blob: d3e476bb7285d112a08deacbbcdb0b5209f96a57 [file] [log] [blame]
// Copyright (C) 2018 The Android Open Source Project
// Copyright (C) 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ResourceTracker.h"
#include "../OpenglSystemCommon/EmulatorFeatureInfo.h"
#ifdef VK_USE_PLATFORM_ANDROID_KHR
#include "../egl/goldfish_sync.h"
typedef uint32_t zx_handle_t;
#define ZX_HANDLE_INVALID ((zx_handle_t)0)
void zx_handle_close(zx_handle_t) { }
void zx_event_create(int, zx_handle_t*) { }
typedef struct VkImportMemoryZirconHandleInfoFUCHSIA {
VkStructureType sType;
const void* pNext;
VkExternalMemoryHandleTypeFlagBits handleType;
uint32_t handle;
} VkImportMemoryZirconHandleInfoFUCHSIA;
typedef uint32_t VkBufferCollectionFUCHSIA;
typedef struct VkImportMemoryBufferCollectionFUCHSIA {
VkStructureType sType;
const void* pNext;
VkBufferCollectionFUCHSIA collection;
uint32_t index;
} VkImportMemoryBufferCollectionFUCHSIA;
#define VK_STRUCTURE_TYPE_IMPORT_MEMORY_BUFFER_COLLECTION_FUCHSIA \
((VkStructureType)1001000000)
#define VK_STRUCTURE_TYPE_TEMP_IMPORT_MEMORY_ZIRCON_HANDLE_INFO_FUCHSIA \
((VkStructureType)1001000000)
#define VK_EXTERNAL_MEMORY_HANDLE_TYPE_TEMP_ZIRCON_VMO_BIT_FUCHSIA \
((VkStructureType)0x00000800)
#define VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TEMP_ZIRCON_EVENT_BIT_FUCHSIA \
((VkStructureType)0x00000020)
#include "AndroidHardwareBuffer.h"
#endif // VK_USE_PLATFORM_ANDROID_KHR
#ifdef VK_USE_PLATFORM_FUCHSIA
#include <cutils/native_handle.h>
#include <fuchsia/sysmem/cpp/fidl.h>
#include <lib/fdio/directory.h>
#include <lib/fdio/fd.h>
#include <lib/fdio/fdio.h>
#include <lib/fdio/io.h>
#include <lib/zx/channel.h>
#include <zircon/process.h>
#include <zircon/syscalls.h>
#include <zircon/syscalls/object.h>
struct AHardwareBuffer;
void AHardwareBuffer_release(AHardwareBuffer*) { }
native_handle_t *AHardwareBuffer_getNativeHandle(AHardwareBuffer*) { return NULL; }
uint64_t getAndroidHardwareBufferUsageFromVkUsage(
const VkImageCreateFlags vk_create,
const VkImageUsageFlags vk_usage) {
return AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE;
}
VkResult importAndroidHardwareBuffer(
const VkImportAndroidHardwareBufferInfoANDROID* info,
struct AHardwareBuffer **importOut) {
return VK_SUCCESS;
}
VkResult createAndroidHardwareBuffer(
bool hasDedicatedImage,
bool hasDedicatedBuffer,
const VkExtent3D& imageExtent,
uint32_t imageLayers,
VkFormat imageFormat,
VkImageUsageFlags imageUsage,
VkImageCreateFlags imageCreateFlags,
VkDeviceSize bufferSize,
VkDeviceSize allocationInfoAllocSize,
struct AHardwareBuffer **out) {
return VK_SUCCESS;
}
namespace goldfish_vk {
struct HostVisibleMemoryVirtualizationInfo;
}
VkResult getAndroidHardwareBufferPropertiesANDROID(
const goldfish_vk::HostVisibleMemoryVirtualizationInfo*,
VkDevice,
const AHardwareBuffer*,
VkAndroidHardwareBufferPropertiesANDROID*) { return VK_SUCCESS; }
