ARG (Args, EFI_LBA);
// Have we reached the end of the list?
if (StartingLba == EFI_LBA_LIST_TERMINATOR)
{
//Exit the while loop
break;
}
// How many Lba blocks are we requested to erase?
NumOfLba = VA_ARG (Args, UINT32);
// All blocks must be within range
if ((NumOfLba == 0) || ((Instance->StartLba + StartingLba + NumOfLba - 1) > Instance->Media.LastBlock))
{
VA_END (Args);
Status = EFI_INVALID_PARAMETER;
goto EXIT;
}
}
while (TRUE);
VA_END (Args);
//
// To get here, all must be ok, so start erasing
//
VA_START (Args, This);
do
{
// Get the Lba from which we start erasing
StartingLba = VA_ARG (Args, EFI_LBA);
// Have we reached the end of the list?
if (StartingLba == EFI_LBA_LIST_TERMINATOR)
{
// Exit the while loop
break;
}
// How many Lba blocks are we requested to erase?
NumOfLba = VA_ARG (Args, UINT32);
// Go through each one and erase it
while (NumOfLba > 0)
{
// Get the physical address of Lba to erase
BlockAddress = GET_BLOCK_ADDRESS (
Instance->RegionBaseAddress,
Instance->StartLba + StartingLba,
Instance->Media.BlockSize
);
// Erase it
Status = FlashUnlockAndEraseSingleBlock (Instance, BlockAddress);
if (EFI_ERROR(Status))
{
VA_END (Args);
Status = EFI_DEVICE_ERROR;
goto EXIT;
}
// Move to the next Lba
StartingLba++;
NumOfLba--;
}
}
while (TRUE);
VA_END (Args);
EXIT:
return Status;
}
EFI_STATUS
EFIAPI
FvbInitialize (
IN FLASH_INSTANCE* Instance
)
{
EFI_STATUS Status;
UINT32 FvbNumLba;
Instance->Initialized = TRUE;
mFlashNvStorageVariableBase = FixedPcdGet32 (PcdFlashNvStorageVariableBase);
// Set the index of the first LBA for the FVB
Instance->StartLba = (PcdGet32 (PcdFlashNvStorageVariableBase) - Instance->RegionBaseAddress) / Instance->Media.BlockSize;
// Determine if there is a valid header at the beginning of the Flash
Status = ValidateFvHeader (Instance);
if (EFI_ERROR(Status))
{
// There is no valid header, so time to install one.
// Erase all the Flash that is reserved for variable storage
FvbNumLba = (PcdGet32(PcdFlashNvStorageVariableSize) + PcdGet32(PcdFlashNvStorageFtwWorkingSize) + (UINT32)PcdGet32(PcdFlashNvStorageFtwSpareSize)) / Instance->Media.BlockSize;
Status = FvbEraseBlocks (&Instance->FvbProtocol, (EFI_LBA)0, FvbNumLba, EFI_LBA_LIST_TERMINATOR);
if (EFI_ERROR(Status))
{
return Status;
}
// Install all appropriate headers
Status = InitializeFvAndVariableStoreHeaders (Instance);
if (EFI_ERROR(Status))
{
return Status;
}
}
return Status;
}
EFI_STATUS
FlashPlatformGetDevices (
OUT FLASH_DESCRIPTION** FlashDevices,
OUT UINT32* Count
)
{
if ((FlashDevices == NULL) || (Count == NULL))
{
return EFI_INVALID_PARAMETER;
}
*FlashDevices = mFlashDevices;
*Count = FLASH_DEVICE_COUNT;
return EFI_SUCCESS;
}
EFI_STATUS
FlashCreateInstance (
IN UINTN FlashDeviceBase,
IN UINTN FlashRegionBase,
IN UINTN FlashSize,
IN UINT32 MediaId,
IN UINT32 BlockSize,
IN BOOLEAN SupportFvb,
IN CONST GUID* FlashGuid,
OUT FLASH_INSTANCE** FlashInstance
)
{
EFI_STATUS Status;
FLASH_INSTANCE* Instance;
if (FlashInstance == NULL)
{
return EFI_INVALID_PARAMETER;
}
Instance = AllocateRuntimeCopyPool (sizeof(FLASH_INSTANCE), &mFlashInstanceTemplate);
if (Instance == NULL)
{
return EFI_INVALID_PARAMETER;
}
Instance->DeviceBaseAddress = FlashDeviceBase;
Instance->RegionBaseAddress = FlashRegionBase;
Instance->Size = FlashSize;
