blob: 0e25915c950040a7a70ca84fb164338cbe03e812 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** Bluetooth configuration for dream (debug only) */
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sys/uio.h>
#include <unistd.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>
#include <bluetooth/sco.h>
int vendor_setup_pcm(int sock) {
/* Use vendor-specific HCI commands to set up SCO over HCI pr PCM */
int rc;
unsigned char type = HCI_COMMAND_PKT;
hci_command_hdr hdr;
/* HCI_VS_Write_SCO_Configuration_Island3
* This command is used to configure the codec interface paramters and
* includes configuration of the PCM clock rate which is relevant when BT
* core is generating the clock. This command MUST be used by the host in
* order to use PCM interface.
* */
hdr.opcode = 0xFD06;
unsigned char cmd[] = {
0x00, 0x08, // clock rate: 2048 kHz
0x01, // BRF6300 is input (slave)
0x40, 0x1f, 00, 00, // frame sync frequency: 8kHz
0x01, 00, // frame sync duty cycle: 1 PCM clock
0x01, // frame sync edge: falling
0x00, // frame sync polarity: active high
0x00, // reserved
// CHANNEL 1
0x10, 0x00, // out sample size: 16 bits
0x00, 0x00, // out sample offset in frame: 0 PCM clock cycle
0x00, // out edge: rising
0x0E, 0x00, // in sample size: 14 bits
0x01, 0x00, // in sample offset in frame: 1 PCM clock cycle
0x00, // in edge: rising
0x00, // reserved
// CHANNEL 2 (not used)
0x00, 0x00,
0x00, 0x00,
0x00,
0x00, 0x00,
0x00, 0x00,
0x00,
0x00,
};
hdr.plen = sizeof(cmd);
struct iovec iov[] = {
{ &type, 1 },
{ &hdr, sizeof(hdr) },
{ &cmd, sizeof(cmd) },
};
int total_len = 1 + sizeof(hdr) + sizeof(cmd);
errno = 0;
rc = writev(sock, iov, sizeof(iov)/sizeof(iov[0]));
if (rc != total_len) {
printf("Can't write %d bytes (wrote %d) to HCI socket: %s (%d)!\n",
total_len, rc, strerror(errno), errno);
return -1;
}
return 0;
}
int vendor_status(int sock) {
/* Use vendor-specific HCI command to get system status */
int rc;
unsigned char type = HCI_COMMAND_PKT;
hci_command_hdr hdr;
/* HCI_VS_Get_System_Status */
hdr.opcode = 0xFE1F;
unsigned char cmd[] = {};
hdr.plen = sizeof(cmd);
struct iovec iov[] = {
{ &type, 1 },
{ &hdr, sizeof(hdr) },
{ &cmd, sizeof(cmd) },
};
int total_len = 1 + sizeof(hdr) + sizeof(cmd);
errno = 0;
rc = writev(sock, iov, sizeof(iov)/sizeof(iov[0]));
if (rc != total_len) {
printf("Can't write %d bytes (wrote %d) to HCI socket: %s (%d)!\n",
total_len, rc, strerror(errno), errno);
return -1;
}
return 0;
}
int vendor_sleep(int sock, int enable) {
/* Use vendor-specific HCI command to go into deep sleep mode */
int rc;
unsigned char type = HCI_COMMAND_PKT;
hci_command_hdr hdr;
/* HCI_VS_Sleep_Mode_Configuration */
hdr.opcode = 0xFD0C;
unsigned char cmd[] = {
0x01, // big sleep (1 enable)
enable ? 0x01 : 0x00, // deep sleep (1 enable)
0x00, // deep sleep protocol mode: HCILL
0xFF, // reserved
0xFF, // output pull: don't change
0xFF, // input pull: don't change
0x00, // reserved
0x00, // deep sleep timeouut: 0
};
