blob: f25b13c3ae01ec7ccff2b03cf6ba21df41b7b056 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <atomic.h>
#include <gpio.h>
#include <nanohubPacket.h>
#include <plat/exti.h>
#include <plat/gpio.h>
#include <platform.h>
#include <plat/syscfg.h>
#include <sensors.h>
#include <seos.h>
#include <i2c.h>
#include <timer.h>
#include <stdlib.h>
#include <string.h>
#include <variant/variant.h>
#include <variant/sensType.h>
#define HTS221_APP_ID APP_ID_MAKE(NANOHUB_VENDOR_STMICRO, 2)
/* Sensor defs */
#define HTS221_WAI_REG_ADDR 0x0F
#define HTS221_WAI_REG_VAL 0xBC
#define HTS221_AV_CONF 0x10
#define HTS221_CTRL_REG1 0x20
#define HTS221_POWER_ON 0x80
#define HTS221_POWER_OFF 0x00
#define HTS221_BDU_ON 0x04
#define HTS221_ODR_ONE_SHOT 0x00
#define HTS221_ODR_1_HZ 0x01
#define HTS221_ODR_7_HZ 0x02
#define HTS221_ODR_12_5_HZ 0x03
#define HTS221_CTRL_REG2 0x21
#define HTS221_REBOOT 0x80
#define HTS221_CTRL_REG3 0x22
#define HTS221_STATUS_REG 0x27
#define HTS221_HUMIDITY_OUTL_REG_ADDR 0x28
#define HTS221_TEMP_OUTL_REG_ADDR 0x2A
#define HTS221_CALIB_DATA 0x30
#define HTS221_CALIB_DATA_LEN 16
struct hts221_calib_data {
uint8_t h0_x2;
uint8_t h1_x2;
uint8_t unused[4];
uint8_t h0_t0_l;
uint8_t h0_t0_h;
uint8_t unused_2[2];
uint8_t h1_t0_l;
uint8_t h1_t0_h;
uint8_t unused_3[4];
};
#define INFO_PRINT(fmt, ...) \
do { \
osLog(LOG_INFO, "%s " fmt, "[HTS221]", ##__VA_ARGS__); \
} while (0);
#define DEBUG_PRINT(fmt, ...) \
do { \
if (HTS221_DBG_ENABLED) { \
osLog(LOG_DEBUG, "%s " fmt, "[HTS221]", ##__VA_ARGS__); \
} \
} while (0);
#define ERROR_PRINT(fmt, ...) \
do { \
osLog(LOG_ERROR, "%s " fmt, "[HTS221]", ##__VA_ARGS__); \
} while (0);
/* DO NOT MODIFY, just to avoid compiler error if not defined using FLAGS */
#ifndef HTS221_DBG_ENABLED
#define HTS221_DBG_ENABLED 0
#endif /* HTS221_DBG_ENABLED */
enum hts221SensorEvents
{
EVT_COMM_DONE = EVT_APP_START + 1,
EVT_INT1_RAISED,
EVT_SENSOR_HUMIDITY_TIMER,
};
enum hts221SensorState {
SENSOR_BOOT,
SENSOR_VERIFY_ID,
SENSOR_INIT,
SENSOR_HUMIDITY_POWER_UP,
SENSOR_HUMIDITY_POWER_DOWN,
SENSOR_READ_SAMPLES,
};
#ifndef HTS221_I2C_BUS_ID
#error "HTS221_I2C_BUS_ID is not defined; please define in variant.h"
#endif
#ifndef HTS221_I2C_SPEED
#error "HTS221_I2C_SPEED is not defined; please define in variant.h"
#endif
#ifndef HTS221_I2C_ADDR
#error "HTS221_I2C_ADDR is not defined; please define in variant.h"
#endif
enum hts221SensorIndex {
HUMIDITY = 0,
NUM_OF_SENSOR,
};
struct hts221Sensor {
uint32_t handle;
};
#define HTS221_MAX_PENDING_I2C_REQUESTS 4
#define HTS221_MAX_I2C_TRANSFER_SIZE HTS221_CALIB_DATA_LEN
struct I2cTransfer
{
size_t tx;
size_t rx;
int err;
uint8_t txrxBuf[HTS221_MAX_I2C_TRANSFER_SIZE];
uint8_t state;
bool inUse;
};
/* Task structure */
struct hts221Task {
uint32_t tid;
/* timer */
uint32_t humidityTimerHandle;
/* sensor flags */
bool humidityOn;
bool humidityReading;
bool humidityWantRead;
/* calib data */
int8_t y0_H;
int8_t y1_H;
int16_t x0_H;
