blob: 0897b4c297782273109f8b1b1356e6c8098ee385 [file] [log] [blame]
/*
* Copyright 2017, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dhcpclient.h"
#include "dhcp.h"
#include "interface.h"
#include "log.h"
#include <arpa/inet.h>
#include <errno.h>
#include <linux/if_ether.h>
#include <poll.h>
#include <unistd.h>
#include <cutils/properties.h>
#include <inttypes.h>
// The initial retry timeout for DHCP is 4000 milliseconds
static const uint32_t kInitialTimeout = 4000;
// The maximum retry timeout for DHCP is 64000 milliseconds
static const uint32_t kMaxTimeout = 64000;
// A specific value that indicates that no timeout should happen and that
// the state machine should immediately transition to the next state
static const uint32_t kNoTimeout = 0;
// Enable debug messages
static const bool kDebug = false;
// The number of milliseconds that the timeout should vary (up or down) from the
// base timeout. DHCP requires a -1 to +1 second variation in timeouts.
static const int kTimeoutSpan = 1000;
static std::string addrToStr(in_addr_t address) {
struct in_addr addr = { address };
char buffer[64];
return inet_ntop(AF_INET, &addr, buffer, sizeof(buffer));
}
DhcpClient::DhcpClient(uint32_t options)
: mOptions(options),
mRandomEngine(std::random_device()()),
mRandomDistribution(-kTimeoutSpan, kTimeoutSpan),
mState(State::Init),
mNextTimeout(kInitialTimeout),
mFuzzNextTimeout(true) {
}
Result DhcpClient::init(const char* interfaceName) {
Result res = mInterface.init(interfaceName);
if (!res) {
return res;
}
res = mRouter.init();
if (!res) {
return res;
}
res = mSocket.open(PF_PACKET, SOCK_DGRAM, htons(ETH_P_IP));
if (!res) {
return res;
}
res = mSocket.bindRaw(mInterface.getIndex());
if (!res) {
return res;
}
return Result::success();
}
Result DhcpClient::run() {
// Block all signals while we're running. This way we don't have to deal
// with things like EINTR. waitAndReceive then uses ppoll to set the
// original mask while polling. This way polling can be interrupted but
// socket writing, reading and ioctl remain interrupt free. If a signal
// arrives while we're blocking it it will be placed in the signal queue
// and handled once ppoll sets the original mask. This way no signals are
// lost.
sigset_t blockMask, originalMask;
int status = ::sigfillset(&blockMask);
if (status != 0) {
return Result::error("Unable to fill signal set: %s", strerror(errno));
}
status = ::sigprocmask(SIG_SETMASK, &blockMask, &originalMask);
if (status != 0) {
return Result::error("Unable to set signal mask: %s", strerror(errno));
}
for (;;) {
// Before waiting, polling or receiving we check the current state and
// see what we should do next. This may result in polling but could
// also lead to instant state changes without any polling. The new state
// will then be evaluated instead, most likely leading to polling.
switch (mState) {
case State::Init:
// The starting state. This is the state the client is in when
// it first starts. It's also the state that the client returns
// to when things go wrong in other states.
setNextState(State::Selecting);
break;
case State::Selecting:
// In the selecting state the client attempts to find DHCP
// servers on the network. The client remains in this state
// until a suitable server responds.
sendDhcpDiscover();
increaseTimeout();
break;
case State::Requesting:
// In the requesting state the client has found a suitable
// server. The next step is to send a request directly to that
// server.
if (mNextTimeout >= kMaxTimeout) {
// We've tried to request a bunch of times, start over
setNextState(State::Init);
} else {
sendDhcpRequest(mServerAddress);
increaseTimeout();
}
break;
case State::Bound:
// The client enters the bound state when the server has
// accepted and acknowledged a request and given us a lease. At
// this point the client will wait until the lease is close to
// expiring and then it will try to renew the lease.
if (mT1.expired()) {
// Lease expired, renew lease
setNextState(State::Renewing);
} else {
// Spurious wake-up, continue waiting. Do not fuzz the
// timeout with a random offset. Doing so can cause wakeups
// before the timer has expired causing unnecessary
// processing. Even worse it can cause the timer to expire
// after the lease has ended.
