blob: e02c727dc0f9574059f9dfdf45e1e0b8be6f81e1 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include PATH(APM_XSD_ENUMS_H_FILENAME)
#include <android-base/properties.h>
#include <chrono>
#include <thread>
#include <log/log.h>
#include <utils/Mutex.h>
#include <utils/Timers.h>
#include <utils/ThreadDefs.h>
#include "device_port_sink.h"
#include "talsa.h"
#include "audio_ops.h"
#include "ring_buffer.h"
#include "util.h"
#include "debug.h"
using ::android::base::GetBoolProperty;
namespace xsd {
using namespace ::android::audio::policy::configuration::CPP_VERSION;
}
namespace android {
namespace hardware {
namespace audio {
namespace CPP_VERSION {
namespace implementation {
namespace {
constexpr int kMaxJitterUs = 3000; // Enforced by CTS, should be <= 6ms
struct TinyalsaSink : public DevicePortSink {
TinyalsaSink(unsigned pcmCard, unsigned pcmDevice,
const AudioConfig &cfg,
uint64_t &frames)
: mStartNs(systemTime(SYSTEM_TIME_MONOTONIC))
, mSampleRateHz(cfg.base.sampleRateHz)
, mFrameSize(util::countChannels(cfg.base.channelMask) * sizeof(int16_t))
, mWriteSizeFrames(cfg.frameCount)
, mInitialFrames(frames)
, mFrames(frames)
, mRingBuffer(mFrameSize * cfg.frameCount * 3)
, mMixer(pcmCard)
, mPcm(talsa::pcmOpen(pcmCard, pcmDevice,
util::countChannels(cfg.base.channelMask),
cfg.base.sampleRateHz,
cfg.frameCount,
true /* isOut */)) {
if (mPcm) {
LOG_ALWAYS_FATAL_IF(!talsa::pcmPrepare(mPcm.get()));
mConsumeThread = std::thread(&TinyalsaSink::consumeThread, this);
} else {
mConsumeThread = std::thread([](){});
}
}
~TinyalsaSink() {
mConsumeThreadRunning = false;
mConsumeThread.join();
}
static int getLatencyMs(const AudioConfig &cfg) {
constexpr size_t inMs = 1000;
const talsa::PcmPeriodSettings periodSettings =
talsa::pcmGetPcmPeriodSettings();
const size_t numerator = periodSettings.periodSizeMultiplier * cfg.frameCount;
const size_t denominator = periodSettings.periodCount * cfg.base.sampleRateHz / inMs;
// integer division with rounding
return (numerator + (denominator >> 1)) / denominator + talsa::pcmGetHostLatencyMs();
}
Result getPresentationPosition(uint64_t &frames, TimeSpec &ts) override {
const AutoMutex lock(mFrameCountersMutex);
nsecs_t nowNs = systemTime(SYSTEM_TIME_MONOTONIC);
const uint64_t nowFrames = getPresentationFramesLocked(nowNs);
auto presentedFrames = nowFrames - mMissedFrames;
if (presentedFrames > mReceivedFrames) {
// There is another underrun that is not yet accounted for in mMissedFrames
auto delta = presentedFrames - mReceivedFrames;
presentedFrames -= delta;
// The last frame was presented some time ago, reflect that in the result
nowNs -= delta * 1000000000 / mSampleRateHz;
}
mFrames = presentedFrames + mInitialFrames;
frames = mFrames;
ts = util::nsecs2TimeSpec(nowNs);
return Result::OK;
}
uint64_t getPresentationFramesLocked(const nsecs_t nowNs) const {
return uint64_t(mSampleRateHz) * ns2us(nowNs - mStartNs) / 1000000;
}
size_t calcAvailableFramesNowLocked() {
const nsecs_t nowNs = systemTime(SYSTEM_TIME_MONOTONIC);
auto presentationFrames = getPresentationFramesLocked(nowNs);
