nanohub:drivers: Add STMicroelectronics LPS22HB sensor driver

This commit adds support for STMicro LPS22HB Pressure/Temperature
sensor, largely taken from bosch bmp280 driver.
The driver can be configured to use either I2C (default) or
SPI bus.

Test: tested by partner
Change-Id: Iaf94b808fb3b6d984916c2a999a1fe24ebcd5494
Signed-off-by: Armando Visconti <armando.visconti@st.com>
diff --git a/firmware/os/drivers/st_lps22hb/lps22hb.c b/firmware/os/drivers/st_lps22hb/lps22hb.c
new file mode 100644
index 0000000..5b948dd
--- /dev/null
+++ b/firmware/os/drivers/st_lps22hb/lps22hb.c
@@ -0,0 +1,572 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <atomic.h>
+#include <gpio.h>
+#include <nanohubPacket.h>
+#include <plat/exti.h>
+#include <plat/gpio.h>
+#include <platform.h>
+#include <plat/syscfg.h>
+#include <sensors.h>
+#include <seos.h>
+#include <spi.h>
+#include <i2c.h>
+#include <timer.h>
+#include <stdlib.h>
+#include <string.h>
+
+#define LPS22HB_APP_ID              APP_ID_MAKE(NANOHUB_VENDOR_STMICRO, 1)
+#define LPS22HB_SPI_BUS_ID      1
+#define LPS22HB_SPI_SPEED_HZ    8000000
+
+/* Sensor defs */
+#define LPS22HB_INT_CFG_REG_ADDR    0x0B
+#define LPS22HB_LIR_BIT             0x04
+
+#define LPS22HB_WAI_REG_ADDR    0x0F
+#define LPS22HB_WAI_REG_VAL     0xB1
+
+#define LPS22HB_SOFT_RESET_REG_ADDR 0x11
+#define LPS22HB_SOFT_RESET_BIT      0x04
+
+#define LPS22HB_ODR_REG_ADDR    0x10
+#define LPS22HB_ODR_ONE_SHOT    0x00
+#define LPS22HB_ODR_1_HZ        0x10
+#define LPS22HB_ODR_10_HZ       0x20
+#define LPS22HB_ODR_25_HZ       0x30
+#define LPS22HB_ODR_50_HZ       0x40
+#define LPS22HB_ODR_75_HZ       0x50
+
+#define LPS22HB_PRESS_OUTXL_REG_ADDR    0x28
+#define LPS22HB_TEMP_OUTL_REG_ADDR      0x2B
+
+#define LPS22HB_INT1_REG_ADDR       0x23
+#define LPS22HB_INT2_REG_ADDR       0x24
+
+#define LPS22HB_INT1_PIN        GPIO_PA(4)
+#define LPS22HB_INT2_PIN        GPIO_PB(0)
+
+#define LPS22HB_HECTO_PASCAL(baro_val)  (baro_val/4096)
+#define LPS22HB_CENTIGRADES(temp_val)   (temp_val/100)
+
+enum lps22hbSensorEvents
+{
+    EVT_COMM_DONE = EVT_APP_START + 1,
+    EVT_INT1_RAISED,
+    EVT_SENSOR_BARO_TIMER,
+    EVT_SENSOR_TEMP_TIMER,
+    EVT_TEST,
+};
+
+enum lps22hbSensorState {
+    SENSOR_BOOT,
+    SENSOR_VERIFY_ID,
+    SENSOR_INIT,
+    SENSOR_BARO_POWER_UP,
+    SENSOR_BARO_POWER_DOWN,
+    SENSOR_TEMP_POWER_UP,
+    SENSOR_TEMP_POWER_DOWN,
+    SENSOR_READ_SAMPLES,
+};
+
+#define LPS22HB_USE_I2C     1
+
+#if defined(LPS22HB_USE_I2C)
+#define I2C_BUS_ID              0
+#define I2C_SPEED               400000
+#define LPS22HB_I2C_ADDR        0x5D
+#else
+#define SPI_READ        0x80
+#define SPI_WRITE       0x00
+#define SPI_MAX_PCK_NUM     1
+#endif
+
+enum lps22hbSensorIndex {
+    BARO = 0,
+    TEMP,
+    NUM_OF_SENSOR,
+};
+
+//#define NUM_OF_SENSOR 1
+
+struct lps22hbSensor {
+    uint32_t handle;
+};
+
+/* Task structure */
+struct lps22hbTask {
+    uint32_t tid;
+
+    /* timer */
+    uint32_t baroTimerHandle;
+    uint32_t tempTimerHandle;
+
+    /* sensor flags */
+    bool baroOn;
+    bool baroReading;
+    bool baroWantRead;
+    bool tempOn;
+    bool tempReading;
+    bool tempWantRead;
+
+    //int sensLastRead;
+
+#if defined(LPS22HB_USE_I2C)
+#else
+    /* SPI */
+    spi_cs_t            cs;
+    struct SpiMode      mode;
+    struct SpiDevice    *spiDev;
+    struct SpiPacket    spi_pck[SPI_MAX_PCK_NUM];
