blob: 16a798961a08f067a70885fa614ea476ebe9406f [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/libs/utils/subprocess.h"
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/prctl.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <cerrno>
#include <cstring>
#include <map>
#include <memory>
#include <ostream>
#include <set>
#include <sstream>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include "common/libs/fs/shared_buf.h"
#include "common/libs/utils/files.h"
extern char** environ;
namespace cuttlefish {
namespace {
// If a redirected-to file descriptor was already closed, it's possible that
// some inherited file descriptor duped to this file descriptor and the redirect
// would override that. This function makes sure that doesn't happen.
bool validate_redirects(
const std::map<Subprocess::StdIOChannel, int>& redirects,
const std::map<SharedFD, int>& inherited_fds) {
// Add the redirected IO channels to a set as integers. This allows converting
// the enum values into integers instead of the other way around.
std::set<int> int_redirects;
for (const auto& entry : redirects) {
int_redirects.insert(static_cast<int>(entry.first));
}
for (const auto& entry : inherited_fds) {
auto dupped_fd = entry.second;
if (int_redirects.count(dupped_fd)) {
LOG(ERROR) << "Requested redirect of fd(" << dupped_fd
<< ") conflicts with inherited FD.";
return false;
}
}
return true;
}
void do_redirects(const std::map<Subprocess::StdIOChannel, int>& redirects) {
for (const auto& entry : redirects) {
auto std_channel = static_cast<int>(entry.first);
auto fd = entry.second;
TEMP_FAILURE_RETRY(dup2(fd, std_channel));
}
}
std::vector<const char*> ToCharPointers(const std::vector<std::string>& vect) {
std::vector<const char*> ret = {};
for (const auto& str : vect) {
ret.push_back(str.c_str());
}
ret.push_back(NULL);
return ret;
}
} // namespace
SubprocessOptions& SubprocessOptions::Verbose(bool verbose) & {
verbose_ = verbose;
return *this;
}
SubprocessOptions SubprocessOptions::Verbose(bool verbose) && {
verbose_ = verbose;
return *this;
}
SubprocessOptions& SubprocessOptions::ExitWithParent(bool v) & {
exit_with_parent_ = v;
return *this;
}
SubprocessOptions SubprocessOptions::ExitWithParent(bool v) && {
exit_with_parent_ = v;
return *this;
}
SubprocessOptions& SubprocessOptions::InGroup(bool in_group) & {
in_group_ = in_group;
return *this;
}
SubprocessOptions SubprocessOptions::InGroup(bool in_group) && {
in_group_ = in_group;
return *this;
}
Subprocess::Subprocess(Subprocess&& subprocess)
: pid_(subprocess.pid_),
started_(subprocess.started_),
stopper_(subprocess.stopper_) {
// Make sure the moved object no longer controls this subprocess
subprocess.pid_ = -1;
subprocess.started_ = false;
}
Subprocess& Subprocess::operator=(Subprocess&& other) {
pid_ = other.pid_;
started_ = other.started_;
stopper_ = other.stopper_;
other.pid_ = -1;
other.started_ = false;
return *this;
}
int Subprocess::Wait() {
if (pid_ < 0) {
LOG(ERROR)
<< "Attempt to wait on invalid pid(has it been waited on already?): "
<< pid_;
return -1;
}
int wstatus = 0;
auto pid = pid_; // Wait will set pid_ to -1 after waiting
auto wait_ret = waitpid(pid, &wstatus, 0);
if (wait_ret < 0) {
auto error = errno;
LOG(ERROR) << "Error on call to waitpid: " << strerror(error);
return wait_ret;
}
int retval = 0;
if (WIFEXITED(wstatus)) {
retval = WEXITSTATUS(wstatus);
if (retval) {
LOG(DEBUG) << "Subprocess " << pid
<< " exited with error code: " << retval;