if (mReceivedFrames + mMissedFrames < presentationFrames) {
// There has been an underrun
mMissedFrames = presentationFrames - mReceivedFrames;
}
size_t pendingFrames = mReceivedFrames + mMissedFrames - presentationFrames;
return mRingBuffer.capacity() / mFrameSize - pendingFrames;
}
size_t calcWaitFramesNowLocked(const size_t requestedFrames) {
const size_t availableFrames = calcAvailableFramesNowLocked();
return (requestedFrames > availableFrames)
? (requestedFrames - availableFrames) : 0;
}
size_t write(float volume, size_t bytesToWrite, IReader &reader) {
const AutoMutex lock(mFrameCountersMutex);
size_t framesLost = 0;
const size_t waitFrames = calcWaitFramesNowLocked(bytesToWrite / mFrameSize);
const auto blockUntil =
std::chrono::high_resolution_clock::now() +
+ std::chrono::microseconds(waitFrames * 1000000 / mSampleRateHz);
while (bytesToWrite > 0) {
if (mRingBuffer.waitForProduceAvailable(blockUntil
+ std::chrono::microseconds(kMaxJitterUs))) {
auto produceChunk = mRingBuffer.getProduceChunk();
if (produceChunk.size >= bytesToWrite) {
// Since the ring buffer has more bytes free than we need,
// make sure we are not too early here: tinyalsa is jittery,
// we don't want to go faster than SYSTEM_TIME_MONOTONIC
std::this_thread::sleep_until(blockUntil);
}
const size_t szFrames =
std::min(produceChunk.size, bytesToWrite) / mFrameSize;
const size_t szBytes = szFrames * mFrameSize;
LOG_ALWAYS_FATAL_IF(reader(produceChunk.data, szBytes) < szBytes);
aops::multiplyByVolume(volume,
static_cast<int16_t *>(produceChunk.data),
szBytes / sizeof(int16_t));
LOG_ALWAYS_FATAL_IF(mRingBuffer.produce(szBytes) < szBytes);
mReceivedFrames += szFrames;
bytesToWrite -= szBytes;
} else {
ALOGV("TinyalsaSink::%s:%d pcm_write was late reading "
"frames, dropping %zu us of audio",
__func__, __LINE__,
size_t(1000000 * bytesToWrite / mFrameSize / mSampleRateHz));
// drop old audio to make room for new
const size_t bytesLost = mRingBuffer.makeRoomForProduce(bytesToWrite);
framesLost += bytesLost / mFrameSize;
while (bytesToWrite > 0) {
auto produceChunk = mRingBuffer.getProduceChunk();
const size_t szFrames =
std::min(produceChunk.size, bytesToWrite) / mFrameSize;
const size_t szBytes = szFrames * mFrameSize;
LOG_ALWAYS_FATAL_IF(reader(produceChunk.data, szBytes) < szBytes);
aops::multiplyByVolume(volume,
static_cast<int16_t *>(produceChunk.data),
szBytes / sizeof(int16_t));
LOG_ALWAYS_FATAL_IF(mRingBuffer.produce(szBytes) < szBytes);
mReceivedFrames += szFrames;
bytesToWrite -= szBytes;
}
break;
}
}
return framesLost;
}
void consumeThread() {
util::setThreadPriority(PRIORITY_URGENT_AUDIO);
std::vector<uint8_t> writeBuffer(mWriteSizeFrames * mFrameSize);
while (mConsumeThreadRunning) {
if (mRingBuffer.waitForConsumeAvailable(
std::chrono::high_resolution_clock::now()
+ std::chrono::microseconds(100000))) {
size_t szBytes;
{
auto chunk = mRingBuffer.getConsumeChunk();
szBytes = std::min(writeBuffer.size(), chunk.size);
// We have to memcpy because the consumer holds the lock
// into RingBuffer and pcm_write takes too long to hold
// this lock.