int16_t x1_H;
struct I2cTransfer transfers[HTS221_MAX_PENDING_I2C_REQUESTS];
/* Communication functions */
bool (*comm_tx)(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state);
bool (*comm_rx)(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state);
/* sensors */
struct hts221Sensor sensors[NUM_OF_SENSOR];
};
static struct hts221Task mTask;
static inline float hts221_humidity_percent(int16_t hum)
{
float percentage = (float) ((mTask.y1_H - mTask.y0_H) * hum + \
((mTask.x1_H * mTask.y0_H) - (mTask.x0_H * mTask.y1_H))) / \
(mTask.x1_H - mTask.x0_H);
return((percentage > 100) ? 100 : percentage);
}
/*
* Allocate a buffer and mark it as in use with the given state, or return NULL
* if no buffers available. Must *not* be called from interrupt context.
*/
static struct I2cTransfer *allocXfer(uint8_t state)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(mTask.transfers); i++) {
if (!mTask.transfers[i].inUse) {
mTask.transfers[i].inUse = true;
mTask.transfers[i].state = state;
return &mTask.transfers[i];
}
}
ERROR_PRINT("Ran out of i2c buffers!");
return NULL;
}
static inline void releaseXfer(struct I2cTransfer *xfer)
{
xfer->inUse = false;
}
static void i2cCallback(void *cookie, size_t tx, size_t rx, int err)
{
struct I2cTransfer *xfer = cookie;
xfer->tx = tx;
xfer->rx = rx;
xfer->err = err;
osEnqueuePrivateEvt(EVT_COMM_DONE, cookie, NULL, mTask.tid);
if (err != 0)
ERROR_PRINT("i2c error (tx: %d, rx: %d, err: %d)\n", tx, rx, err);
}
static bool i2c_read(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state)
{
struct I2cTransfer *xfer = allocXfer(state);
int ret = -1;
if (xfer != NULL) {
if (len > HTS221_MAX_I2C_TRANSFER_SIZE) {
DEBUG_PRINT("i2c_read: len too big (len: %d)\n", len);
releaseXfer(xfer);
return false;
}
xfer->txrxBuf[0] = 0x80 | addr;
if ((ret = i2cMasterTxRx(HTS221_I2C_BUS_ID, HTS221_I2C_ADDR,
xfer->txrxBuf, 1, xfer->txrxBuf, len, i2cCallback, xfer)) < 0) {
DEBUG_PRINT("i2c_read: i2cMasterTxRx operation failed (ret: %d)\n", ret);
releaseXfer(xfer);
return false;
}
}
return (ret == -1) ? false : true;
}
static bool i2c_write(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state)
{
struct I2cTransfer *xfer = allocXfer(state);
int ret = -1;
if (xfer != NULL) {
xfer->txrxBuf[0] = addr;
xfer->txrxBuf[1] = data;
if ((ret = i2cMasterTx(HTS221_I2C_BUS_ID, HTS221_I2C_ADDR, xfer->txrxBuf, 2, i2cCallback, xfer)) < 0) {
releaseXfer(xfer);
DEBUG_PRINT("i2c_write: i2cMasterTx operation failed (ret: %d)\n", ret);
return false;
}
}
return (ret == -1) ? false : true;
}
/* Sensor Info */
static void sensorHumidityTimerCallback(uint32_t timerId, void *data)
{
osEnqueuePrivateEvt(EVT_SENSOR_HUMIDITY_TIMER, data, NULL, mTask.tid);
}
#define DEC_INFO(name, type, axis, inter, samples, rates) \
.sensorName = name, \
.sensorType = type, \
.numAxis = axis, \
.interrupt = inter, \
.minSamples = samples, \
.supportedRates = rates
static uint32_t hts221Rates[] = {
