blob: 00ae2d23e22be50e5b38c20059d41a1fd49a51b9 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <algorithm>
#include <cmath>
#include "HardwareBase.h"
#include "Vibrator.h"
#define PROC_SND_PCM "/proc/asound/pcm"
#define HAPTIC_PCM_DEVICE_SYMBOL "haptic nohost playback"
static struct pcm_config haptic_nohost_config = {
.channels = 1,
.rate = 48000,
.period_size = 80,
.period_count = 2,
.format = PCM_FORMAT_S16_LE,
};
enum WaveformIndex : uint16_t {
/* Physical waveform */
WAVEFORM_LONG_VIBRATION_EFFECT_INDEX = 0,
WAVEFORM_RESERVED_INDEX_1 = 1,
WAVEFORM_CLICK_INDEX = 2,
WAVEFORM_SHORT_VIBRATION_EFFECT_INDEX = 3,
WAVEFORM_THUD_INDEX = 4,
WAVEFORM_SPIN_INDEX = 5,
WAVEFORM_QUICK_RISE_INDEX = 6,
WAVEFORM_SLOW_RISE_INDEX = 7,
WAVEFORM_QUICK_FALL_INDEX = 8,
WAVEFORM_LIGHT_TICK_INDEX = 9,
WAVEFORM_LOW_TICK_INDEX = 10,
WAVEFORM_RESERVED_MFG_1,
WAVEFORM_RESERVED_MFG_2,
WAVEFORM_RESERVED_MFG_3,
WAVEFORM_MAX_PHYSICAL_INDEX,
/* OWT waveform */
WAVEFORM_COMPOSE = WAVEFORM_MAX_PHYSICAL_INDEX,
WAVEFORM_PWLE,
/*
* Refer to <linux/input.h>, the WAVEFORM_MAX_INDEX must not exceed 96.
* #define FF_GAIN 0x60 // 96 in decimal
* #define FF_MAX_EFFECTS FF_GAIN
*/
WAVEFORM_MAX_INDEX,
};
namespace aidl {
namespace android {
namespace hardware {
namespace vibrator {
class HwApi : public Vibrator::HwApi, private HwApiBase {
public:
static std::unique_ptr<HwApi> Create() {
auto hwapi = std::unique_ptr<HwApi>(new HwApi());
return hwapi;
}
HwApi() {
open("calibration/f0_stored", &mF0);
open("default/f0_offset", &mF0Offset);
open("calibration/redc_stored", &mRedc);
open("calibration/q_stored", &mQ);
open("default/vibe_state", &mVibeState);
open("default/num_waves", &mEffectCount);
open("default/owt_free_space", &mOwtFreeSpace);
open("default/f0_comp_enable", &mF0CompEnable);
open("default/redc_comp_enable", &mRedcCompEnable);
open("default/delay_before_stop_playback_us", &mMinOnOffInterval);
}
bool setF0(std::string value) override { return set(value, &mF0); }
bool setF0Offset(uint32_t value) override { return set(value, &mF0Offset); }
bool setRedc(std::string value) override { return set(value, &mRedc); }
bool setQ(std::string value) override { return set(value, &mQ); }
bool getEffectCount(uint32_t *value) override { return get(value, &mEffectCount); }
bool pollVibeState(uint32_t value, int32_t timeoutMs) override {
return poll(value, &mVibeState, timeoutMs);
}
bool hasOwtFreeSpace() override { return has(mOwtFreeSpace); }
bool getOwtFreeSpace(uint32_t *value) override { return get(value, &mOwtFreeSpace); }
bool setF0CompEnable(bool value) override { return set(value, &mF0CompEnable); }
bool setRedcCompEnable(bool value) override { return set(value, &mRedcCompEnable); }
bool setMinOnOffInterval(uint32_t value) override { return set(value, &mMinOnOffInterval); }
// TODO(b/234338136): Need to add the force feedback HW API test cases
bool setFFGain(int fd, uint16_t value) override {
struct input_event gain = {
.type = EV_FF,
.code = FF_GAIN,
.value = value,
};
if (write(fd, (const void *)&gain, sizeof(gain)) != sizeof(gain)) {
return false;
}
return true;
}
bool setFFEffect(int fd, struct ff_effect *effect, uint16_t timeoutMs) override {
if (((*effect).replay.length != timeoutMs) || (ioctl(fd, EVIOCSFF, effect) < 0)) {
ALOGE("setFFEffect fail");
return false;
} else {
return true;
}
}
bool setFFPlay(int fd, int8_t index, bool value) override {
struct input_event play = {
.type = EV_FF,
.code = static_cast<uint16_t>(index),
.value = value,
};
if (write(fd, (const void *)&play, sizeof(play)) != sizeof(play)) {
return false;
} else {
return true;
}
}
bool getHapticAlsaDevice(int *card, int *device) override {
std::string line;