VkResult getMemoryAndroidHardwareBufferANDROID(struct AHardwareBuffer **) { return VK_SUCCESS; }
#endif // VK_USE_PLATFORM_FUCHSIA
#include "HostVisibleMemoryVirtualization.h"
#include "Resources.h"
#include "VkEncoder.h"
#include "android/base/AlignedBuf.h"
#include "android/base/synchronization/AndroidLock.h"
#include "gralloc_cb.h"
#include "goldfish_address_space.h"
#include "goldfish_vk_private_defs.h"
#include "vk_format_info.h"
#include "vk_util.h"
#include <string>
#include <unordered_map>
#include <set>
#include <vndk/hardware_buffer.h>
#include <log/log.h>
#include <stdlib.h>
#include <sync/sync.h>
#ifdef VK_USE_PLATFORM_ANDROID_KHR
#include <sys/mman.h>
#include <sys/syscall.h>
#ifdef HOST_BUILD
#include "android/utils/tempfile.h"
#endif
#ifndef HAVE_MEMFD_CREATE
static inline int
memfd_create(const char *name, unsigned int flags) {
#ifdef HOST_BUILD
TempFile* tmpFile = tempfile_create();
return open(tempfile_path(tmpFile), O_RDWR);
// TODO: Windows is not suppose to support VkSemaphoreGetFdInfoKHR
#else
return syscall(SYS_memfd_create, name, flags);
#endif
}
#endif // !HAVE_MEMFD_CREATE
#endif // !VK_USE_PLATFORM_ANDROID_KHR
#define RESOURCE_TRACKER_DEBUG 0
#if RESOURCE_TRACKER_DEBUG
#undef D
#define D(fmt,...) ALOGD("%s: " fmt, __func__, ##__VA_ARGS__);
#else
#ifndef D
#define D(fmt,...)
#endif
#endif
using android::aligned_buf_alloc;
using android::aligned_buf_free;
using android::base::guest::AutoLock;
using android::base::guest::Lock;
namespace goldfish_vk {
#define MAKE_HANDLE_MAPPING_FOREACH(type_name, map_impl, map_to_u64_impl, map_from_u64_impl) \
void mapHandles_##type_name(type_name* handles, size_t count) override { \
for (size_t i = 0; i < count; ++i) { \
map_impl; \
} \
} \
void mapHandles_##type_name##_u64(const type_name* handles, uint64_t* handle_u64s, size_t count) override { \
for (size_t i = 0; i < count; ++i) { \
map_to_u64_impl; \
} \
} \
void mapHandles_u64_##type_name(const uint64_t* handle_u64s, type_name* handles, size_t count) override { \
for (size_t i = 0; i < count; ++i) { \
map_from_u64_impl; \
} \
} \
#define DEFINE_RESOURCE_TRACKING_CLASS(class_name, impl) \
class class_name : public VulkanHandleMapping { \
public: \
virtual ~class_name() { } \
GOLDFISH_VK_LIST_HANDLE_TYPES(impl) \
}; \
#define CREATE_MAPPING_IMPL_FOR_TYPE(type_name) \
MAKE_HANDLE_MAPPING_FOREACH(type_name, \
handles[i] = new_from_host_##type_name(handles[i]); ResourceTracker::get()->register_##type_name(handles[i]);, \
handle_u64s[i] = (uint64_t)new_from_host_##type_name(handles[i]), \
handles[i] = (type_name)new_from_host_u64_##type_name(handle_u64s[i]); ResourceTracker::get()->register_##type_name(handles[i]);)
#define UNWRAP_MAPPING_IMPL_FOR_TYPE(type_name) \
MAKE_HANDLE_MAPPING_FOREACH(type_name, \
handles[i] = get_host_##type_name(handles[i]), \
handle_u64s[i] = (uint64_t)get_host_u64_##type_name(handles[i]), \
handles[i] = (type_name)get_host_##type_name((type_name)handle_u64s[i]))