Instance->BlockIoProtocol.Media = &Instance->Media;
Instance->Media.MediaId = MediaId;
Instance->Media.BlockSize = BlockSize;
Instance->Media.LastBlock = (FlashSize / BlockSize) - 1;
CopyGuid (&Instance->DevicePath.Vendor.Guid, FlashGuid);
if (SupportFvb)
{
Instance->SupportFvb = TRUE;
Instance->Initialize = FvbInitialize;
Status = gBS->InstallMultipleProtocolInterfaces (
&Instance->Handle,
&gEfiDevicePathProtocolGuid, &Instance->DevicePath,
&gEfiBlockIoProtocolGuid, &Instance->BlockIoProtocol,
&gEfiFirmwareVolumeBlockProtocolGuid, &Instance->FvbProtocol,
NULL
);
if (EFI_ERROR(Status))
{
FreePool(Instance);
return Status;
}
}
else
{
Instance->Initialized = TRUE;
Status = gBS->InstallMultipleProtocolInterfaces (
&Instance->Handle,
&gEfiDevicePathProtocolGuid, &Instance->DevicePath,
&gEfiBlockIoProtocolGuid, &Instance->BlockIoProtocol,
NULL
);
if (EFI_ERROR(Status))
{
FreePool(Instance);
return Status;
}
}
*FlashInstance = Instance;
return Status;
}
EFI_STATUS
FlashUnlockSingleBlockIfNecessary (
IN FLASH_INSTANCE* Instance,
IN UINTN BlockAddress
)
{
return EFI_SUCCESS;
}
EFI_STATUS
FlashEraseSingleBlock (
IN FLASH_INSTANCE* Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
UINTN EraseAddress;
Status = EFI_SUCCESS;
EraseAddress = BlockAddress - Instance->DeviceBaseAddress;
Status = mFlash->Erase(mFlash, (UINT32)EraseAddress, Instance->Media.BlockSize);
if (EFI_SUCCESS != Status)
{
DEBUG((EFI_D_ERROR, "%s - %d Status=%r\n", __FILE__, __LINE__, Status));
return Status;
}
return EFI_SUCCESS;
}
/**
* The following function presumes that the block has already been unlocked.
**/
EFI_STATUS
FlashUnlockAndEraseSingleBlock (
IN FLASH_INSTANCE* Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
UINTN Index;
Index = 0;
// The block erase might fail a first time (SW bug ?). Retry it ...
do
{
// Unlock the block if we have to
Status = FlashUnlockSingleBlockIfNecessary (Instance, BlockAddress);
if (!EFI_ERROR(Status))
{
Status = FlashEraseSingleBlock (Instance, BlockAddress);
}
Index++;
}
while ((Index < FLASH_ERASE_RETRY) && (Status == EFI_WRITE_PROTECTED));
if (Index == FLASH_ERASE_RETRY)
{
DEBUG((EFI_D_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: Block Locked Error (try to erase %d times)\n", BlockAddress, Index));
}
return Status;
}
EFI_STATUS
FlashWriteBlocks (
IN FLASH_INSTANCE* Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
IN VOID* Buffer
)
{
EFI_STATUS Status = EFI_SUCCESS;
UINTN BlockAddress;
UINT32 NumBlocks;
UINTN WriteAddress;
// The buffer must be valid
if (Buffer == NULL)
{
return EFI_INVALID_PARAMETER;
}
if (Instance->Media.ReadOnly == TRUE)
{
return EFI_WRITE_PROTECTED;
}
// We must have some bytes to read
if (BufferSizeInBytes == 0)
{
return EFI_BAD_BUFFER_SIZE;
}
// The size of the buffer must be a multiple of the block size
if ((BufferSizeInBytes % Instance->Media.BlockSize) != 0)
{
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize ;
if ((Lba + NumBlocks) > (Instance->Media.LastBlock + 1))
{
DEBUG((EFI_D_ERROR, "[%a]:[%dL]ERROR - Write will exceed last block.\n", __FUNCTION__, __LINE__ ));
return EFI_INVALID_PARAMETER;
}
BlockAddress = GET_BLOCK_ADDRESS (Instance->RegionBaseAddress, Lba, Instance->Media.BlockSize);
WriteAddress = BlockAddress - Instance->DeviceBaseAddress;