mNextTimeout = mT1.remainingMillis();
mFuzzNextTimeout = false;
}
break;
case State::Renewing:
// In the renewing state the client is sending a request for the
// same address it had was previously bound to. If the second
// timer expires when in this state the client will attempt to
// do a full rebind.
if (mT2.expired()) {
// Timeout while renewing, move to rebinding
setNextState(State::Rebinding);
} else {
sendDhcpRequest(mServerAddress);
increaseTimeout();
}
break;
case State::Rebinding:
// The client was unable to renew the lease and moved to the
// rebinding state. In this state the client sends a request for
// the same address it had before to the broadcast address. This
// means that any DHCP server on the network is free to respond.
// After attempting this a few times the client will give up and
// move to the Init state to try to find a new DHCP server.
if (mNextTimeout >= kMaxTimeout) {
// We've tried to rebind a bunch of times, start over
setNextState(State::Init);
} else {
// Broadcast a request
sendDhcpRequest(INADDR_BROADCAST);
increaseTimeout();
}
break;
default:
break;
}
// The proper action for the current state has been taken, perform any
// polling and/or waiting needed.
waitAndReceive(originalMask);
}
return Result::error("Client terminated unexpectedly");
}
const char* DhcpClient::stateToStr(State state) {
switch (state) {
case State::Init:
return "Init";
case State::Selecting:
return "Selecting";
case State::Requesting:
return "Requesting";
case State::Bound:
return "Bound";
case State::Renewing:
return "Renewing";
case State::Rebinding:
return "Rebinding";
}
return "<unknown>";
}
void DhcpClient::waitAndReceive(const sigset_t& pollSignalMask) {
if (mNextTimeout == kNoTimeout) {
// If there is no timeout the state machine has indicated that it wants
// an immediate transition to another state. Do nothing.
return;
}
struct pollfd fds;
fds.fd = mSocket.get();
fds.events = POLLIN;
uint32_t timeout = calculateTimeoutMillis();
for (;;) {
uint64_t startedAt = now();
struct timespec ts;
ts.tv_sec = timeout / 1000;
ts.tv_nsec = (timeout - ts.tv_sec * 1000) * 1000000;
// Poll for any incoming traffic with the calculated timeout. While
// polling the original signal mask is set so that the polling can be
// interrupted.
int res = ::ppoll(&fds, 1, &ts, &pollSignalMask);
if (res == 0) {
// Timeout, return to let the caller evaluate
return;
} else if (res > 0) {
// Something to read
Message msg;
if (receiveDhcpMessage(&msg)) {
// We received a DHCP message, check if it's of interest
uint8_t msgType = msg.type();
switch (mState) {
case State::Selecting:
if (msgType == DHCPOFFER) {
// Received an offer, move to the Requesting state
// to request it.
mServerAddress = msg.serverId();
mRequestAddress = msg.dhcpData.yiaddr;
setNextState(State::Requesting);
return;
}
break;
case State::Requesting:
case State::Renewing:
case State::Rebinding:
// All of these states have sent a DHCP request and are
// now waiting for an ACK so the behavior is the same.
if (msgType == DHCPACK) {
// Request approved
if (configureDhcp(msg)) {
// Successfully configured DHCP, move to Bound
setNextState(State::Bound);
return;
}
// Unable to configure DHCP, keep sending requests.
// This may not fix the issue but eventually it will
// allow for a full timeout which will lead to a
// move to the Init state. This might still not fix
// the issue but at least the client keeps trying.
} else if (msgType == DHCPNAK) {
// Request denied, halt network and start over
haltNetwork();
setNextState(State::Init);
return;
}
break;
default:
// For the other states the client is not expecting any
// network messages so we ignore those messages.
break;
}
}
} else {
// An error occurred in polling, don't do anything here. The client
// should keep going anyway to try to acquire a lease in the future
// if things start working again.