#define DESTROY_MAPPING_IMPL_FOR_TYPE(type_name) \
MAKE_HANDLE_MAPPING_FOREACH(type_name, \
ResourceTracker::get()->unregister_##type_name(handles[i]); delete_goldfish_##type_name(handles[i]), \
(void)handle_u64s[i]; delete_goldfish_##type_name(handles[i]), \
(void)handles[i]; delete_goldfish_##type_name((type_name)handle_u64s[i]))
DEFINE_RESOURCE_TRACKING_CLASS(CreateMapping, CREATE_MAPPING_IMPL_FOR_TYPE)
DEFINE_RESOURCE_TRACKING_CLASS(UnwrapMapping, UNWRAP_MAPPING_IMPL_FOR_TYPE)
DEFINE_RESOURCE_TRACKING_CLASS(DestroyMapping, DESTROY_MAPPING_IMPL_FOR_TYPE)
class ResourceTracker::Impl {
public:
Impl() = default;
CreateMapping createMapping;
UnwrapMapping unwrapMapping;
DestroyMapping destroyMapping;
DefaultHandleMapping defaultMapping;
#define HANDLE_DEFINE_TRIVIAL_INFO_STRUCT(type) \
struct type##_Info { \
uint32_t unused; \
}; \
GOLDFISH_VK_LIST_TRIVIAL_HANDLE_TYPES(HANDLE_DEFINE_TRIVIAL_INFO_STRUCT)
struct VkInstance_Info {
uint32_t highestApiVersion;
std::set<std::string> enabledExtensions;
// Fodder for vkEnumeratePhysicalDevices.
std::vector<VkPhysicalDevice> physicalDevices;
};
using HostMemBlocks = std::vector<HostMemAlloc>;
using HostMemBlockIndex = size_t;
#define INVALID_HOST_MEM_BLOCK (-1)
struct VkDevice_Info {
VkPhysicalDevice physdev;
VkPhysicalDeviceProperties props;
VkPhysicalDeviceMemoryProperties memProps;
std::vector<HostMemBlocks> hostMemBlocks { VK_MAX_MEMORY_TYPES };
uint32_t apiVersion;
std::set<std::string> enabledExtensions;
VkFence fence = VK_NULL_HANDLE;
};
struct VkDeviceMemory_Info {
VkDeviceSize allocationSize = 0;
VkDeviceSize mappedSize = 0;
uint8_t* mappedPtr = nullptr;
uint32_t memoryTypeIndex = 0;
bool virtualHostVisibleBacking = false;
bool directMapped = false;
GoldfishAddressSpaceBlock*
goldfishAddressSpaceBlock = nullptr;
SubAlloc subAlloc;
AHardwareBuffer* ahw = nullptr;
zx_handle_t vmoHandle = ZX_HANDLE_INVALID;
uint32_t cbHandle = 0;
};
// custom guest-side structs for images/buffers because of AHardwareBuffer :((
struct VkImage_Info {
VkDevice device;
VkImageCreateInfo createInfo;
bool external = false;
VkExternalMemoryImageCreateInfo externalCreateInfo;
VkDeviceMemory currentBacking = VK_NULL_HANDLE;
VkDeviceSize currentBackingOffset = 0;
VkDeviceSize currentBackingSize = 0;
uint32_t cbHandle = 0;
};
struct VkBuffer_Info {
VkDevice device;
VkBufferCreateInfo createInfo;
bool external = false;
VkExternalMemoryBufferCreateInfo externalCreateInfo;
VkDeviceMemory currentBacking = VK_NULL_HANDLE;
VkDeviceSize currentBackingOffset = 0;
VkDeviceSize currentBackingSize = 0;
};
struct VkSemaphore_Info {
VkDevice device;
zx_handle_t eventHandle = ZX_HANDLE_INVALID;
int syncFd = -1;
};
struct VkDescriptorUpdateTemplate_Info {
std::vector<VkDescriptorUpdateTemplateEntry> templateEntries;
// Flattened versions
std::vector<uint32_t> imageInfoEntryIndices;
std::vector<uint32_t> bufferInfoEntryIndices;