SENSOR_HZ(1.0f),
SENSOR_HZ(7.0f),
SENSOR_HZ(12.5f),
0
};
/* should match "supported rates in length" and be the timer length for that rate in nanosecs */
static const uint64_t hts221RatesRateVals[] =
{
1 * 1000000000ULL, /* 1 Hz */
1000000000ULL / 7, /* 7 Hz */
2000000000ULL / 25, /* 12.5 Hz */
};
static const struct SensorInfo hts221SensorInfo[NUM_OF_SENSOR] =
{
{ DEC_INFO("Humidity", SENS_TYPE_HUMIDITY, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP,
300, hts221Rates) },
};
/* Sensor Operations */
static bool humidityPower(bool on, void *cookie)
{
bool oldMode = mTask.humidityOn;
bool newMode = on;
uint32_t state = on ? SENSOR_HUMIDITY_POWER_UP : SENSOR_HUMIDITY_POWER_DOWN;
bool ret = true;
INFO_PRINT("humidityPower %s\n", on ? "enable" : "disable");
if (!on && mTask.humidityTimerHandle) {
timTimerCancel(mTask.humidityTimerHandle);
mTask.humidityTimerHandle = 0;
mTask.humidityReading = false;
}
if (oldMode != newMode) {
if (on)
ret = mTask.comm_tx(HTS221_CTRL_REG1, HTS221_POWER_ON | HTS221_ODR_12_5_HZ, 0, state);
else
ret = mTask.comm_tx(HTS221_CTRL_REG1, HTS221_POWER_OFF, 0, state);
} else
sensorSignalInternalEvt(mTask.sensors[HUMIDITY].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
if (!ret) {
DEBUG_PRINT("humidityPower comm_tx failed\n");
return(false);
}
mTask.humidityReading = false;
mTask.humidityOn = on;
return true;
}
static bool humidityFwUpload(void *cookie)
{
return sensorSignalInternalEvt(mTask.sensors[HUMIDITY].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
}
static bool humiditySetRate(uint32_t rate, uint64_t latency, void *cookie)
{
INFO_PRINT("humiditySetRate %lu Hz - %llu ns\n", rate, latency);
if (mTask.humidityTimerHandle)
timTimerCancel(mTask.humidityTimerHandle);
mTask.humidityTimerHandle = timTimerSet(sensorTimerLookupCommon(hts221Rates,
hts221RatesRateVals, rate), 0, 50, sensorHumidityTimerCallback, NULL, false);
return sensorSignalInternalEvt(mTask.sensors[HUMIDITY].handle,
SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
}
static bool humidityFlush(void *cookie)
{
return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_HUMIDITY), SENSOR_DATA_EVENT_FLUSH, NULL);
}
#define DEC_OPS(power, firmware, rate, flush, cal, cfg) \
.sensorPower = power, \
.sensorFirmwareUpload = firmware, \
.sensorSetRate = rate, \
.sensorFlush = flush, \
.sensorCalibrate = cal, \
.sensorCfgData = cfg
static const struct SensorOps hts221SensorOps[NUM_OF_SENSOR] =
{
{ DEC_OPS(humidityPower, humidityFwUpload, humiditySetRate, humidityFlush, NULL, NULL) },
};
static void hts221_save_calib_data(uint8_t *buf)
{
struct hts221_calib_data *calib = (struct hts221_calib_data *) buf;
mTask.y0_H = (int8_t) (calib->h0_x2 / 2);
mTask.y1_H = (int8_t) (calib->h1_x2 / 2);
mTask.x0_H = (int16_t) (calib->h0_t0_h << 8) |
calib->h0_t0_l;
mTask.x1_H = (int16_t) (calib->h1_t0_h << 8) |
calib->h1_t0_l;
DEBUG_PRINT("y0_H: %d - y1_H: %d\n", mTask.y0_H, mTask.y1_H);