hdr.plen = sizeof(cmd);
struct iovec iov[] = {
{ &type, 1 },
{ &hdr, sizeof(hdr) },
{ &cmd, sizeof(cmd) },
};
int total_len = 1 + sizeof(hdr) + sizeof(cmd);
errno = 0;
rc = writev(sock, iov, sizeof(iov)/sizeof(iov[0]));
if (rc != total_len) {
printf("Can't write %d bytes (wrote %d) to HCI socket: %s (%d)!\n",
total_len, rc, strerror(errno), errno);
return -1;
}
return 0;
}
int vendor_uart_baudrate(int sock, uint32_t rate) {
/* Use vendor-specific HCI command to set uart baud rate */
int rc;
unsigned char type = HCI_COMMAND_PKT;
hci_command_hdr hdr;
printf("Setting baud rate to %d\n", rate);
/* HCI_VS_Sleep_Mode_Configuration */
hdr.opcode = 0xFF36;
hdr.plen = sizeof(rate);
struct iovec iov[] = {
{ &type, 1 },
{ &hdr, sizeof(hdr) },
{ &rate, sizeof(rate) },
};
int total_len = 1 + sizeof(hdr) + sizeof(rate);
errno = 0;
rc = writev(sock, iov, sizeof(iov)/sizeof(iov[0]));
if (rc != total_len) {
printf("Can't write %d bytes (wrote %d) to HCI socket: %s (%d)!\n",
total_len, rc, strerror(errno), errno);
return -1;
}
return 0;
}
int vendor_setup_pcm2(int sock) {
int rc;
unsigned char type = HCI_COMMAND_PKT;
hci_command_hdr hdr;
// HCI_VS_Write_CODEC_Config_Enhanced_Island3
hdr.opcode = 0xFD07;
unsigned char cmd[] = {
0x00, // PCM clock shutdown: disabled
0x00, 0x00, // PCM clock start
0x00, 0x00, // PCM clock stop
0x00, // reserved
// Channel 1
0x04, // din order: MSB first, don't swap bytes, shift sample
0x04, // dout order: MSB first, don't swap bytes, shift sample
0x02, // dout mode: Hi-Z when idle
0x00, // dout duplication: disabled
0x00, 0x00, 0x00, 0x00, // tx_dup_value
0x00, // data quant: bitwise
0x00, // reserved
// Channel 2
0x00, // din order
0x00, // dout order
0x00, // dout mode
0x00, // dout duplication
0x00, 0x00, 0x00, 0x00, // tx_dup_value
0x00, // data quant
0x00, // reserved
};
hdr.plen = sizeof(cmd);
struct iovec iov[] = {
{ &type, 1 },
{ &hdr, sizeof(hdr) },
{ &cmd, sizeof(cmd) },
};
int total_len = 1 + sizeof(hdr) + sizeof(cmd);
errno = 0;
rc = writev(sock, iov, sizeof(iov)/sizeof(iov[0]));
if (rc != total_len) {
printf("Can't write %d bytes (wrote %d) to HCI socket: %s (%d)!\n",
total_len, rc, strerror(errno), errno);
return -1;
}
return 0;
}
int vendor_coexist(int sock, int enable) {
/* Use vendor-specific HCI command to set up WIFI coexistance*/
int rc;
unsigned char type = HCI_COMMAND_PKT;
hci_command_hdr hdr;
/* HCI_VS_Write_Wlan_Configuration */
hdr.opcode = 0xFD1D;
unsigned char cmd[] = {
0x04, // enable: SG2.0
0x01, // polarity: active high
0xE9, 0x05, // priority: TDD, page, page scan, inquiry, inquiry scan, sniff, SCO/eSCO
0x00, 0x00, // connection handle select
0x00, // connection handle: disable
0x00, // frequency mask: disable
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // freq mask: dont change
0x04, // wlan0 mux: IO14
0x01, // wlan0 input pull: enabled
0x00, // wlan1 mux: IO4
0x01, // wlan1 input pull: enabled
0x02, // wlan2 mux: IO3
0x01, // wlan2 input pull: enabled