std::vector<uint32_t> bufferViewEntryIndices;
std::vector<VkDescriptorImageInfo> imageInfos;
std::vector<VkDescriptorBufferInfo> bufferInfos;
std::vector<VkBufferView> bufferViews;
};
#define HANDLE_REGISTER_IMPL_IMPL(type) \
std::unordered_map<type, type##_Info> info_##type; \
void register_##type(type obj) { \
AutoLock lock(mLock); \
info_##type[obj] = type##_Info(); \
} \
#define HANDLE_UNREGISTER_IMPL_IMPL(type) \
void unregister_##type(type obj) { \
AutoLock lock(mLock); \
info_##type.erase(obj); \
} \
GOLDFISH_VK_LIST_HANDLE_TYPES(HANDLE_REGISTER_IMPL_IMPL)
GOLDFISH_VK_LIST_TRIVIAL_HANDLE_TYPES(HANDLE_UNREGISTER_IMPL_IMPL)
void unregister_VkInstance(VkInstance instance) {
AutoLock lock(mLock);
auto it = info_VkInstance.find(instance);
if (it == info_VkInstance.end()) return;
auto info = it->second;
info_VkInstance.erase(instance);
lock.unlock();
}
void unregister_VkDevice(VkDevice device) {
AutoLock lock(mLock);
auto it = info_VkDevice.find(device);
if (it == info_VkDevice.end()) return;
auto info = it->second;
info_VkDevice.erase(device);
lock.unlock();
}
void unregister_VkDeviceMemory(VkDeviceMemory mem) {
AutoLock lock(mLock);
auto it = info_VkDeviceMemory.find(mem);
if (it == info_VkDeviceMemory.end()) return;
auto& memInfo = it->second;
if (memInfo.ahw) {
AHardwareBuffer_release(memInfo.ahw);
}
if (memInfo.cbHandle) {
(*mCloseColorBuffer)(memInfo.cbHandle);
}
if (memInfo.vmoHandle != ZX_HANDLE_INVALID) {
zx_handle_close(memInfo.vmoHandle);
}
if (memInfo.mappedPtr &&
!memInfo.virtualHostVisibleBacking &&
!memInfo.directMapped) {
aligned_buf_free(memInfo.mappedPtr);
}
if (memInfo.directMapped) {
subFreeHostMemory(&memInfo.subAlloc);
}
delete memInfo.goldfishAddressSpaceBlock;
info_VkDeviceMemory.erase(mem);
}
void unregister_VkImage(VkImage img) {
AutoLock lock(mLock);
auto it = info_VkImage.find(img);
if (it == info_VkImage.end()) return;
auto& imageInfo = it->second;
if (imageInfo.cbHandle) {
(*mCloseColorBuffer)(imageInfo.cbHandle);
}
info_VkImage.erase(img);
}
void unregister_VkBuffer(VkBuffer buf) {
AutoLock lock(mLock);
auto it = info_VkBuffer.find(buf);
if (it == info_VkBuffer.end()) return;
info_VkBuffer.erase(buf);
}
void unregister_VkSemaphore(VkSemaphore sem) {
AutoLock lock(mLock);
auto it = info_VkSemaphore.find(sem);
if (it == info_VkSemaphore.end()) return;
auto& semInfo = it->second;
if (semInfo.eventHandle != ZX_HANDLE_INVALID) {
zx_handle_close(semInfo.eventHandle);
}
info_VkSemaphore.erase(sem);
}
void unregister_VkDescriptorUpdateTemplate(VkDescriptorUpdateTemplate templ) {
info_VkDescriptorUpdateTemplate.erase(templ);
}
// TODO: Upgrade to 1.1
static constexpr uint32_t kMaxApiVersion = VK_MAKE_VERSION(1, 1, 0);
static constexpr uint32_t kMinApiVersion = VK_MAKE_VERSION(1, 0, 0);
void setInstanceInfo(VkInstance instance,
uint32_t enabledExtensionCount,
const char* const* ppEnabledExtensionNames,
uint32_t apiVersion) {
AutoLock lock(mLock);