DEBUG_PRINT("x0_H: %d - x1_H: %d\n", mTask.x0_H, mTask.x1_H);
}
static uint8_t *humidity_samples;
static int handleCommDoneEvt(const void* evtData)
{
uint8_t i;
int16_t humidity_val;
union EmbeddedDataPoint sample;
struct I2cTransfer *xfer = (struct I2cTransfer *)evtData;
switch (xfer->state) {
case SENSOR_BOOT:
hts221_save_calib_data(xfer->txrxBuf);
if (!mTask.comm_rx(HTS221_WAI_REG_ADDR, 1, 1, SENSOR_VERIFY_ID)) {
DEBUG_PRINT("Not able to read WAI\n");
return -1;
}
break;
case SENSOR_VERIFY_ID:
/* Check the sensor ID */
if (xfer->err != 0 || xfer->txrxBuf[0] != HTS221_WAI_REG_VAL) {
DEBUG_PRINT("WAI returned is: %02x\n", xfer->txrxBuf[0]);
break;
}
INFO_PRINT( "Device ID is correct! (%02x)\n", xfer->txrxBuf[0]);
for (i = 0; i < NUM_OF_SENSOR; i++)
sensorRegisterInitComplete(mTask.sensors[i].handle);
break;
case SENSOR_INIT:
for (i = 0; i < NUM_OF_SENSOR; i++)
sensorRegisterInitComplete(mTask.sensors[i].handle);
break;
case SENSOR_HUMIDITY_POWER_UP:
sensorSignalInternalEvt(mTask.sensors[HUMIDITY].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
break;
case SENSOR_HUMIDITY_POWER_DOWN:
sensorSignalInternalEvt(mTask.sensors[HUMIDITY].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
break;
case SENSOR_READ_SAMPLES:
if (mTask.humidityOn && mTask.humidityWantRead) {
mTask.humidityWantRead = false;
humidity_samples = xfer->txrxBuf;
humidity_val = (int16_t)(((humidity_samples[1] << 8) & 0xff00) | humidity_samples[0]);
DEBUG_PRINT("humidity raw data %d\n", humidity_val);
mTask.humidityReading = false;
sample.fdata = hts221_humidity_percent(humidity_val);
osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_HUMIDITY), sample.vptr, NULL);
}
break;
default:
break;
}
releaseXfer(xfer);
return (0);
}
static void handleEvent(uint32_t evtType, const void* evtData)
{
switch (evtType) {
case EVT_APP_START:
INFO_PRINT( "EVT_APP_START\n");
osEventUnsubscribe(mTask.tid, EVT_APP_START);
mTask.comm_rx(HTS221_CALIB_DATA, sizeof(struct hts221_calib_data), 0, SENSOR_BOOT);
break;
case EVT_COMM_DONE:
handleCommDoneEvt(evtData);
break;
case EVT_SENSOR_HUMIDITY_TIMER:
mTask.humidityWantRead = true;
/* Start sampling for a value */
if (!mTask.humidityReading) {
mTask.humidityReading = true;
mTask.comm_rx(HTS221_HUMIDITY_OUTL_REG_ADDR, 2, 1, SENSOR_READ_SAMPLES);
}
break;
default:
break;
}
}
static bool startTask(uint32_t task_id)
{
uint8_t i;
mTask.tid = task_id;
INFO_PRINT( "started\n");
mTask.humidityOn = false;
mTask.humidityReading = false;
/* Init the communication part */
i2cMasterRequest(HTS221_I2C_BUS_ID, HTS221_I2C_SPEED);
mTask.comm_tx = i2c_write;
mTask.comm_rx = i2c_read;
for (i = 0; i < NUM_OF_SENSOR; i++) {
mTask.sensors[i].handle =
sensorRegister(&hts221SensorInfo[i], &hts221SensorOps[i], NULL, false);
}
osEventSubscribe(mTask.tid, EVT_APP_START);
return true;
}
static void endTask(void)
{
INFO_PRINT( "ended\n");
}
INTERNAL_APP_INIT(HTS221_APP_ID, 0, startTask, endTask, handleEvent);