0x00, // wlan3 mux: PA_OFF on IO1
0xFF, // wlan3 input pull: don't cahnge
enable? 0x00 : 0x01, // wlan interface: enable/disable
};
hdr.plen = sizeof(cmd);
struct iovec iov[] = {
{ &type, 1 },
{ &hdr, sizeof(hdr) },
{ &cmd, sizeof(cmd) },
};
int total_len = 1 + sizeof(hdr) + sizeof(cmd);
errno = 0;
rc = writev(sock, iov, sizeof(iov)/sizeof(iov[0]));
if (rc != total_len) {
printf("Can't write %d bytes (wrote %d) to HCI socket: %s (%d)!\n",
total_len, rc, strerror(errno), errno);
return -1;
}
return 0;
}
int setup_loopback1(int sock) {
int rc;
unsigned char type = HCI_COMMAND_PKT;
hci_command_hdr hdr;
// HCI_VS_Set_PCM_Loopback_Configuration_Island3 (0xFD04)
hdr.opcode = 0xFD04;
unsigned char cmd[] = {
0xFF, 0x00, // delay: 255 frame's
};
hdr.plen = sizeof(cmd);
struct iovec iov[] = {
{ &type, 1 },
{ &hdr, sizeof(hdr) },
{ &cmd, sizeof(cmd) },
};
int total_len = 1 + sizeof(hdr) + sizeof(cmd);
errno = 0;
rc = writev(sock, iov, sizeof(iov)/sizeof(iov[0]));
if (rc != total_len) {
printf("Can't write %d bytes (wrote %d) to HCI socket: %s (%d)!\n",
total_len, rc, strerror(errno), errno);
return -1;
}
return 0;
}
int setup_loopback2(int sock, int on) {
int rc;
unsigned char type = HCI_COMMAND_PKT;
hci_command_hdr hdr;
// HCI_VS_Set_PCM_Loopback_Enable (0xFE28)
hdr.opcode = 0xFE28;
printf("loopback %s\n", on ? "ON" : "OFF");
unsigned char cmd[] = {
on ? 0x01 : 0x00, // enable
};
hdr.plen = sizeof(cmd);
struct iovec iov[] = {
{ &type, 1 },
{ &hdr, sizeof(hdr) },
{ &cmd, sizeof(cmd) },
};
int total_len = 1 + sizeof(hdr) + sizeof(cmd);
errno = 0;
rc = writev(sock, iov, sizeof(iov)/sizeof(iov[0]));
if (rc != total_len) {
printf("Can't write %d bytes (wrote %d) to HCI socket: %s (%d)!\n",
total_len, rc, strerror(errno), errno);
return -1;
}
return 0;
}
int write_voice_setting(int sock) {
int rc;
unsigned char type = HCI_COMMAND_PKT;
hci_command_hdr hdr;
// HCI_Write_Voice_Setting (0x0026)
hdr.opcode = 0x0026;
unsigned char cmd[] = {
0x00, 0x00,
};
hdr.plen = sizeof(cmd);
struct iovec iov[] = {
{ &type, 1 },
{ &hdr, sizeof(hdr) },
{ &cmd, sizeof(cmd) },
};
int total_len = 1 + sizeof(hdr) + sizeof(cmd);
errno = 0;
rc = writev(sock, iov, sizeof(iov)/sizeof(iov[0]));
if (rc != total_len) {
printf("Can't write %d bytes (wrote %d) to HCI socket: %s (%d)!\n",
total_len, rc, strerror(errno), errno);
return -1;
}
return 0;
}
static int vendor_specific_sco_setup(int hcifd, int over_hci) {
/* Use vendor-specific HCI commands to set up SCO over HCI or PCM */
int rc;
unsigned char type = HCI_COMMAND_PKT;
hci_command_hdr hdr;
/* HCI_VS_Write_SCO_Configuration.
* Once this command is issued, it is valid for all new SCO channels
* created. It is used to determine the following paramters
* SCO Connection type - Host (voice over HCI) or Codec
* TX packet length used for flow control calculations
* TX Buffer max latency determines how much time the data can be in the TX
* buffer before being flushed out. Applicable only if flow control is
* disabled.