}
} else if (WIFSIGNALED(wstatus)) {
LOG(ERROR) << "Subprocess " << pid
<< " was interrupted by a signal: " << WTERMSIG(wstatus);
retval = -1;
}
return retval;
}
int Subprocess::Wait(siginfo_t* infop, int options) {
if (pid_ < 0) {
LOG(ERROR)
<< "Attempt to wait on invalid pid(has it been waited on already?): "
<< pid_;
return -1;
}
*infop = {};
auto retval = waitid(P_PID, pid_, infop, options);
// We don't want to wait twice for the same process
bool exited = infop->si_code == CLD_EXITED || infop->si_code == CLD_DUMPED ||
infop->si_code == CLD_DUMPED;
bool reaped = !(options & WNOWAIT);
if (exited && reaped) {
pid_ = -1;
}
return retval;
}
StopperResult KillSubprocess(Subprocess* subprocess) {
auto pid = subprocess->pid();
if (pid > 0) {
auto pgid = getpgid(pid);
if (pgid < 0) {
auto error = errno;
LOG(WARNING) << "Error obtaining process group id of process with pid="
<< pid << ": " << strerror(error);
// Send the kill signal anyways, because pgid will be -1 it will be sent
// to the process and not a (non-existent) group
}
bool is_group_head = pid == pgid;
auto kill_ret = (is_group_head ? killpg : kill)(pid, SIGKILL);
if (kill_ret == 0) {
return StopperResult::kStopSuccess;
}
auto kill_cmd = is_group_head ? "killpg(" : "kill(";
PLOG(ERROR) << kill_cmd << pid << ", SIGKILL) failed: ";
return StopperResult::kStopFailure;
}
return StopperResult::kStopSuccess;
}
Command::Command(const std::string& executable, SubprocessStopper stopper)
: subprocess_stopper_(stopper) {
for (char** env = environ; *env; env++) {
env_.emplace_back(*env);
}
command_.push_back(executable);
}
Command::~Command() {
// Close all inherited file descriptors
for (const auto& entry : inherited_fds_) {
close(entry.second);
}
// Close all redirected file descriptors
for (const auto& entry : redirects_) {
close(entry.second);
}
}
void Command::BuildParameter(std::stringstream* stream, SharedFD shared_fd) {
int fd;
if (inherited_fds_.count(shared_fd)) {
fd = inherited_fds_[shared_fd];
} else {
fd = shared_fd->Fcntl(F_DUPFD_CLOEXEC, 3);
CHECK(fd >= 0) << "Could not acquire a new file descriptor: "
<< shared_fd->StrError();
inherited_fds_[shared_fd] = fd;
}
*stream << fd;
}
Command& Command::RedirectStdIO(Subprocess::StdIOChannel channel,
SharedFD shared_fd) & {
CHECK(shared_fd->IsOpen());
CHECK(redirects_.count(channel) == 0)
<< "Attempted multiple redirections of fd: " << static_cast<int>(channel);
auto dup_fd = shared_fd->Fcntl(F_DUPFD_CLOEXEC, 3);
CHECK(dup_fd >= 0) << "Could not acquire a new file descriptor: "
<< shared_fd->StrError();
redirects_[channel] = dup_fd;
return *this;
}
Command Command::RedirectStdIO(Subprocess::StdIOChannel channel,
SharedFD shared_fd) && {
RedirectStdIO(channel, shared_fd);
return std::move(*this);
}
Command& Command::RedirectStdIO(Subprocess::StdIOChannel subprocess_channel,
Subprocess::StdIOChannel parent_channel) & {
return RedirectStdIO(subprocess_channel,
SharedFD::Dup(static_cast<int>(parent_channel)));
}
Command Command::RedirectStdIO(Subprocess::StdIOChannel subprocess_channel,
Subprocess::StdIOChannel parent_channel) && {
RedirectStdIO(subprocess_channel, parent_channel);
return std::move(*this);
}
Command& Command::SetWorkingDirectory(std::string path) & {
auto fd = SharedFD::Open(path, O_RDONLY | O_PATH | O_DIRECTORY);
CHECK(fd->IsOpen()) << "Could not open \"" << path
<< "\" dir fd: " << fd->StrError();
return SetWorkingDirectory(fd);
}