+#endif
+    unsigned char       sens_buf[6];
+
+    /* Communication functions */
+    void (*comm_tx)(uint8_t addr, uint8_t data, uint32_t delay, void *cookie);
+    void (*comm_rx)(uint8_t addr, uint16_t len, uint32_t delay, void *cookie);
+
+    /* sensors */
+    struct lps22hbSensor sensors[NUM_OF_SENSOR];
+};
+
+static struct lps22hbTask mTask;
+
+#if defined(LPS22HB_USE_I2C)
+static void i2cCallback(void *cookie, size_t tx, size_t rx, int err)
+#else
+static void spiCallback(void *cookie, int err)
+#endif
+{
+    osEnqueuePrivateEvt(EVT_COMM_DONE, cookie, NULL, mTask.tid);
+}
+
+#if defined(LPS22HB_USE_I2C)
+static void i2c_read(uint8_t addr, uint16_t len, uint32_t delay, void *cookie)
+{
+    mTask.sens_buf[0] = 0x80 | addr;
+    i2cMasterTxRx(I2C_BUS_ID, LPS22HB_I2C_ADDR, &mTask.sens_buf[0], 1,
+                        &mTask.sens_buf[1], len, &i2cCallback, cookie);
+}
+
+static void i2c_write(uint8_t addr, uint8_t data, uint32_t delay, void *cookie)
+{
+    mTask.sens_buf[0] = addr;
+    mTask.sens_buf[1] = data;
+    i2cMasterTx(I2C_BUS_ID, LPS22HB_I2C_ADDR, mTask.sens_buf, 2, &i2cCallback, cookie);
+}
+
+#else
+static void spi_read(uint8_t addr, uint16_t len, uint32_t delay, void *cookie)
+{
+    mTask.sens_buf[0] = SPI_READ | addr;
+
+    mTask.spi_pck[0].size = len + 1;
+    mTask.spi_pck[0].txBuf = mTask.spi_pck[0].rxBuf = &mTask.sens_buf[0];
+    mTask.spi_pck[0].delay = delay * 1000;
+
+    spiMasterRxTx(mTask.spiDev, mTask.cs, &mTask.spi_pck[0], 1/*mTask.spi_pck_num*/, &mTask.mode, spiCallback, cookie);
+}
+
+static void spi_write(uint8_t addr, uint8_t data, uint32_t delay, void *cookie)
+{
+    mTask.sens_buf[0] = SPI_WRITE | addr;
+    mTask.sens_buf[1] = data;
+
+    mTask.spi_pck[0].size = 2;
+    mTask.spi_pck[0].txBuf = mTask.spi_pck[0].rxBuf = &mTask.sens_buf[0];
+    mTask.spi_pck[0].delay = delay * 1000;
+
+    spiMasterRxTx(mTask.spiDev, mTask.cs, &mTask.spi_pck[0], 1/*mTask.spi_pck_num*/, &mTask.mode, spiCallback, cookie);
+}
+
+static void spi_init(void)
+{
+    mTask.mode.speed = LPS22HB_SPI_SPEED_HZ;
+    mTask.mode.bitsPerWord = 8;
+    mTask.mode.cpol = SPI_CPOL_IDLE_HI;
+    mTask.mode.cpha = SPI_CPHA_TRAILING_EDGE;
+    mTask.mode.nssChange = true;
+    mTask.mode.format = SPI_FORMAT_MSB_FIRST;
+    mTask.cs = GPIO_PB(12);
+    spiMasterRequest(LPS22HB_SPI_BUS_ID, &(mTask.spiDev));
+}
+#endif
+
+/* Sensor Info */
+static void sensorBaroTimerCallback(uint32_t timerId, void *data)
+{
+    osEnqueuePrivateEvt(EVT_SENSOR_BARO_TIMER, data, NULL, mTask.tid);
+}
+
+static void sensorTempTimerCallback(uint32_t timerId, void *data)
+{
+    osEnqueuePrivateEvt(EVT_SENSOR_TEMP_TIMER, data, NULL, mTask.tid);
+}
+
+#define DEC_INFO(name, type, axis, inter, samples, rates, raw, scale, bias) \
+    .sensorName = name, \
+    .sensorType = type, \
+    .numAxis = axis, \
+    .interrupt = inter, \
+    .minSamples = samples, \
+    .supportedRates = rates, \
+    .rawType = raw, \
+    .rawScale = scale, \
+    .biasType = bias
+
+static uint32_t lps22hbRates[] = {
+    SENSOR_HZ(1.0f),
+    SENSOR_HZ(10.0f),
+    SENSOR_HZ(25.0f),
+    SENSOR_HZ(50.0f),
+    SENSOR_HZ(75.0f),
+    0
+};
+
+// should match "supported rates in length" and be the timer length for that rate in nanosecs
+static const uint64_t lps22hbRatesRateVals[] =
+{
+    1 * 1000000000ULL,
+    1000000000ULL / 10,
+    1000000000ULL / 25,
