blob: 9d76759a0aca16d50a85fdfa48c788b9782b96f0 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include <eventnums.h>
#include <gpio.h>
#include <heap.h>
#include <hostIntf.h>
#include <isr.h>
#include <nanohubPacket.h>
#include <sensors.h>
#include <seos.h>
#include <slab.h>
#include <timer.h>
#include <plat/gpio.h>
#include <plat/exti.h>
#include <plat/syscfg.h>
#include <variant/variant.h>
#define VSYNC_APP_ID APP_ID_MAKE(NANOHUB_VENDOR_GOOGLE, 7)
#define VSYNC_APP_VERSION 2
// This defines how many vsync events we could handle being backed up in the
// queue. Use this to size our slab
#define MAX_VSYNC_EVENTS 4
#define MAX_VSYNC_INT_LATENCY 1000 /* in ns */
#ifndef VSYNC_PIN
#error "VSYNC_PIN is not defined; please define in variant.h"
#endif
#ifndef VSYNC_IRQ
#error "VSYNC_IRQ is not defined; please define in variant.h"
#endif
#define VERBOSE_PRINT(fmt, ...) do { \
osLog(LOG_VERBOSE, "%s " fmt, "[VSYNC]", ##__VA_ARGS__); \
} while (0);
#define INFO_PRINT(fmt, ...) do { \
osLog(LOG_INFO, "%s " fmt, "[VSYNC]", ##__VA_ARGS__); \
} while (0);
#define ERROR_PRINT(fmt, ...) INFO_PRINT("%s" fmt, "ERROR: ", ##__VA_ARGS__); \
#define DEBUG_PRINT(fmt, ...) do { \
if (enable_debug) { \
INFO_PRINT(fmt, ##__VA_ARGS__); \
} \
} while (0);
static const bool __attribute__((unused)) enable_debug = 0;
static struct SensorTask
{
struct Gpio *pin;
struct ChainedIsr isr;
struct SlabAllocator *evtSlab;
uint32_t id;
uint32_t sensorHandle;
bool on;
} mTask;
static bool vsyncAllocateEvt(struct SingleAxisDataEvent **evPtr, uint64_t time)
{
struct SingleAxisDataEvent *ev;
*evPtr = slabAllocatorAlloc(mTask.evtSlab);
ev = *evPtr;
if (!ev) {
ERROR_PRINT("slabAllocatorAlloc() failed\n");
return false;
}
memset(&ev->samples[0].firstSample, 0x00, sizeof(struct SensorFirstSample));
ev->referenceTime = time;
ev->samples[0].firstSample.numSamples = 1;
ev->samples[0].idata = 1;
return true;
}
static void vsyncFreeEvt(void *ptr)
{
slabAllocatorFree(mTask.evtSlab, ptr);
}
static bool vsyncIsr(struct ChainedIsr *localIsr)
{
struct SensorTask *data = container_of(localIsr, struct SensorTask, isr);
struct SingleAxisDataEvent *ev;
if (!extiIsPendingGpio(data->pin)) {
return false;
}
if (data->on) {
if (vsyncAllocateEvt(&ev, sensorGetTime())) {
if (!osEnqueueEvtOrFree(sensorGetMyEventType(SENS_TYPE_VSYNC), ev, vsyncFreeEvt)) {
ERROR_PRINT("osEnqueueEvtOrFree() failed\n");
}
}
}
extiClearPendingGpio(data->pin);
return true;
}
static bool enableInterrupt(struct Gpio *pin, struct ChainedIsr *isr)
{
gpioConfigInput(pin, GPIO_SPEED_LOW, GPIO_PULL_NONE);
syscfgSetExtiPort(pin);
extiEnableIntGpio(pin, EXTI_TRIGGER_FALLING);
extiChainIsr(VSYNC_IRQ, isr);
return true;
}
static bool disableInterrupt(struct Gpio *pin, struct ChainedIsr *isr)
{
extiUnchainIsr(VSYNC_IRQ, isr);
extiDisableIntGpio(pin);
return true;
}
static const struct SensorInfo mSensorInfo =
{
.sensorName = "Camera Vsync",
.sensorType = SENS_TYPE_VSYNC,
.numAxis = NUM_AXIS_ONE,
.interrupt = NANOHUB_INT_NONWAKEUP,
.minSamples = 20,
};
static bool vsyncPower(bool on, void *cookie)
{
VERBOSE_PRINT("power %d\n", on);
if (on) {
extiClearPendingGpio(mTask.pin);
enableInterrupt(mTask.pin, &mTask.isr);
} else {
disableInterrupt(mTask.pin, &mTask.isr);
extiClearPendingGpio(mTask.pin);
}
mTask.on = on;
sensorSignalInternalEvt(mTask.sensorHandle, SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
return true;
}
static bool vsyncFirmwareUpload(void *cookie)
{
return sensorSignalInternalEvt(mTask.sensorHandle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
}
static bool vsyncSetRate(uint32_t rate, uint64_t latency, void *cookie)
{
VERBOSE_PRINT("setRate\n");
return sensorSignalInternalEvt(mTask.sensorHandle, SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
}
static bool vsyncFlush(void *cookie)
{
VERBOSE_PRINT("flush\n");
return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_VSYNC), SENSOR_DATA_EVENT_FLUSH, NULL);
}
static const struct SensorOps mSensorOps =
{
.sensorPower = vsyncPower,
.sensorFirmwareUpload = vsyncFirmwareUpload,
.sensorSetRate = vsyncSetRate,
.sensorFlush = vsyncFlush,
};
static void handleEvent(uint32_t evtType, const void* evtData)
{
}
static bool startTask(uint32_t taskId)
{
mTask.id = taskId;
mTask.sensorHandle = sensorRegister(&mSensorInfo, &mSensorOps, NULL, true);
mTask.pin = gpioRequest(VSYNC_PIN);
mTask.isr.func = vsyncIsr;
mTask.isr.maxLatencyNs = MAX_VSYNC_INT_LATENCY;
mTask.evtSlab = slabAllocatorNew(sizeof(struct SingleAxisDataEvent) + sizeof(struct SingleAxisDataPoint), 4, MAX_VSYNC_EVENTS);
if (!mTask.evtSlab) {
ERROR_PRINT("slabAllocatorNew() failed\n");
return false;
}
return true;
}
static void endTask(void)
{
disableInterrupt(mTask.pin, &mTask.isr);
extiUnchainIsr(VSYNC_IRQ, &mTask.isr);
extiClearPendingGpio(mTask.pin);
gpioRelease(mTask.pin);
sensorUnregister(mTask.sensorHandle);
}
INTERNAL_APP_INIT(VSYNC_APP_ID, VSYNC_APP_VERSION, startTask, endTask, handleEvent);