Command Command::SetWorkingDirectory(std::string path) && {
auto fd = SharedFD::Open(path, O_RDONLY | O_PATH | O_DIRECTORY);
CHECK(fd->IsOpen()) << "Could not open \"" << path
<< "\" dir fd: " << fd->StrError();
return std::move(SetWorkingDirectory(fd));
}
Command& Command::SetWorkingDirectory(SharedFD dirfd) & {
CHECK(dirfd->IsOpen()) << "Dir fd invalid: " << dirfd->StrError();
working_directory_ = dirfd;
return *this;
}
Command Command::SetWorkingDirectory(SharedFD dirfd) && {
CHECK(dirfd->IsOpen()) << "Dir fd invalid: " << dirfd->StrError();
working_directory_ = dirfd;
return std::move(*this);
}
Subprocess Command::Start(SubprocessOptions options) const {
auto cmd = ToCharPointers(command_);
if (!validate_redirects(redirects_, inherited_fds_)) {
return Subprocess(-1, {});
}
pid_t pid = fork();
if (!pid) {
if (options.ExitWithParent()) {
prctl(PR_SET_PDEATHSIG, SIGHUP); // Die when parent dies
}
do_redirects(redirects_);
if (options.InGroup()) {
// This call should never fail (see SETPGID(2))
if (setpgid(0, 0) != 0) {
auto error = errno;
LOG(ERROR) << "setpgid failed (" << strerror(error) << ")";
}
}
for (const auto& entry : inherited_fds_) {
if (fcntl(entry.second, F_SETFD, 0)) {
int error_num = errno;
LOG(ERROR) << "fcntl failed: " << strerror(error_num);
}
}
if (working_directory_->IsOpen()) {
if (SharedFD::Fchdir(working_directory_) != 0) {
LOG(ERROR) << "Fchdir failed: " << working_directory_->StrError();
}
}
int rval;
auto envp = ToCharPointers(env_);
rval = execvpe(cmd[0], const_cast<char* const*>(cmd.data()),
const_cast<char* const*>(envp.data()));
// No need for an if: if exec worked it wouldn't have returned
LOG(ERROR) << "exec of " << cmd[0] << " failed (" << strerror(errno)
<< ")";
exit(rval);
}
if (pid == -1) {
LOG(ERROR) << "fork failed (" << strerror(errno) << ")";
}
if (options.Verbose()) { // "more verbose", and LOG(DEBUG) > LOG(VERBOSE)
LOG(DEBUG) << "Started (pid: " << pid << "): " << cmd[0];
for (int i = 1; cmd[i]; i++) {
LOG(DEBUG) << cmd[i];
}
} else {
LOG(VERBOSE) << "Started (pid: " << pid << "): " << cmd[0];
for (int i = 1; cmd[i]; i++) {
LOG(VERBOSE) << cmd[i];
}
}
return Subprocess(pid, subprocess_stopper_);
}
std::string Command::AsBashScript(
const std::string& redirected_stdio_path) const {
CHECK(inherited_fds_.empty())
<< "Bash wrapper will not have inheritied file descriptors.";
CHECK(redirects_.empty()) << "Bash wrapper will not have redirected stdio.";
std::string contents =
"#!/bin/bash\n\n" + android::base::Join(command_, " \\\n");
if (!redirected_stdio_path.empty()) {
contents += " &> " + AbsolutePath(redirected_stdio_path);
}
return contents;
}
// A class that waits for threads to exit in its destructor.
class ThreadJoiner {
std::vector<std::thread*> threads_;
public:
ThreadJoiner(const std::vector<std::thread*> threads) : threads_(threads) {}
~ThreadJoiner() {
for (auto& thread : threads_) {
if (thread->joinable()) {
thread->join();
}
}
}
};
int RunWithManagedStdio(Command&& cmd_tmp, const std::string* stdin_str,
std::string* stdout_str, std::string* stderr_str,
SubprocessOptions options) {
/*
* The order of these declarations is necessary for safety. If the function
* returns at any point, the Command will be destroyed first, closing all
* of its references to SharedFDs. This will cause the thread internals to fail
* their reads or writes. The ThreadJoiner then waits for the threads to
* complete, as running the destructor of an active std::thread crashes the
* program.