}
// If we reach this point we received something that's not a DHCP,
// message, we timed out, or an error occurred. Go again with whatever
// time remains.
uint64_t currentTime = now();
uint64_t end = startedAt + timeout;
if (currentTime >= end) {
// We're done anyway, return and let caller evaluate
return;
}
// Wait whatever the remaining time is
timeout = end - currentTime;
}
}
bool DhcpClient::configureDhcp(const Message& msg) {
uint8_t optLength = 0;
size_t optsSize = msg.optionsSize();
if (optsSize < 4) {
// Message is too small
if (kDebug) ALOGD("Opts size too small %d", static_cast<int>(optsSize));
return false;
}
const uint8_t* options = msg.dhcpData.options;
memset(&mDhcpInfo, 0, sizeof(mDhcpInfo));
// Inspect all options in the message to try to find the ones we want
for (size_t i = 4; i + 1 < optsSize; ) {
uint8_t optCode = options[i];
uint8_t optLength = options[i + 1];
if (optCode == OPT_END) {
break;
}
if (options + optLength + i >= msg.end()) {
// Invalid option length, drop it
if (kDebug) ALOGD("Invalid opt length %d for opt %d",
static_cast<int>(optLength),
static_cast<int>(optCode));
return false;
}
const uint8_t* opt = options + i + 2;
switch (optCode) {
case OPT_LEASE_TIME:
if (optLength == 4) {
mDhcpInfo.leaseTime =
ntohl(*reinterpret_cast<const uint32_t*>(opt));
}
break;
case OPT_T1:
if (optLength == 4) {
mDhcpInfo.t1 =
ntohl(*reinterpret_cast<const uint32_t*>(opt));
}
break;
case OPT_T2:
if (optLength == 4) {
mDhcpInfo.t2 =
ntohl(*reinterpret_cast<const uint32_t*>(opt));
}
break;
case OPT_SUBNET_MASK:
if (optLength == 4) {
mDhcpInfo.subnetMask =
*reinterpret_cast<const in_addr_t*>(opt);
}
break;
case OPT_GATEWAY:
if (optLength >= 4) {
mDhcpInfo.gateway =
*reinterpret_cast<const in_addr_t*>(opt);
}
break;
case OPT_MTU:
if (optLength == 2) {
mDhcpInfo.mtu =
ntohs(*reinterpret_cast<const uint16_t*>(opt));
}
break;
case OPT_DNS:
if (optLength >= 4) {
mDhcpInfo.dns[0] =
*reinterpret_cast<const in_addr_t*>(opt);
}
if (optLength >= 8) {
mDhcpInfo.dns[1] =
*reinterpret_cast<const in_addr_t*>(opt + 4);
}
if (optLength >= 12) {
mDhcpInfo.dns[2] =
*reinterpret_cast<const in_addr_t*>(opt + 8);
}
if (optLength >= 16) {
mDhcpInfo.dns[3] =
*reinterpret_cast<const in_addr_t*>(opt + 12);
}
case OPT_SERVER_ID:
if (optLength == 4) {
mDhcpInfo.serverId =
*reinterpret_cast<const in_addr_t*>(opt);
}
default:
break;
}
i += 2 + optLength;
}
mDhcpInfo.offeredAddress = msg.dhcpData.yiaddr;
if (mDhcpInfo.leaseTime == 0) {
// We didn't get a lease time, ignore this offer
return false;
}
// If there is no T1 or T2 timer given then we create an estimate as
// suggested for servers in RFC 2131.
uint32_t t1 = mDhcpInfo.t1, t2 = mDhcpInfo.t2;
mT1.expireSeconds(t1 > 0 ? t1 : (mDhcpInfo.leaseTime / 2));
mT2.expireSeconds(t2 > 0 ? t2 : ((mDhcpInfo.leaseTime * 7) / 8));
Result res = mInterface.bringUp();
if (!res) {
ALOGE("Could not configure DHCP: %s", res.c_str());
return false;
}
if (mDhcpInfo.mtu != 0) {
res = mInterface.setMtu(mDhcpInfo.mtu);
if (!res) {
// Consider this non-fatal, the system will not perform at its best
// but should still work.