std::ifstream myfile(PROC_SND_PCM);
if (myfile.is_open()) {
while (getline(myfile, line)) {
if (line.find(HAPTIC_PCM_DEVICE_SYMBOL) != std::string::npos) {
std::stringstream ss(line);
std::string currentToken;
std::getline(ss, currentToken, ':');
sscanf(currentToken.c_str(), "%d-%d", card, device);
return true;
}
}
myfile.close();
} else {
ALOGE("Failed to read file: %s", PROC_SND_PCM);
}
return false;
}
bool setHapticPcmAmp(struct pcm **haptic_pcm, bool enable, int card, int device) override {
int ret = 0;
if (enable) {
*haptic_pcm = pcm_open(card, device, PCM_OUT, &haptic_nohost_config);
if (!pcm_is_ready(*haptic_pcm)) {
ALOGE("cannot open pcm_out driver: %s", pcm_get_error(*haptic_pcm));
goto fail;
}
ret = pcm_prepare(*haptic_pcm);
if (ret < 0) {
ALOGE("cannot prepare haptic_pcm: %s", pcm_get_error(*haptic_pcm));
goto fail;
}
ret = pcm_start(*haptic_pcm);
if (ret < 0) {
ALOGE("cannot start haptic_pcm: %s", pcm_get_error(*haptic_pcm));
goto fail;
}
return true;
} else {
if (*haptic_pcm) {
pcm_close(*haptic_pcm);
*haptic_pcm = NULL;
}
return true;
}
fail:
pcm_close(*haptic_pcm);
*haptic_pcm = NULL;
return false;
}
bool uploadOwtEffect(int fd, uint8_t *owtData, uint32_t numBytes, struct ff_effect *effect,
uint32_t *outEffectIndex, int *status) override {
(*effect).u.periodic.custom_len = numBytes / sizeof(uint16_t);
delete[] ((*effect).u.periodic.custom_data);
(*effect).u.periodic.custom_data = new int16_t[(*effect).u.periodic.custom_len]{0x0000};
if ((*effect).u.periodic.custom_data == nullptr) {
ALOGE("Failed to allocate memory for custom data\n");
*status = EX_NULL_POINTER;
return false;
}
memcpy((*effect).u.periodic.custom_data, owtData, numBytes);
if ((*effect).id != -1) {
ALOGE("(*effect).id != -1");
}
/* Create a new OWT waveform to update the PWLE or composite effect. */
(*effect).id = -1;
if (ioctl(fd, EVIOCSFF, effect) < 0) {
ALOGE("Failed to upload effect %d (%d): %s", *outEffectIndex, errno, strerror(errno));
delete[] ((*effect).u.periodic.custom_data);
*status = EX_ILLEGAL_STATE;
return false;
}
if ((*effect).id >= FF_MAX_EFFECTS || (*effect).id < 0) {
ALOGE("Invalid waveform index after upload OWT effect: %d", (*effect).id);
*status = EX_ILLEGAL_ARGUMENT;
return false;
}
*outEffectIndex = (*effect).id;
*status = 0;
return true;
}
bool eraseOwtEffect(int fd, int8_t effectIndex, std::vector<ff_effect> *effect) override {
uint32_t effectCountBefore, effectCountAfter, i, successFlush = 0;
if (effectIndex < WAVEFORM_MAX_PHYSICAL_INDEX) {
ALOGE("Invalid waveform index for OWT erase: %d", effectIndex);
return false;
}
// Turn off the waiting time for SVC init phase to complete since chip
// should already under STOP state
setMinOnOffInterval(0);
// Do erase flow
if (effectIndex < WAVEFORM_MAX_INDEX) {
/* Normal situation. Only erase the effect which we just played. */
if (ioctl(fd, EVIOCRMFF, effectIndex) < 0) {
ALOGE("Failed to erase effect %d (%d): %s", effectIndex, errno, strerror(errno));
}
for (i = WAVEFORM_MAX_PHYSICAL_INDEX; i < WAVEFORM_MAX_INDEX; i++) {
if ((*effect)[i].id == effectIndex) {
(*effect)[i].id = -1;
break;
}
}
} else {
/* Flush all non-prestored effects of ff-core and driver. */
getEffectCount(&effectCountBefore);
for (i = WAVEFORM_MAX_PHYSICAL_INDEX; i < FF_MAX_EFFECTS; i++) {
if (ioctl(fd, EVIOCRMFF, i) >= 0) {
successFlush++;
}
}
getEffectCount(&effectCountAfter);
ALOGW("Flushed effects: ff: %d; driver: %d -> %d; success: %d", effectIndex,
effectCountBefore, effectCountAfter, successFlush);
/* Reset all OWT effect index of HAL. */
for (i = WAVEFORM_MAX_PHYSICAL_INDEX; i < WAVEFORM_MAX_INDEX; i++) {
(*effect)[i].id = -1;
}
}
// Turn on the waiting time for SVC init phase to complete
