blob: ef5c0acc3c1205346eadff45f0055fb6bf8d9b7d [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cinttypes>
#include <log/log.h>
#include <qemud.h>
#include <utils/SystemClock.h>
#include "multihal_sensors.h"
#include "sensor_list.h"
namespace goldfish {
using ahs21::SensorType;
using ahs10::SensorFlagBits;
using ahs10::SensorStatus;
using ahs10::MetaDataEventType;
namespace {
constexpr int64_t kMaxSamplingPeriodNs = 1000000000;
}
MultihalSensors::MultihalSensors()
: m_qemuSensorsFd(qemud_channel_open("sensors"))
, m_batchInfo(getSensorNumber()) {
if (!m_qemuSensorsFd.ok()) {
ALOGE("%s:%d: m_qemuSensorsFd is not opened", __func__, __LINE__);
::abort();
}
char buffer[64];
int len = snprintf(buffer, sizeof(buffer),
"time:%" PRId64, ::android::elapsedRealtimeNano());
if (qemud_channel_send(m_qemuSensorsFd.get(), buffer, len) < 0) {
ALOGE("%s:%d: qemud_channel_send failed", __func__, __LINE__);
::abort();
}
using namespace std::literals;
const std::string_view kListSensorsCmd = "list-sensors"sv;
if (qemud_channel_send(m_qemuSensorsFd.get(),
kListSensorsCmd.data(),
kListSensorsCmd.size()) < 0) {
ALOGE("%s:%d: qemud_channel_send failed", __func__, __LINE__);
::abort();
}
len = qemud_channel_recv(m_qemuSensorsFd.get(), buffer, sizeof(buffer) - 1);
if (len < 0) {
ALOGE("%s:%d: qemud_channel_recv failed", __func__, __LINE__);
::abort();
}
buffer[len] = 0;
uint32_t hostSensorsMask = 0;
if (sscanf(buffer, "%u", &hostSensorsMask) != 1) {
ALOGE("%s:%d: Can't parse qemud response", __func__, __LINE__);
::abort();
}
m_availableSensorsMask = hostSensorsMask
& ~(1U << kSensorHandleGyroscopeFieldUncalibrated)
& ((1u << getSensorNumber()) - 1);
ALOGI("%s:%d: host sensors mask=%x, available sensors mask=%x",
__func__, __LINE__, hostSensorsMask, m_availableSensorsMask);
if (!::android::base::Socketpair(AF_LOCAL, SOCK_STREAM, 0,
&m_callersFd, &m_sensorThreadFd)) {
ALOGE("%s:%d: Socketpair failed", __func__, __LINE__);
::abort();
}
m_sensorThread = std::thread(&MultihalSensors::qemuSensorListenerThread, this);
m_batchThread = std::thread(&MultihalSensors::batchThread, this);
}
MultihalSensors::~MultihalSensors() {
setAllQemuSensors(false);
m_batchRunning = false;
m_batchUpdated.notify_one();
m_batchThread.join();
qemuSensorThreadSendCommand(kCMD_QUIT);
m_sensorThread.join();
}
const std::string MultihalSensors::getName() {
return "hal_sensors_2_1_impl_ranchu";
}
Return<void> MultihalSensors::debug(const hidl_handle& fd, const hidl_vec<hidl_string>& args) {
(void)fd;
(void)args;
return {};
}
Return<void> MultihalSensors::getSensorsList_2_1(getSensorsList_2_1_cb _hidl_cb) {
std::vector<SensorInfo> sensors;
uint32_t mask = m_availableSensorsMask;
for (int i = 0; mask; ++i, mask >>= 1) {
if (mask & 1) {
sensors.push_back(*getSensorInfoByHandle(i));
}
}
_hidl_cb(sensors);
return {};
}
Return<Result> MultihalSensors::setOperationMode(const OperationMode mode) {
std::unique_lock<std::mutex> lock(m_mtx);
if (m_activeSensorsMask) {
return Result::INVALID_OPERATION;
} else {
m_opMode = mode;
return Result::OK;
}
}
Return<Result> MultihalSensors::activate(const int32_t sensorHandle,
const bool enabled) {
if (!isSensorHandleValid(sensorHandle)) {
return Result::BAD_VALUE;
}
std::unique_lock<std::mutex> lock(m_mtx);
BatchInfo& batchInfo = m_batchInfo[sensorHandle];
if (enabled) {
const SensorInfo* sensor = getSensorInfoByHandle(sensorHandle);
LOG_ALWAYS_FATAL_IF(!sensor);
if (!(sensor->flags & static_cast<uint32_t>(SensorFlagBits::ON_CHANGE_MODE))) {
if (batchInfo.samplingPeriodNs <= 0) {
return Result::BAD_VALUE;
}
BatchEventRef batchEventRef;
batchEventRef.timestamp =
::android::elapsedRealtimeNano() + batchInfo.samplingPeriodNs;
batchEventRef.sensorHandle = sensorHandle;
batchEventRef.generation = ++batchInfo.generation;
m_batchQueue.push(batchEventRef);
m_batchUpdated.notify_one();
} else if (sensor->type == SensorType::HEART_RATE){
// Heart rate sensor's first data after activation should be
// SENSOR_STATUS_UNRELIABLE.