memcpy(writeBuffer.data(), chunk.data, szBytes);
LOG_ALWAYS_FATAL_IF(mRingBuffer.consume(chunk, szBytes) < szBytes);
}
talsa::pcmWrite(mPcm.get(), writeBuffer.data(), szBytes);
}
}
}
static std::unique_ptr<TinyalsaSink> create(unsigned pcmCard,
unsigned pcmDevice,
const AudioConfig &cfg,
size_t readerBufferSizeHint,
uint64_t &frames) {
(void)readerBufferSizeHint;
auto sink = std::make_unique<TinyalsaSink>(pcmCard, pcmDevice,
cfg, frames);
if (sink->mMixer && sink->mPcm) {
return sink;
} else {
return FAILURE(nullptr);
}
}
private:
const nsecs_t mStartNs;
const unsigned mSampleRateHz;
const unsigned mFrameSize;
const unsigned mWriteSizeFrames;
const uint64_t mInitialFrames;
uint64_t &mFrames GUARDED_BY(mFrameCountersMutex);
uint64_t mMissedFrames GUARDED_BY(mFrameCountersMutex) = 0;
uint64_t mReceivedFrames GUARDED_BY(mFrameCountersMutex) = 0;
RingBuffer mRingBuffer;
talsa::Mixer mMixer;
talsa::PcmPtr mPcm;
std::thread mConsumeThread;
std::atomic<bool> mConsumeThreadRunning = true;
mutable Mutex mFrameCountersMutex;
};
struct NullSink : public DevicePortSink {
NullSink(const AudioConfig &cfg, uint64_t &frames)
: mStartNs(systemTime(SYSTEM_TIME_MONOTONIC))
, mSampleRateHz(cfg.base.sampleRateHz)
, mFrameSize(util::countChannels(cfg.base.channelMask) * sizeof(int16_t))
, mInitialFrames(frames)
, mFrames(frames) {}
static int getLatencyMs(const AudioConfig &) {
return 1;
}
Result getPresentationPosition(uint64_t &frames, TimeSpec &ts) override {
const AutoMutex lock(mFrameCountersMutex);
nsecs_t nowNs = systemTime(SYSTEM_TIME_MONOTONIC);
const uint64_t nowFrames = getPresentationFramesLocked(nowNs);
auto presentedFrames = nowFrames - mMissedFrames;
if (presentedFrames > mReceivedFrames) {
// There is another underrun that is not yet accounted for in mMissedFrames
auto delta = presentedFrames - mReceivedFrames;
presentedFrames -= delta;
// The last frame was presented some time ago, reflect that in the result
nowNs -= delta * 1000000000 / mSampleRateHz;
}
mFrames = presentedFrames + mInitialFrames;
frames = mFrames;
ts = util::nsecs2TimeSpec(nowNs);
return Result::OK;
}
uint64_t getPresentationFramesLocked(const nsecs_t nowNs) const {
return uint64_t(mSampleRateHz) * ns2us(nowNs - mStartNs) / 1000000;
}
size_t calcAvailableFramesNowLocked() {
const nsecs_t nowNs = systemTime(SYSTEM_TIME_MONOTONIC);
auto presentationFrames = getPresentationFramesLocked(nowNs);
if (mReceivedFrames + mMissedFrames < presentationFrames) {
// There has been an underrun
mMissedFrames = presentationFrames - mReceivedFrames;
}
size_t pendingFrames = mReceivedFrames + mMissedFrames - presentationFrames;
return sizeof(mWriteBuffer) / mFrameSize - pendingFrames;
}
size_t calcWaitFramesNowLocked(const size_t requestedFrames) {
const size_t availableFrames = calcAvailableFramesNowLocked();
return (requestedFrames > availableFrames)
? (requestedFrames - availableFrames) : 0;
}
size_t write(float volume, size_t bytesToWrite, IReader &reader) override {
(void)volume;
const AutoMutex lock(mFrameCountersMutex);
const size_t waitFrames = calcWaitFramesNowLocked(bytesToWrite / mFrameSize);
const auto blockUntil =
std::chrono::high_resolution_clock::now() +
+ std::chrono::microseconds(waitFrames * 1000000 / mSampleRateHz);
std::this_thread::sleep_until(blockUntil);
while (bytesToWrite > 0) {
size_t chunkSize =