setMinOnOffInterval(Vibrator::MIN_ON_OFF_INTERVAL_US);
return true;
}
void debug(int fd) override { HwApiBase::debug(fd); }
private:
std::ofstream mF0;
std::ofstream mF0Offset;
std::ofstream mRedc;
std::ofstream mQ;
std::ifstream mEffectCount;
std::ifstream mVibeState;
std::ifstream mOwtFreeSpace;
std::ofstream mF0CompEnable;
std::ofstream mRedcCompEnable;
std::ofstream mMinOnOffInterval;
};
class HwCal : public Vibrator::HwCal, private HwCalBase {
private:
static constexpr char VERSION[] = "version";
static constexpr char F0_CONFIG[] = "f0_measured";
static constexpr char F0_CONFIG_DUAL[] = "f0_measured_dual";
static constexpr char REDC_CONFIG[] = "redc_measured";
static constexpr char Q_CONFIG[] = "q_measured";
static constexpr char TICK_VOLTAGES_CONFIG[] = "v_tick";
static constexpr char CLICK_VOLTAGES_CONFIG[] = "v_click";
static constexpr char LONG_VOLTAGES_CONFIG[] = "v_long";
static constexpr uint32_t VERSION_DEFAULT = 2;
static constexpr int32_t DEFAULT_FREQUENCY_SHIFT = 0;
static constexpr std::array<uint32_t, 2> V_TICK_DEFAULT = {1, 100};
static constexpr std::array<uint32_t, 2> V_CLICK_DEFAULT = {1, 100};
static constexpr std::array<uint32_t, 2> V_LONG_DEFAULT = {1, 100};
public:
HwCal() {}
static std::unique_ptr<HwCal> Create() {
auto hwcal = std::unique_ptr<HwCal>(new HwCal());
return hwcal;
}
bool getVersion(uint32_t *value) override {
if (getPersist(VERSION, value)) {
return true;
}
*value = VERSION_DEFAULT;
return true;
}
bool getLongFrequencyShift(int32_t *value) override {
return getProperty("long.frequency.shift", value, DEFAULT_FREQUENCY_SHIFT);
}
bool getF0(std::string *value) override { return getPersist(F0_CONFIG, value); }
bool getF0SyncOffset(uint32_t *value) override {
std::string cal_0{8, '0'};
std::string cal_1{8, '0'};
if (getPersist(F0_CONFIG, &cal_0) && getPersist(F0_CONFIG_DUAL, &cal_1)) {
float f0_0 = static_cast<float>(std::stoul(cal_0, nullptr, 16)) / (1 << 14);
float f0_1 = static_cast<float>(std::stoul(cal_1, nullptr, 16)) / (1 << 14);
float f0_offset = std::abs(f0_0 - f0_1)/2;
if (f0_0 < f0_1) {
*value = static_cast<uint32_t>(f0_offset * std::pow(2, 14));
} else if (f0_0 > f0_1) {
*value = static_cast<uint32_t>(std::pow(2, 24) - std::abs(f0_offset) * std::pow(2, 14));
} else {
*value = 0;
}
return true;
} else {
ALOGE("Vibrator: Unable to load F0_CONFIG or F0_CONFIG_DUAL config");
*value = 0;
return false;
}
}
bool getRedc(std::string *value) override { return getPersist(REDC_CONFIG, value); }
bool getQ(std::string *value) override { return getPersist(Q_CONFIG, value); }
bool getTickVolLevels(std::array<uint32_t, 2> *value) override {
if (getPersist(TICK_VOLTAGES_CONFIG, value)) {
return true;
}
*value = V_TICK_DEFAULT;
return true;
}
bool getClickVolLevels(std::array<uint32_t, 2> *value) override {
if (getPersist(CLICK_VOLTAGES_CONFIG, value)) {
return true;
}
*value = V_CLICK_DEFAULT;
return true;
}
bool getLongVolLevels(std::array<uint32_t, 2> *value) override {
if (getPersist(LONG_VOLTAGES_CONFIG, value)) {
return true;
}
*value = V_LONG_DEFAULT;
return true;
}
bool isChirpEnabled() override {
bool value;
getProperty("chirp.enabled", &value, false);
return value;
}
bool getSupportedPrimitives(uint32_t *value) override {
return getProperty("supported_primitives", value, (uint32_t)0);
}
bool isF0CompEnabled() override {
bool value;
getProperty("f0.comp.enabled", &value, true);
return value;
}
bool isRedcCompEnabled() override {
bool value;
getProperty("redc.comp.enabled", &value, true);
return value;
}
void debug(int fd) override { HwCalBase::debug(fd); }
};
} // namespace vibrator
} // namespace hardware
} // namespace android
} // namespace aidl