Event event;
event.u.heartRate.status = SensorStatus::UNRELIABLE;
event.u.heartRate.bpm = 0;
event.timestamp = ::android::elapsedRealtimeNano();
event.sensorHandle = sensorHandle;
event.sensorType = SensorType::HEART_RATE;
doPostSensorEventLocked(*sensor, event);
}
m_activeSensorsMask = m_activeSensorsMask | (1u << sensorHandle);
} else {
m_activeSensorsMask = m_activeSensorsMask & ~(1u << sensorHandle);
}
return Result::OK;
}
Return<Result> MultihalSensors::batch(const int32_t sensorHandle,
const int64_t samplingPeriodNs,
const int64_t maxReportLatencyNs) {
(void)maxReportLatencyNs;
if (!isSensorHandleValid(sensorHandle)) {
return Result::BAD_VALUE;
}
const SensorInfo* sensor = getSensorInfoByHandle(sensorHandle);
LOG_ALWAYS_FATAL_IF(!sensor);
if (samplingPeriodNs < sensor->minDelay) {
return Result::BAD_VALUE;
}
std::unique_lock<std::mutex> lock(m_mtx);
if (m_opMode == OperationMode::NORMAL) {
m_batchInfo[sensorHandle].samplingPeriodNs = samplingPeriodNs;
auto minSamplingPeriodNs = kMaxSamplingPeriodNs;
auto activeSensorsMask = m_activeSensorsMask;
for (const auto& b : m_batchInfo) {
if (activeSensorsMask & 1) {
const auto periodNs = b.samplingPeriodNs;
if ((periodNs > 0) && (periodNs < minSamplingPeriodNs)) {
minSamplingPeriodNs = periodNs;
}
}
activeSensorsMask >>= 1;
}
const int delayMs = std::max(1, int(minSamplingPeriodNs / 1000000));
char buffer[64];
const int len = snprintf(buffer, sizeof(buffer), "set-delay:%d", delayMs);
if (qemud_channel_send(m_qemuSensorsFd.get(), buffer, len) < 0) {
ALOGE("%s:%d: qemud_channel_send failed", __func__, __LINE__);
::abort();
}
}
return Result::OK;
}
Return<Result> MultihalSensors::flush(const int32_t sensorHandle) {
if (!isSensorHandleValid(sensorHandle)) {
return Result::BAD_VALUE;
}
const SensorInfo* sensor = getSensorInfoByHandle(sensorHandle);
LOG_ALWAYS_FATAL_IF(!sensor);
std::unique_lock<std::mutex> lock(m_mtx);
if (!isSensorActive(sensorHandle)) {
return Result::BAD_VALUE;
}
Event event;
event.sensorHandle = sensorHandle;
event.sensorType = SensorType::META_DATA;
event.u.meta.what = MetaDataEventType::META_DATA_FLUSH_COMPLETE;
doPostSensorEventLocked(*sensor, event);
return Result::OK;
}
Return<Result> MultihalSensors::injectSensorData_2_1(const Event& event) {
if (!isSensorHandleValid(event.sensorHandle)) {
return Result::BAD_VALUE;
}
if (event.sensorType == SensorType::ADDITIONAL_INFO) {
return Result::OK;
}
std::unique_lock<std::mutex> lock(m_mtx);
if (m_opMode != OperationMode::DATA_INJECTION) {
return Result::INVALID_OPERATION;
}
const SensorInfo* sensor = getSensorInfoByHandle(event.sensorHandle);
LOG_ALWAYS_FATAL_IF(!sensor);
if (sensor->type != event.sensorType) {
return Result::BAD_VALUE;
}
doPostSensorEventLocked(*sensor, event);
return Result::OK;
}
Return<Result> MultihalSensors::initialize(const sp<IHalProxyCallback>& halProxyCallback) {
std::unique_lock<std::mutex> lock(m_mtx);
setAllQemuSensors(true); // we need to start sampling sensors for batching
m_opMode = OperationMode::NORMAL;
m_halProxyCallback = halProxyCallback;
return Result::OK;
}