auto& info = info_VkInstance[instance];
info.highestApiVersion = apiVersion;
if (!ppEnabledExtensionNames) return;
for (uint32_t i = 0; i < enabledExtensionCount; ++i) {
info.enabledExtensions.insert(ppEnabledExtensionNames[i]);
}
}
void setDeviceInfo(VkDevice device,
VkPhysicalDevice physdev,
VkPhysicalDeviceProperties props,
VkPhysicalDeviceMemoryProperties memProps,
uint32_t enabledExtensionCount,
const char* const* ppEnabledExtensionNames) {
AutoLock lock(mLock);
auto& info = info_VkDevice[device];
info.physdev = physdev;
info.props = props;
info.memProps = memProps;
initHostVisibleMemoryVirtualizationInfo(
physdev, &memProps,
mFeatureInfo->hasDirectMem,
&mHostVisibleMemoryVirtInfo);
info.apiVersion = props.apiVersion;
if (!ppEnabledExtensionNames) return;
for (uint32_t i = 0; i < enabledExtensionCount; ++i) {
info.enabledExtensions.insert(ppEnabledExtensionNames[i]);
}
}
void setDeviceMemoryInfo(VkDevice device,
VkDeviceMemory memory,
VkDeviceSize allocationSize,
VkDeviceSize mappedSize,
uint8_t* ptr,
uint32_t memoryTypeIndex,
AHardwareBuffer* ahw = nullptr,
zx_handle_t vmoHandle = ZX_HANDLE_INVALID,
uint32_t cbHandle = 0) {
AutoLock lock(mLock);
auto& deviceInfo = info_VkDevice[device];
auto& info = info_VkDeviceMemory[memory];
info.allocationSize = allocationSize;
info.mappedSize = mappedSize;
info.mappedPtr = ptr;
info.memoryTypeIndex = memoryTypeIndex;
info.ahw = ahw;
info.vmoHandle = vmoHandle;
info.cbHandle = cbHandle;
}
void setImageInfo(VkImage image,
VkDevice device,
const VkImageCreateInfo *pCreateInfo) {
AutoLock lock(mLock);
auto& info = info_VkImage[image];
info.device = device;
info.createInfo = *pCreateInfo;
}
bool isMemoryTypeHostVisible(VkDevice device, uint32_t typeIndex) const {
AutoLock lock(mLock);
const auto it = info_VkDevice.find(device);
if (it == info_VkDevice.end()) return false;
const auto& info = it->second;
return info.memProps.memoryTypes[typeIndex].propertyFlags &
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
}
uint8_t* getMappedPointer(VkDeviceMemory memory) {
AutoLock lock(mLock);
const auto it = info_VkDeviceMemory.find(memory);
if (it == info_VkDeviceMemory.end()) return nullptr;
const auto& info = it->second;
return info.mappedPtr;
}
VkDeviceSize getMappedSize(VkDeviceMemory memory) {
AutoLock lock(mLock);
const auto it = info_VkDeviceMemory.find(memory);
if (it == info_VkDeviceMemory.end()) return 0;
const auto& info = it->second;
return info.mappedSize;
}
VkDeviceSize getNonCoherentExtendedSize(VkDevice device, VkDeviceSize basicSize) const {
AutoLock lock(mLock);
const auto it = info_VkDevice.find(device);
if (it == info_VkDevice.end()) return basicSize;
const auto& info = it->second;
VkDeviceSize nonCoherentAtomSize =
info.props.limits.nonCoherentAtomSize;
VkDeviceSize atoms =
(basicSize + nonCoherentAtomSize - 1) / nonCoherentAtomSize;
return atoms * nonCoherentAtomSize;
}
bool isValidMemoryRange(const VkMappedMemoryRange& range) const {