+    1000000000ULL / 50,
+    1000000000ULL / 75,
+};
+
+
+static const struct SensorInfo lps22hbSensorInfo[NUM_OF_SENSOR] =
+{
+    { DEC_INFO("Pressure", SENS_TYPE_BARO, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP,
+        300, lps22hbRates, 0, 0, 0) },
+    { DEC_INFO("Temperature", SENS_TYPE_TEMP, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP,
+        20, lps22hbRates, 0, 0, 0) },
+};
+
+/* Sensor Operations */
+static bool baroPower(bool on, void *cookie)
+{
+    bool oldMode = mTask.baroOn || mTask.tempOn;
+    bool newMode = on || mTask.tempOn;
+    uint32_t state = on ? SENSOR_BARO_POWER_UP : SENSOR_BARO_POWER_DOWN;
+
+    //osLog(LOG_INFO, "baro power %d (%d) %d %d\n", oldMode, newMode,  mTask.baroOn, mTask.tempOn);
+    if (!on && mTask.baroTimerHandle) {
+        timTimerCancel(mTask.baroTimerHandle);
+        mTask.baroTimerHandle = 0;
+        mTask.baroReading = false;
+    }
+
+    if (oldMode != newMode) {
+        if (on)
+            mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, (void *)state);
+        else
+            mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, (void *)state);
+    } else
+        sensorSignalInternalEvt(mTask.sensors[BARO].handle,
+                    SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
+
+    mTask.baroReading = false;
+    mTask.baroOn = on;
+    return true;
+}
+
+static bool baroFwUpload(void *cookie)
+{
+    return sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
+}
+
+static bool baroSetRate(uint32_t rate, uint64_t latency, void *cookie)
+{
+    //osLog(LOG_INFO, "baro set rate %ld (%lld)\n", rate, latency);
+    if (mTask.baroTimerHandle)
+        timTimerCancel(mTask.baroTimerHandle);
+
+    mTask.baroTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates,
+                lps22hbRatesRateVals, rate), 0, 50, sensorBaroTimerCallback, NULL, false);
+
+    return sensorSignalInternalEvt(mTask.sensors[BARO].handle,
+                SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
+}
+
+static bool baroFlush(void *cookie)
+{
+    return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL);
+}
+
+static bool tempPower(bool on, void *cookie)
+{
+    bool oldMode = mTask.baroOn || mTask.tempOn;
+    bool newMode = on || mTask.baroOn;
+    uint32_t state = on ? SENSOR_TEMP_POWER_UP : SENSOR_TEMP_POWER_DOWN;
+
+    //osLog(LOG_INFO, "temp power %d (%d) %d %d\n", oldMode, newMode,  mTask.baroOn, mTask.tempOn);
+    if (!on && mTask.tempTimerHandle) {
+        timTimerCancel(mTask.tempTimerHandle);
+        mTask.tempTimerHandle = 0;
+        mTask.tempReading = false;
+    }
+
+    if (oldMode != newMode) {
+        if (on)
+            mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, (void *)state);
+        else
+            mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, (void *)state);
+    } else
+        sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
+                    SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
+
+    mTask.tempReading = false;
+    mTask.tempOn = on;
+    return true;
+}
+
+static bool tempFwUpload(void *cookie)
+{
+    return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
+}
+
+static bool tempSetRate(uint32_t rate, uint64_t latency, void *cookie)
+{
+    if (mTask.tempTimerHandle)
+        timTimerCancel(mTask.tempTimerHandle);
+