std::min(bytesToWrite, sizeof(mWriteBuffer)) / mFrameSize * mFrameSize;
chunkSize = reader(mWriteBuffer, chunkSize);
if (chunkSize > 0) {
mReceivedFrames += chunkSize / mFrameSize;
bytesToWrite -= chunkSize;
} else {
break; // reader failed
}
}
return 0;
}
static std::unique_ptr<NullSink> create(const AudioConfig &cfg,
size_t readerBufferSizeHint,
uint64_t &frames) {
(void)readerBufferSizeHint;
return std::make_unique<NullSink>(cfg, frames);
}
private:
const nsecs_t mStartNs;
const unsigned mSampleRateHz;
const unsigned mFrameSize;
const uint64_t mInitialFrames;
uint64_t &mFrames GUARDED_BY(mFrameCountersMutex);
uint64_t mMissedFrames GUARDED_BY(mFrameCountersMutex) = 0;
uint64_t mReceivedFrames GUARDED_BY(mFrameCountersMutex) = 0;
char mWriteBuffer[1024];
mutable Mutex mFrameCountersMutex;
};
} // namespace
std::unique_ptr<DevicePortSink>
DevicePortSink::create(size_t readerBufferSizeHint,
const DeviceAddress &address,
const AudioConfig &cfg,
const hidl_vec<AudioInOutFlag> &flags,
uint64_t &frames) {
(void)flags;
if (xsd::stringToAudioFormat(cfg.base.format) != xsd::AudioFormat::AUDIO_FORMAT_PCM_16_BIT) {
ALOGE("%s:%d, unexpected format: '%s'", __func__, __LINE__, cfg.base.format.c_str());
return FAILURE(nullptr);
}
if (GetBoolProperty("ro.boot.audio.tinyalsa.ignore_output", false)) {
goto nullsink;
}
switch (xsd::stringToAudioDevice(address.deviceType)) {
case xsd::AudioDevice::AUDIO_DEVICE_OUT_DEFAULT:
case xsd::AudioDevice::AUDIO_DEVICE_OUT_SPEAKER:
{
auto sinkptr = TinyalsaSink::create(talsa::kPcmCard, talsa::kPcmDevice,
cfg, readerBufferSizeHint, frames);
if (sinkptr != nullptr) {
return sinkptr;
} else {
ALOGW("%s:%d failed to create alsa sink for '%s'; creating NullSink instead.",
__func__, __LINE__, address.deviceType.c_str());
}
}
break;
case xsd::AudioDevice::AUDIO_DEVICE_OUT_TELEPHONY_TX:
case xsd::AudioDevice::AUDIO_DEVICE_OUT_BUS:
ALOGW("%s:%d creating NullSink for '%s'.", __func__, __LINE__, address.deviceType.c_str());
break;
default:
ALOGW("%s:%d unsupported device: '%s', creating NullSink", __func__, __LINE__, address.deviceType.c_str());
break;
}
nullsink:
return NullSink::create(cfg, readerBufferSizeHint, frames);
}
int DevicePortSink::getLatencyMs(const DeviceAddress &address, const AudioConfig &cfg) {
switch (xsd::stringToAudioDevice(address.deviceType)) {
default:
ALOGW("%s:%d unsupported device: '%s'", __func__, __LINE__, address.deviceType.c_str());
return FAILURE(-1);
case xsd::AudioDevice::AUDIO_DEVICE_OUT_DEFAULT:
case xsd::AudioDevice::AUDIO_DEVICE_OUT_SPEAKER:
return TinyalsaSink::getLatencyMs(cfg);
case xsd::AudioDevice::AUDIO_DEVICE_OUT_TELEPHONY_TX:
case xsd::AudioDevice::AUDIO_DEVICE_OUT_BUS:
return NullSink::getLatencyMs(cfg);
}
}
bool DevicePortSink::validateDeviceAddress(const DeviceAddress& address) {
switch (xsd::stringToAudioDevice(address.deviceType)) {
default:
ALOGW("%s:%d unsupported device: '%s'", __func__, __LINE__, address.deviceType.c_str());
return FAILURE(false);
case xsd::AudioDevice::AUDIO_DEVICE_OUT_DEFAULT:
case xsd::AudioDevice::AUDIO_DEVICE_OUT_SPEAKER:
case xsd::AudioDevice::AUDIO_DEVICE_OUT_TELEPHONY_TX:
case xsd::AudioDevice::AUDIO_DEVICE_OUT_BUS:
break;
}
return true;
}
} // namespace implementation
} // namespace CPP_VERSION
} // namespace audio
} // namespace hardware
} // namespace android