ALOGE("Could not configure DHCP: %s", res.c_str());
}
}
char propName[64];
snprintf(propName, sizeof(propName), "net.%s.gw",
mInterface.getName().c_str());
if (property_set(propName, addrToStr(mDhcpInfo.gateway).c_str()) != 0) {
ALOGE("Failed to set %s: %s", propName, strerror(errno));
}
int numDnsEntries = sizeof(mDhcpInfo.dns) / sizeof(mDhcpInfo.dns[0]);
for (int i = 0; i < numDnsEntries; ++i) {
snprintf(propName, sizeof(propName), "net.%s.dns%d",
mInterface.getName().c_str(), i + 1);
if (mDhcpInfo.dns[i] != 0) {
if (property_set(propName,
addrToStr(mDhcpInfo.dns[i]).c_str()) != 0) {
ALOGE("Failed to set %s: %s", propName, strerror(errno));
}
} else {
// Clear out any previous value here in case it was set
if (property_set(propName, "") != 0) {
ALOGE("Failed to clear %s: %s", propName, strerror(errno));
}
}
}
res = mInterface.setAddress(mDhcpInfo.offeredAddress,
mDhcpInfo.subnetMask);
if (!res) {
ALOGE("Could not configure DHCP: %s", res.c_str());
return false;
}
if ((mOptions & static_cast<uint32_t>(ClientOption::NoGateway)) == 0) {
res = mRouter.setDefaultGateway(mDhcpInfo.gateway,
mInterface.getIndex());
if (!res) {
ALOGE("Could not configure DHCP: %s", res.c_str());
return false;
}
}
return true;
}
void DhcpClient::haltNetwork() {
Result res = mInterface.setAddress(0, 0);
if (!res) {
ALOGE("Could not halt network: %s", res.c_str());
}
res = mInterface.bringDown();
if (!res) {
ALOGE("Could not halt network: %s", res.c_str());
}
}
bool DhcpClient::receiveDhcpMessage(Message* msg) {
bool isValid = false;
Result res = mSocket.receiveRawUdp(PORT_BOOTP_CLIENT, msg, &isValid);
if (!res) {
if (kDebug) ALOGD("Discarding message: %s", res.c_str());
return false;
}
return isValid &&
msg->isValidDhcpMessage(OP_BOOTREPLY, mLastMsg.dhcpData.xid);
}
uint32_t DhcpClient::calculateTimeoutMillis() {
if (!mFuzzNextTimeout) {
return mNextTimeout;
}
int adjustment = mRandomDistribution(mRandomEngine);
if (adjustment < 0 && static_cast<uint32_t>(-adjustment) > mNextTimeout) {
// Underflow, return a timeout of zero milliseconds
return 0;
}
return mNextTimeout + adjustment;
}
void DhcpClient::increaseTimeout() {
if (mNextTimeout == kNoTimeout) {
mNextTimeout = kInitialTimeout;
} else {
if (mNextTimeout < kMaxTimeout) {
mNextTimeout *= 2;
}
if (mNextTimeout > kMaxTimeout) {
mNextTimeout = kMaxTimeout;
}
}
}
void DhcpClient::setNextState(State state) {
if (kDebug) ALOGD("Moving from state %s to %s",
stateToStr(mState), stateToStr(state));
mState = state;
mNextTimeout = kNoTimeout;
mFuzzNextTimeout = true;
}
void DhcpClient::sendDhcpRequest(in_addr_t destination) {
if (kDebug) ALOGD("Sending DHCPREQUEST");
mLastMsg = Message::request(mInterface.getMacAddress(),
mRequestAddress,
destination);
sendMessage(mLastMsg);
}
void DhcpClient::sendDhcpDiscover() {
if (kDebug) ALOGD("Sending DHCPDISCOVER");
mLastMsg = Message::discover(mInterface.getMacAddress());
sendMessage(mLastMsg);
}
void DhcpClient::sendMessage(const Message& message) {
Result res = mSocket.sendRawUdp(INADDR_ANY,
PORT_BOOTP_CLIENT,
INADDR_BROADCAST,
PORT_BOOTP_SERVER,
mInterface.getIndex(),
message);
if (!res) {
ALOGE("Unable to send message: %s", res.c_str());
}
}