void MultihalSensors::postSensorEvent(const Event& event) {
const SensorInfo* sensor = getSensorInfoByHandle(event.sensorHandle);
LOG_ALWAYS_FATAL_IF(!sensor);
std::unique_lock<std::mutex> lock(m_mtx);
if (sensor->flags & static_cast<uint32_t>(SensorFlagBits::ON_CHANGE_MODE)) {
if (isSensorActive(event.sensorHandle)) {
doPostSensorEventLocked(*sensor, event);
}
} else { // CONTINUOUS_MODE
m_batchInfo[event.sensorHandle].event = event;
}
}
void MultihalSensors::doPostSensorEventLocked(const SensorInfo& sensor,
const Event& event) {
const bool isWakeupEvent =
sensor.flags & static_cast<uint32_t>(SensorFlagBits::WAKE_UP);
m_halProxyCallback->postEvents(
{event},
m_halProxyCallback->createScopedWakelock(isWakeupEvent));
}
bool MultihalSensors::qemuSensorThreadSendCommand(const char cmd) const {
return TEMP_FAILURE_RETRY(write(m_callersFd.get(), &cmd, 1)) == 1;
}
bool MultihalSensors::isSensorHandleValid(int sensorHandle) const {
if (!goldfish::isSensorHandleValid(sensorHandle)) {
return false;
}
if (!(m_availableSensorsMask & (1u << sensorHandle))) {
return false;
}
return true;
}
void MultihalSensors::batchThread() {
while (m_batchRunning) {
std::unique_lock<std::mutex> lock(m_mtx);
if (m_batchQueue.empty()) {
m_batchUpdated.wait(lock);
} else {
const int64_t d =
m_batchQueue.top().timestamp - ::android::elapsedRealtimeNano();
m_batchUpdated.wait_for(lock, std::chrono::nanoseconds(d));
}
const int64_t nowNs = ::android::elapsedRealtimeNano();
while (!m_batchQueue.empty() && (nowNs >= m_batchQueue.top().timestamp)) {
BatchEventRef evRef = m_batchQueue.top();
m_batchQueue.pop();
const int sensorHandle = evRef.sensorHandle;
LOG_ALWAYS_FATAL_IF(!goldfish::isSensorHandleValid(sensorHandle));
if (!isSensorActive(sensorHandle)) {
continue;
}
BatchInfo &batchInfo = m_batchInfo[sensorHandle];
if (batchInfo.event.sensorType == SensorType::META_DATA) {
ALOGW("%s:%d the host has not provided value yet for sensorHandle=%d",
__func__, __LINE__, sensorHandle);
} else {
batchInfo.event.timestamp = evRef.timestamp;
const SensorInfo* sensor = getSensorInfoByHandle(sensorHandle);
LOG_ALWAYS_FATAL_IF(!sensor);
doPostSensorEventLocked(*sensor, batchInfo.event);
}
if (evRef.generation == batchInfo.generation) {
const int64_t samplingPeriodNs = batchInfo.samplingPeriodNs;
LOG_ALWAYS_FATAL_IF(samplingPeriodNs <= 0);
evRef.timestamp += samplingPeriodNs;
m_batchQueue.push(evRef);
}
}
}
}
/// not supported //////////////////////////////////////////////////////////////
Return<void> MultihalSensors::registerDirectChannel(const SharedMemInfo& mem,
registerDirectChannel_cb _hidl_cb) {
(void)mem;
_hidl_cb(Result::INVALID_OPERATION, -1);
return {};
}
Return<Result> MultihalSensors::unregisterDirectChannel(int32_t channelHandle) {
(void)channelHandle;
return Result::INVALID_OPERATION;
}
Return<void> MultihalSensors::configDirectReport(int32_t sensorHandle,
int32_t channelHandle,
RateLevel rate,
configDirectReport_cb _hidl_cb) {
(void)sensorHandle;
(void)channelHandle;
(void)rate;
_hidl_cb(Result::INVALID_OPERATION, 0 /* reportToken */);
return {};
}
} // namespace goldfish