AutoLock lock(mLock);
const auto it = info_VkDeviceMemory.find(range.memory);
if (it == info_VkDeviceMemory.end()) return false;
const auto& info = it->second;
if (!info.mappedPtr) return false;
VkDeviceSize offset = range.offset;
VkDeviceSize size = range.size;
if (size == VK_WHOLE_SIZE) {
return offset <= info.mappedSize;
}
return offset + size <= info.mappedSize;
}
void setupFeatures(const EmulatorFeatureInfo* features) {
if (!features || mFeatureInfo) return;
mFeatureInfo.reset(new EmulatorFeatureInfo);
*mFeatureInfo = *features;
if (mFeatureInfo->hasDirectMem) {
mGoldfishAddressSpaceBlockProvider.reset(
new GoldfishAddressSpaceBlockProvider);
}
#ifdef VK_USE_PLATFORM_FUCHSIA
zx_status_t status = fdio_service_connect(
"/svc/fuchsia.sysmem.Allocator",
mSysmemAllocator.NewRequest().TakeChannel().release());
if (status != ZX_OK) {
ALOGE("failed to connect to sysmem service, status %d", status);
}
#endif
}
bool hostSupportsVulkan() const {
if (!mFeatureInfo) return false;
return mFeatureInfo->hasVulkan;
}
bool usingDirectMapping() const {
return mHostVisibleMemoryVirtInfo.virtualizationSupported;
}
bool supportsDeferredCommands() const {
if (!mFeatureInfo) return false;
return mFeatureInfo->hasDeferredVulkanCommands;
}
int getHostInstanceExtensionIndex(const std::string& extName) const {
int i = 0;
for (const auto& prop : mHostInstanceExtensions) {
if (extName == std::string(prop.extensionName)) {
return i;
}
++i;
}
return -1;
}
int getHostDeviceExtensionIndex(const std::string& extName) const {
int i = 0;
for (const auto& prop : mHostDeviceExtensions) {
if (extName == std::string(prop.extensionName)) {
return i;
}
++i;
}
return -1;
}
void setColorBufferFunctions(PFN_CreateColorBuffer create,
PFN_OpenColorBuffer open,
PFN_CloseColorBuffer close) {
mCreateColorBuffer = create;
mOpenColorBuffer = open;
mCloseColorBuffer = close;
}
void deviceMemoryTransform_tohost(
VkDeviceMemory* memory, uint32_t memoryCount,
VkDeviceSize* offset, uint32_t offsetCount,
VkDeviceSize* size, uint32_t sizeCount,
uint32_t* typeIndex, uint32_t typeIndexCount,
uint32_t* typeBits, uint32_t typeBitsCount) {
(void)memoryCount;
(void)offsetCount;
(void)sizeCount;
const auto& hostVirt =
mHostVisibleMemoryVirtInfo;
if (!hostVirt.virtualizationSupported) return;
if (memory) {
AutoLock lock (mLock);
for (uint32_t i = 0; i < memoryCount; ++i) {
VkDeviceMemory mem = memory[i];
auto it = info_VkDeviceMemory.find(mem);
if (it == info_VkDeviceMemory.end()) return;
const auto& info = it->second;
if (!info.directMapped) continue;
memory[i] = info.subAlloc.baseMemory;
if (offset) {
offset[i] = info.subAlloc.baseOffset + offset[i];
}
if (size) {
if (size[i] == VK_WHOLE_SIZE) {
size[i] = info.subAlloc.subMappedSize;
}
}
// TODO
(void)memory;
(void)offset;
(void)size;
}
}
for (uint32_t i = 0; i < typeIndexCount; ++i) {
typeIndex[i] =
hostVirt.memoryTypeIndexMappingToHost[typeIndex[i]];