*/
hdr.opcode = 0xFE10;
hdr.plen = 0x05;
struct hci_sco_t {
unsigned char conn_type;
unsigned char packet_size;
unsigned char max_latency[2];
unsigned char bad_crc;
} __attribute__((packed)) hci_sco;
hci_sco.packet_size = 0x00; /* packet size--keep current setting */
hci_sco.max_latency[0] = 0x00;
hci_sco.max_latency[1] = 0x00; /* max latency--keep current setting */
hci_sco.bad_crc = 0xFF; /* bad CRC handling--keep current setting */
struct iovec iov[3] = {
{ &type, 1 },
{ &hdr, sizeof(hdr) },
{ &hci_sco, sizeof(hci_sco) }
};
int total_len = 1 + sizeof(hdr) + sizeof(hci_sco);
printf("Setting Vendor-specific SCO over %s.\n",
(over_hci ? "HCI" : "PCM"));
errno = 0;
hci_sco.conn_type = (unsigned char)(over_hci ? 0x01 : 0x00);
rc = writev(hcifd, iov, sizeof(iov)/sizeof(iov[0]));
if (rc != total_len) {
printf("Can't write %d bytes (wrote %d) to HCI socket: %s (%d)!\n",
total_len, rc, strerror(errno), errno);
return -1;
}
return 0;
}
int get_hci_sock() {
int sock = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI);
struct sockaddr_hci addr;
int opt;
if(sock < 0) {
printf("Can't create raw socket!\n");
return -1;
}
opt = 1;
printf("Setting data direction.\n");
if (setsockopt(sock, SOL_HCI, HCI_DATA_DIR, &opt, sizeof(opt)) < 0) {
printf("Error setting data direction\n");
return -1;
}
/* Bind socket to the HCI device */
addr.hci_family = AF_BLUETOOTH;
addr.hci_dev = 0; // hci0
printf("Binding to HCI device.\n");
if(bind(sock, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
printf("Can't attach to device hci0. %s(%d)\n",
strerror(errno),
errno);
return -1;
}
return sock;
}
static const int num_devices = 3;
static const char device_names[3][20] = {
"moto",
"jabra250",
"jabra125",
};
static const bdaddr_t device_addrs[3] = {
{0xE1, 0x9C, 0x97, 0x2E, 0x0B, 0x00},
{0x5E, 0x88, 0x26, 0xA4, 0x07, 0x00},
{0xE3, 0xFD, 0x93, 0x8F, 0x16, 0x00},
};
void print_bdaddr(const bdaddr_t* bdaddr) {
uint8_t* b = (uint8_t*)bdaddr;
printf("%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
b[5], b[4], b[3], b[2], b[1], b[0]);
}
const bdaddr_t* get_remote_address(char* name) {
int i;
for (i=0; i<num_devices; i++) {
if (strcmp(name, device_names[i]) == 0) {
printf("Using ");
print_bdaddr(&device_addrs[i]);
return &device_addrs[i];
}
}
printf("Unknown device: %s\n", name);
for (i=0; i<num_devices; i++) {
printf("%s ", device_names[i]);
print_bdaddr(&device_addrs[i]);
}
exit(1);
}
void sco_setup(char *device_name) {
struct sockaddr_sco sco_addr;
int sco_sock;
sco_sock = socket(PF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_SCO);
if (sco_sock < 0) {
printf("Could not create SCO socket\n");
return;
}
/* Bind to local address */
memset(&sco_addr, 0, sizeof(sco_addr));
sco_addr.sco_family = AF_BLUETOOTH;
hci_devba(0, &sco_addr.sco_bdaddr);
printf("Local BDADDR is: ");
print_bdaddr(&sco_addr.sco_bdaddr);
printf("Binding...\n");
if (bind(sco_sock, (struct sockaddr *) &sco_addr, sizeof(sco_addr)) < 0) {
printf("Could not bind SCO socket\n");
return;
}
memset(&sco_addr, 0, sizeof(sco_addr));
sco_addr.sco_family = AF_BLUETOOTH;
memcpy(&sco_addr.sco_bdaddr, get_remote_address(device_name), sizeof(bdaddr_t));
printf("Connecting SCO socket...\n");