+    //osLog(LOG_INFO, "temp set rate %ld (%lld)\n", rate, latency);
+    mTask.tempTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates,
+                lps22hbRatesRateVals, rate), 0, 50, sensorTempTimerCallback, NULL, false);
+
+    return sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
+                SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
+}
+
+static bool tempFlush(void *cookie)
+{
+    return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL);
+}
+
+#define DEC_OPS(power, firmware, rate, flush, cal, cfg) \
+    .sensorPower = power, \
+    .sensorFirmwareUpload = firmware, \
+    .sensorSetRate = rate, \
+    .sensorFlush = flush, \
+    .sensorCalibrate = cal, \
+    .sensorCfgData = cfg
+
+static const struct SensorOps lps22hbSensorOps[NUM_OF_SENSOR] =
+{
+    { DEC_OPS(baroPower, baroFwUpload, baroSetRate, baroFlush, NULL, NULL) },
+    { DEC_OPS(tempPower, tempFwUpload, tempSetRate, tempFlush, NULL, NULL) },
+};
+
+static uint8_t *wai;
+static uint8_t *baro_samples;
+static uint8_t *temp_samples;
+static void handleCommDoneEvt(const void* evtData)
+{
+    uint8_t i;
+    int baro_val;
+    short temp_val;
+    uint32_t state = (uint32_t)evtData;
+    union EmbeddedDataPoint sample;
+
+    switch (state) {
+    case SENSOR_BOOT:
+        mTask.comm_rx(LPS22HB_WAI_REG_ADDR, 1, 1, (void *)SENSOR_VERIFY_ID);
+        break;
+
+    case SENSOR_VERIFY_ID:
+        wai = &mTask.sens_buf[1];
+
+        if (LPS22HB_WAI_REG_VAL != wai[0]) {
+            osLog(LOG_INFO, "WAI returned is: %02x\n", *wai);
+            break;
+        }
+
+        osLog(LOG_INFO, "Device ID is correct! (%02x)\n", *wai);
+        for (i = 0; i < NUM_OF_SENSOR; i++)
+            sensorRegisterInitComplete(mTask.sensors[i].handle);
+
+        /* TEST the environment in standalone mode */
+        //osEnqueuePrivateEvt(EVT_TEST, NULL, NULL, mTask.tid);
+        break;
+
+    case SENSOR_INIT:
+        for (i = 0; i < NUM_OF_SENSOR; i++)
+            sensorRegisterInitComplete(mTask.sensors[i].handle);
+        break;
+
+    case SENSOR_BARO_POWER_UP:
+        sensorSignalInternalEvt(mTask.sensors[BARO].handle,
+                    SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
+        break;
+
+    case SENSOR_BARO_POWER_DOWN:
+        sensorSignalInternalEvt(mTask.sensors[BARO].handle,
+                    SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
+        break;
+
+    case SENSOR_TEMP_POWER_UP:
+        sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
+                    SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
+        break;
+
+    case SENSOR_TEMP_POWER_DOWN:
+        sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
+                    SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
+        break;
+
+    case SENSOR_READ_SAMPLES:
+        if (mTask.baroOn && mTask.baroWantRead) {
+            mTask.baroWantRead = false;
+            baro_samples = &mTask.sens_buf[1];
+
+            baro_val = ((baro_samples[2] << 16) & 0xff0000) |
+                    ((baro_samples[1] << 8) & 0xff00) |
+                    (baro_samples[0]);
+
+            mTask.baroReading = false;
+            sample.fdata = LPS22HB_HECTO_PASCAL((float)baro_val);
+            //osLog(LOG_INFO, "baro: %p\n", sample.vptr);
+            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), sample.vptr, NULL);