}
for (uint32_t i = 0; i < typeBitsCount; ++i) {
uint32_t bits = 0;
for (uint32_t j = 0; j < VK_MAX_MEMORY_TYPES; ++j) {
bool guestHas = typeBits[i] & (1 << j);
uint32_t hostIndex =
hostVirt.memoryTypeIndexMappingToHost[j];
bits |= guestHas ? (1 << hostIndex) : 0;
}
typeBits[i] = bits;
}
}
void deviceMemoryTransform_fromhost(
VkDeviceMemory* memory, uint32_t memoryCount,
VkDeviceSize* offset, uint32_t offsetCount,
VkDeviceSize* size, uint32_t sizeCount,
uint32_t* typeIndex, uint32_t typeIndexCount,
uint32_t* typeBits, uint32_t typeBitsCount) {
(void)memoryCount;
(void)offsetCount;
(void)sizeCount;
const auto& hostVirt =
mHostVisibleMemoryVirtInfo;
if (!hostVirt.virtualizationSupported) return;
AutoLock lock (mLock);
for (uint32_t i = 0; i < memoryCount; ++i) {
// TODO
(void)memory;
(void)offset;
(void)size;
}
for (uint32_t i = 0; i < typeIndexCount; ++i) {
typeIndex[i] =
hostVirt.memoryTypeIndexMappingFromHost[typeIndex[i]];
}
for (uint32_t i = 0; i < typeBitsCount; ++i) {
uint32_t bits = 0;
for (uint32_t j = 0; j < VK_MAX_MEMORY_TYPES; ++j) {
bool hostHas = typeBits[i] & (1 << j);
uint32_t guestIndex =
hostVirt.memoryTypeIndexMappingFromHost[j];
bits |= hostHas ? (1 << guestIndex) : 0;
if (hostVirt.memoryTypeBitsShouldAdvertiseBoth[j]) {
bits |= hostHas ? (1 << j) : 0;
}
}
typeBits[i] = bits;
}
}
VkResult on_vkEnumerateInstanceExtensionProperties(
void* context,
VkResult,
const char*,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties) {
std::vector<const char*> allowedExtensionNames = {
"VK_KHR_get_physical_device_properties2",
"VK_KHR_sampler_ycbcr_conversion",
#ifdef VK_USE_PLATFORM_ANDROID_KHR
"VK_KHR_external_semaphore_capabilities",
"VK_KHR_external_memory_capabilities",
#endif
// TODO:
// VK_KHR_external_memory_capabilities
};
VkEncoder* enc = (VkEncoder*)context;
// Only advertise a select set of extensions.
if (mHostInstanceExtensions.empty()) {
uint32_t hostPropCount = 0;
enc->vkEnumerateInstanceExtensionProperties(nullptr, &hostPropCount, nullptr);
mHostInstanceExtensions.resize(hostPropCount);
VkResult hostRes =
enc->vkEnumerateInstanceExtensionProperties(
nullptr, &hostPropCount, mHostInstanceExtensions.data());
if (hostRes != VK_SUCCESS) {
return hostRes;
}
}
std::vector<VkExtensionProperties> filteredExts;
for (size_t i = 0; i < allowedExtensionNames.size(); ++i) {
auto extIndex = getHostInstanceExtensionIndex(allowedExtensionNames[i]);
if (extIndex != -1) {
filteredExts.push_back(mHostInstanceExtensions[extIndex]);
}
}
VkExtensionProperties anbExtProps[] = {
#ifdef VK_USE_PLATFORM_ANDROID_KHR
{ "VK_ANDROID_native_buffer", 7 },
#endif
#ifdef VK_USE_PLATFORM_FUCHSIA
{ "VK_KHR_external_memory_capabilities", 1},
{ "VK_KHR_external_semaphore_capabilities", 1},
#endif
};
for (auto& anbExtProp: anbExtProps) {
filteredExts.push_back(anbExtProp);
}
if (pPropertyCount) {
*pPropertyCount = filteredExts.size();
}
if (pPropertyCount && pProperties) {
