blob: 830fe7f386709be1376ae0f7296a08a940f078dd [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <math.h>
#include <floatRt.h>
#include <algos/time_sync.h>
void time_sync_reset(time_sync_t *sync) {
sync->n = 0;
sync->i = 0;
sync->estimate_valid = false;
sync->hold_count = 0;
}
bool time_sync_init(time_sync_t *sync) {
time_sync_reset(sync);
return true;
}
void time_sync_truncate(time_sync_t *sync, size_t window_size) {
size_t k, m;
sync->n = (window_size < sync->n) ? window_size : sync->n;
sync->estimate_valid = false;
// oldest sample index (new time_base) after truncation
size_t bidx = (sync->i >= sync->n) ? (sync->i - sync->n)
: (sync->i + NUM_TIME_SYNC_DATAPOINTS - sync->n);
// left circular-shift oldest sample to index 0
for (k = 0; k < bidx; ++k) {
uint64_t tmp1 = sync->time1[0];
uint64_t tmp2 = sync->time2[0];
for (m = 0; m < NUM_TIME_SYNC_DATAPOINTS - 1; ++m) {
sync->time1[m] = sync->time1[m + 1];
sync->time2[m] = sync->time2[m + 1];
}
sync->time1[NUM_TIME_SYNC_DATAPOINTS - 1] = tmp1;
sync->time2[NUM_TIME_SYNC_DATAPOINTS - 1] = tmp2;
}
sync->i = (sync->n < NUM_TIME_SYNC_DATAPOINTS) ? sync->n : 0;
}
bool time_sync_add(time_sync_t *sync, uint64_t time1, uint64_t time2) {
size_t i = sync->i;
sync->time1[i] = time1;
sync->time2[i] = time2;
if (++i == NUM_TIME_SYNC_DATAPOINTS) {
i = 0;
}
sync->i = i;
size_t prev_n = sync->n;
if (sync->n < NUM_TIME_SYNC_DATAPOINTS) {
++sync->n;
}
sync->estimate_valid = false;
if (sync->hold_count > 0) {
--sync->hold_count;
time_sync_truncate(sync, prev_n);
}
return true;
}
bool time_sync_estimate_time1(time_sync_t *sync, uint64_t time2, uint64_t *time1)
{
size_t j;
if (sync->n < 2)
return false;
*time1 = 0;
if (!sync->estimate_valid) {
size_t n = sync->n;
// Rewind to the oldest sample in the history.
size_t i = sync->i;
if (n < NUM_TIME_SYNC_DATAPOINTS) {
if (i != n) {
return false;
}
i = 0;
}
uint64_t time1_base = sync->time1[i];
uint64_t time2_base = sync->time2[i];
// Least-square linear regresison:
// Compute alpha and beta so that time1 = alpha + beta * time2.
// x = time2, y = time1
float mean_x = 0.0f;
float mean_y = 0.0f;
float invN = 1.0f / n;
size_t ii = i;
for (j = 0; j < n; ++j) {
mean_y += floatFromUint64(sync->time1[ii] - time1_base) * invN;
mean_x += floatFromUint64(sync->time2[ii] - time2_base) * invN;
if (++ii == NUM_TIME_SYNC_DATAPOINTS) {
ii = 0;
}
}
// Two-pass approach so that only values relative to mean are computed.
// Typically, |y| and |x| are smaller than 8e8 in nsec.
// So sum_x2 and sum_xy are smaller than 1e19.
// That leaves plenty of room for blocking tasks.
float sum_x2 = 0.0f, sum_xy = 0.0f;
ii = i;
for (j = 0; j < n; ++j) {
float y = floatFromUint64(sync->time1[ii] - time1_base) - mean_y;
float x = floatFromUint64(sync->time2[ii] - time2_base) - mean_x;
sum_x2 += x * x;
sum_xy += x * y;
if (++ii == NUM_TIME_SYNC_DATAPOINTS) {
ii = 0;
}
}
float beta = sum_xy / sum_x2;
float alpha = mean_y - beta * mean_x;
sync->alpha = alpha;
sync->beta = beta;
sync->time1_base = time1_base;
sync->time2_base = time2_base;
sync->estimate_valid = true;
}
*time1 = sync->time1_base + floatToInt64(sync->alpha + sync->beta * floatFromInt64(time2 - sync->time2_base));
return true;
}
void time_sync_hold(time_sync_t *sync, uint8_t count) {
sync->hold_count = count;
}