+        }
+
+        if (mTask.tempOn && mTask.tempWantRead) {
+            mTask.tempWantRead = false;
+            temp_samples = &mTask.sens_buf[4];
+
+            temp_val  = ((temp_samples[1] << 8) & 0xff00) |
+                    (temp_samples[0]);
+
+            mTask.tempReading = false;
+            sample.fdata = LPS22HB_CENTIGRADES((float)temp_val);
+            //osLog(LOG_INFO, "temp: %p\n", sample.vptr);
+            osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_TEMP), sample.vptr, NULL);
+        }
+
+        break;
+
+    default:
+        break;
+    }
+}
+
+static void handleEvent(uint32_t evtType, const void* evtData)
+{
+    switch (evtType) {
+    case EVT_APP_START:
+        osLog(LOG_INFO, "LPS22HB DRIVER: EVT_APP_START\n");
+        osEventUnsubscribe(mTask.tid, EVT_APP_START);
+
+        mTask.comm_tx(LPS22HB_SOFT_RESET_REG_ADDR,
+                    LPS22HB_SOFT_RESET_BIT, 0, (void *)SENSOR_BOOT);
+        break;
+
+    case EVT_COMM_DONE:
+        //osLog(LOG_INFO, "LPS22HB DRIVER: EVT_COMM_DONE %d\n", (int)evtData);
+        handleCommDoneEvt(evtData);
+        break;
+
+    case EVT_SENSOR_BARO_TIMER:
+        //osLog(LOG_INFO, "LPS22HB DRIVER: EVT_SENSOR_BARO_TIMER\n");
+
+        mTask.baroWantRead = true;
+
+        /* Start sampling for a value */
+        if (!mTask.baroReading && !mTask.tempReading) {
+            mTask.baroReading = true;
+
+            mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, (void *)SENSOR_READ_SAMPLES);
+        }
+
+        break;
+
+    case EVT_SENSOR_TEMP_TIMER:
+        //osLog(LOG_INFO, "LPS22HB DRIVER: EVT_SENSOR_TEMP_TIMER\n");
+
+        mTask.tempWantRead = true;
+
+        /* Start sampling for a value */
+        if (!mTask.baroReading && !mTask.tempReading) {
+            mTask.tempReading = true;
+
+            mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, (void *)SENSOR_READ_SAMPLES);
+        }
+
+        break;
+
+    case EVT_INT1_RAISED:
+        osLog(LOG_INFO, "LPS22HB DRIVER: EVT_INT1_RAISED\n");
+        break;
+
+    case EVT_TEST:
+        osLog(LOG_INFO, "LPS22HB DRIVER: EVT_TEST\n");
+
+        baroPower(true, NULL);
+        tempPower(true, NULL);
+        baroSetRate(SENSOR_HZ(1), 0, NULL);
+        tempSetRate(SENSOR_HZ(1), 0, NULL);
+        break;
+
+    default:
+        break;
+    }
+
+}
+
+static bool startTask(uint32_t task_id)
+{
+    uint8_t i;
+
+    mTask.tid = task_id;
+
+    osLog(LOG_INFO, "LPS22HB DRIVER started\n");
+
+    mTask.baroOn = mTask.tempOn = false;
+    mTask.baroReading = mTask.tempReading = false;
+
+    /* Init the communication part */
+#if defined(LPS22HB_USE_I2C)
+    i2cMasterRequest(I2C_BUS_ID, I2C_SPEED);
+
+    mTask.comm_tx = i2c_write;
+    mTask.comm_rx = i2c_read;
+#else
+    spi_init();
+
+    mTask.comm_tx = spi_write;
+    mTask.comm_rx = spi_read;
+#endif
+
+    for (i = 0; i < NUM_OF_SENSOR; i++) {
+        mTask.sensors[i].handle =
+            sensorRegister(&lps22hbSensorInfo[i], &lps22hbSensorOps[i], NULL, false);
+    }
+
+    osEventSubscribe(mTask.tid, EVT_APP_START);
+
+    return true;
+}
+
+static void endTask(void)
+{
+    osLog(LOG_INFO, "LPS22HB DRIVER ended\n");
+#if defined(LPS22HB_USE_I2C)
+#else
+    spiMasterRelease(mTask.spiDev);
+#endif
+}
+
+INTERNAL_APP_INIT(LPS22HB_APP_ID, 0, startTask, endTask, handleEvent);