*
* C++ scoping rules dictate that objects are descoped in reverse order to
* construction, so this behavior is predictable.
*/
std::thread stdin_thread, stdout_thread, stderr_thread;
ThreadJoiner thread_joiner({&stdin_thread, &stdout_thread, &stderr_thread});
Command cmd = std::move(cmd_tmp);
bool io_error = false;
if (stdin_str != nullptr) {
SharedFD pipe_read, pipe_write;
if (!SharedFD::Pipe(&pipe_read, &pipe_write)) {
LOG(ERROR) << "Could not create a pipe to write the stdin of \""
<< cmd.GetShortName() << "\"";
return -1;
}
cmd.RedirectStdIO(Subprocess::StdIOChannel::kStdIn, pipe_read);
stdin_thread = std::thread([pipe_write, stdin_str, &io_error]() {
int written = WriteAll(pipe_write, *stdin_str);
if (written < 0) {
io_error = true;
LOG(ERROR) << "Error in writing stdin to process";
}
});
}
if (stdout_str != nullptr) {
SharedFD pipe_read, pipe_write;
if (!SharedFD::Pipe(&pipe_read, &pipe_write)) {
LOG(ERROR) << "Could not create a pipe to read the stdout of \""
<< cmd.GetShortName() << "\"";
return -1;
}
cmd.RedirectStdIO(Subprocess::StdIOChannel::kStdOut, pipe_write);
stdout_thread = std::thread([pipe_read, stdout_str, &io_error]() {
int read = ReadAll(pipe_read, stdout_str);
if (read < 0) {
io_error = true;
LOG(ERROR) << "Error in reading stdout from process";
}
});
}
if (stderr_str != nullptr) {
SharedFD pipe_read, pipe_write;
if (!SharedFD::Pipe(&pipe_read, &pipe_write)) {
LOG(ERROR) << "Could not create a pipe to read the stderr of \""
<< cmd.GetShortName() << "\"";
return -1;
}
cmd.RedirectStdIO(Subprocess::StdIOChannel::kStdErr, pipe_write);
stderr_thread = std::thread([pipe_read, stderr_str, &io_error]() {
int read = ReadAll(pipe_read, stderr_str);
if (read < 0) {
io_error = true;
LOG(ERROR) << "Error in reading stderr from process";
}
});
}
auto subprocess = cmd.Start(options);
if (!subprocess.Started()) {
return -1;
}
auto cmd_short_name = cmd.GetShortName();
{
// Force the destructor to run by moving it into a smaller scope.
// This is necessary to close the write end of the pipe.
Command forceDelete = std::move(cmd);
}
int code = subprocess.Wait();
{
auto join_threads = std::move(thread_joiner);
}
if (io_error) {
LOG(ERROR) << "IO error communicating with " << cmd_short_name;
return -1;
}
return code;
}
int execute(const std::vector<std::string>& command,
const std::vector<std::string>& env) {
Command cmd(command[0]);
for (size_t i = 1; i < command.size(); ++i) {
cmd.AddParameter(command[i]);
}
cmd.SetEnvironment(env);
auto subprocess = cmd.Start();
if (!subprocess.Started()) {
return -1;
}
return subprocess.Wait();
}
int execute(const std::vector<std::string>& command) {
Command cmd(command[0]);
for (size_t i = 1; i < command.size(); ++i) {
cmd.AddParameter(command[i]);
}
auto subprocess = cmd.Start();
if (!subprocess.Started()) {
return -1;
}
return subprocess.Wait();
}
} // namespace cuttlefish