print_bdaddr(&sco_addr.sco_bdaddr);
if(connect(sco_sock, (struct sockaddr *)&sco_addr, sizeof(sco_addr)) < 0) {
printf("Could not connect to SCO socket\n");
return;
}
printf("SCO socket connected\n");
struct sco_options opts;
struct sco_conninfo conninfo;
socklen_t len = sizeof(opts);
if (getsockopt(sco_sock, SOL_SCO, SCO_OPTIONS, &opts, &len) < 0) {
printf("Couldn't not get SCO socket options\n");
return;
}
printf("SCO MTU: %d\n", opts.mtu);
len = sizeof(conninfo);
if (getsockopt(sco_sock, SOL_SCO, SCO_CONNINFO, &conninfo, &len) < 0) {
printf("Couldn't get SCO connection options\n");
return;
}
printf("SCO HCI handle: %d\n", conninfo.hci_handle);
printf("SCO HCI device class: %02x%02x%02x\n",
conninfo.dev_class[0],
conninfo.dev_class[1],
conninfo.dev_class[2]);
}
int main(int argc, char **argv) {
if (argc == 1) {
goto usage;
}
if (argc >= 2 && strcmp(argv[1], "pcm_setup") == 0 ) {
int sock = get_hci_sock();
if (sock < 0) {
printf("Could not open hci socket\n");
return -1;
}
if (vendor_specific_sco_setup(sock, 0 /* set up over PCM */) < 0) {
printf("Could not set up SCO\n");
return -1;
}
sleep(1);
if (vendor_setup_pcm(sock) < 0) {
printf("Could not setup up PCM\n");
return -1;
}
sleep(1);
} else if (argc >= 2 && strcmp(argv[1], "pcm_setup2") == 0 ) {
int sock = get_hci_sock();
if (sock < 0) {
printf("Could not open hci socket\n");
return -1;
}
if (vendor_setup_pcm2(sock) < 0) {
printf("Could not setup up PCM\n");
return -1;
}
sleep(1);
} else if (argc >= 2 && strcmp(argv[1], "loopback") == 0 ) {
int enable = 1;
if (argc > 2) {
if (strcmp(argv[2], "off") == 0) {
enable = 0;
}
}
int sock = get_hci_sock();
if (sock < 0) {
printf("Could not open hci socket\n");
return -1;
}
setup_loopback1(sock);
setup_loopback2(sock, enable);
sleep(1);
} else if (argc >= 2 && strcmp(argv[1], "sleep") == 0 ) {
int enable = 1;
if (argc > 2) {
if (strcmp(argv[2], "off") == 0) {
enable = 0;
}
}
int sock = get_hci_sock();
if (sock < 0) {
printf("Could not open hci socket\n");
return -1;
}
vendor_sleep(sock, enable);
sleep(1);
} else if (argc >= 2 && strcmp(argv[1], "coed") == 0 ) {
int enable = 1;
if (argc > 2) {
if (strcmp(argv[2], "off") == 0) {
enable = 0;
}
}
int sock = get_hci_sock();
if (sock < 0) {
printf("Could not open hci socket\n");
return -1;
}
vendor_coexist(sock, enable);
sleep(1);
} else if (argc >= 3 && strcmp(argv[1], "rate") == 0 ) {
uint32_t rate = atoi(argv[2]);
int sock = get_hci_sock();
if (sock < 0) {
printf("Could not open hci socket\n");
return -1;
}
vendor_uart_baudrate(sock, rate);
sleep(1);
} else if (argc >= 2 && strcmp(argv[1], "vs_status") == 0 ) {
int sock = get_hci_sock();
if (sock < 0) {
printf("Could not open hci socket\n");
return -1;
}
vendor_status(sock);
sleep(1);
} else if (argc >= 3 && strcmp(argv[1], "sco_setup") == 0 ) {
sco_setup(argv[2]);
sleep(100000000);
} else {
usage:
printf("Usage:\n");
printf("\tbtconfig sleep [on|off]\n");
printf("\tbtconfig vs_status\n");
printf("\tbtconfig pcm_setup\n");
printf("\tbtconfig pcm_setup2\n");
printf("\tbtconfig sco_setup DEVICE_ALIAS\n");
printf("\tbtconfig loopback [on|off]\n");
printf("\tbtconfig coed [on|off]\n");
printf("\tbtconfig rate RATE\n");
printf("\n");
return 0;
}
return 0;
}