Status = mFlash->Write(mFlash, (UINT32)WriteAddress, (UINT8*)Buffer, BufferSizeInBytes);
if (EFI_SUCCESS != Status)
{
DEBUG((EFI_D_ERROR, "%s - %d Status=%r\n", __FILE__, __LINE__, Status));
return Status;
}
return Status;
}
EFI_STATUS
FlashReadBlocks (
IN FLASH_INSTANCE* Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
OUT VOID* Buffer
)
{
UINT32 NumBlocks;
UINTN StartAddress;
UINTN ReadAddress;
EFI_STATUS Status;
// The buffer must be valid
if (Buffer == NULL)
{
return EFI_INVALID_PARAMETER;
}
// We must have some bytes to read
if (BufferSizeInBytes == 0)
{
return EFI_BAD_BUFFER_SIZE;
}
// The size of the buffer must be a multiple of the block size
if ((BufferSizeInBytes % Instance->Media.BlockSize) != 0)
{
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize ;
if ((Lba + NumBlocks) > (Instance->Media.LastBlock + 1))
{
DEBUG((EFI_D_ERROR, "FlashReadBlocks: ERROR - Read will exceed last block\n"));
return EFI_INVALID_PARAMETER;
}
// Get the address to start reading from
StartAddress = GET_BLOCK_ADDRESS (Instance->RegionBaseAddress,
Lba,
Instance->Media.BlockSize
);
ReadAddress = StartAddress - Instance->DeviceBaseAddress;
Status = mFlash->Read(mFlash, (UINT32)ReadAddress, Buffer, BufferSizeInBytes);
if (EFI_SUCCESS != Status)
{
DEBUG((EFI_D_ERROR, "%s - %d Status=%r\n", __FILE__, __LINE__, Status));
return Status;
}
return EFI_SUCCESS;
}
VOID
EFIAPI
FlashFvbVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EfiConvertPointer (0x0, (VOID**)&mFlash);
EfiConvertPointer (0x0, (VOID**)&mFlashNvStorageVariableBase);
return;
}
EFI_STATUS
EFIAPI
FlashFvbInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE* SystemTable
)
{
EFI_STATUS Status;
UINT32 Index;
FLASH_DESCRIPTION* FlashDevices;
UINT32 FlashDeviceCount;
BOOLEAN ContainVariableStorage;
Status = FlashPlatformGetDevices (&FlashDevices, &FlashDeviceCount);
if (EFI_ERROR(Status))
{
DEBUG((EFI_D_ERROR, "[%a]:[%dL] Fail to get Flash devices\n", __FUNCTION__, __LINE__));
return Status;
}
mFlashInstances = AllocatePool ((UINT32)(sizeof(FLASH_INSTANCE*) * FlashDeviceCount));
Status = gBS->LocateProtocol (&gHisiSpiFlashProtocolGuid, NULL, (VOID*) &mFlash);
if (EFI_ERROR(Status))
{
DEBUG((EFI_D_ERROR, "[%a]:[%dL] Status=%r\n", __FUNCTION__, __LINE__, Status));
return Status;
}
for (Index = 0; Index < FlashDeviceCount; Index++)
{
// Check if this Flash device contain the variable storage region
ContainVariableStorage =
(FlashDevices[Index].RegionBaseAddress <= (UINT32)PcdGet32 (PcdFlashNvStorageVariableBase)) &&
((UINT32)(PcdGet32 (PcdFlashNvStorageVariableBase) + PcdGet32 (PcdFlashNvStorageVariableSize)) <= FlashDevices[Index].RegionBaseAddress + FlashDevices[Index].Size);
Status = FlashCreateInstance (
FlashDevices[Index].DeviceBaseAddress,
FlashDevices[Index].RegionBaseAddress,
FlashDevices[Index].Size,
Index,
FlashDevices[Index].BlockSize,
ContainVariableStorage,
&FlashDevices[Index].Guid,
&mFlashInstances[Index]
);
if (EFI_ERROR(Status))
{
DEBUG((EFI_D_ERROR, "[%a]:[%dL] Fail to create instance for Flash[%d]\n", __FUNCTION__, __LINE__, Index));
}
}
//
// Register for the virtual address change event
//
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
FlashFvbVirtualNotifyEvent,
NULL,
&gEfiEventVirtualAddressChangeGuid,
&mFlashFvbVirtualAddrChangeEvent
);
ASSERT_EFI_ERROR (Status);
return Status;
}