for (size_t i = 0; i < *pPropertyCount; ++i) {
pProperties[i] = filteredExts[i];
}
}
return VK_SUCCESS;
}
VkResult on_vkEnumerateDeviceExtensionProperties(
void* context,
VkResult,
VkPhysicalDevice physdev,
const char*,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties) {
std::vector<const char*> allowedExtensionNames = {
"VK_KHR_maintenance1",
"VK_KHR_get_memory_requirements2",
"VK_KHR_dedicated_allocation",
"VK_KHR_bind_memory2",
"VK_KHR_sampler_ycbcr_conversion",
#ifdef VK_USE_PLATFORM_ANDROID_KHR
"VK_KHR_external_semaphore",
"VK_KHR_external_semaphore_fd",
// "VK_KHR_external_semaphore_win32", not exposed because it's translated to fd
"VK_KHR_external_memory",
#endif
// "VK_KHR_maintenance2",
// "VK_KHR_maintenance3",
// TODO:
// VK_KHR_external_memory_capabilities
};
VkEncoder* enc = (VkEncoder*)context;
if (mHostDeviceExtensions.empty()) {
uint32_t hostPropCount = 0;
enc->vkEnumerateDeviceExtensionProperties(physdev, nullptr, &hostPropCount, nullptr);
mHostDeviceExtensions.resize(hostPropCount);
VkResult hostRes =
enc->vkEnumerateDeviceExtensionProperties(
physdev, nullptr, &hostPropCount, mHostDeviceExtensions.data());
if (hostRes != VK_SUCCESS) {
return hostRes;
}
}
bool hostHasWin32ExternalSemaphore =
getHostDeviceExtensionIndex(
"VK_KHR_external_semaphore_win32") != -1;
bool hostHasPosixExternalSemaphore =
getHostDeviceExtensionIndex(
"VK_KHR_external_semaphore_fd") != -1;
ALOGD("%s: host has ext semaphore? win32 %d posix %d\n", __func__,
hostHasWin32ExternalSemaphore,
hostHasPosixExternalSemaphore);
bool hostSupportsExternalSemaphore =
hostHasWin32ExternalSemaphore ||
hostHasPosixExternalSemaphore;
std::vector<VkExtensionProperties> filteredExts;
for (size_t i = 0; i < allowedExtensionNames.size(); ++i) {
auto extIndex = getHostDeviceExtensionIndex(allowedExtensionNames[i]);
if (extIndex != -1) {
filteredExts.push_back(mHostDeviceExtensions[extIndex]);
}
}
VkExtensionProperties anbExtProps[] = {
#ifdef VK_USE_PLATFORM_ANDROID_KHR
{ "VK_ANDROID_native_buffer", 7 },
#endif
#ifdef VK_USE_PLATFORM_FUCHSIA
{ "VK_KHR_external_memory", 1 },
{ "VK_KHR_external_semaphore", 1 },
{ "VK_FUCHSIA_external_semaphore", 1 },
{ "VK_FUCHSIA_buffer_collection", 1 },
#endif
};
for (auto& anbExtProp: anbExtProps) {
filteredExts.push_back(anbExtProp);
}
if (hostSupportsExternalSemaphore &&
!hostHasPosixExternalSemaphore) {
filteredExts.push_back(
{ "VK_KHR_external_semaphore_fd", 1});
}
bool win32ExtMemAvailable =
getHostDeviceExtensionIndex(
"VK_KHR_external_memory_win32") != -1;
bool posixExtMemAvailable =
getHostDeviceExtensionIndex(
"VK_KHR_external_memory_fd") != -1;
bool hostHasExternalMemorySupport =
win32ExtMemAvailable || posixExtMemAvailable;
if (hostHasExternalMemorySupport) {
#ifdef VK_USE_PLATFORM_ANDROID_KHR
filteredExts.push_back({
"VK_ANDROID_external_memory_android_hardware_buffer", 7
});
#endif
#ifdef VK_USE_PLATFORM_FUCHSIA
filteredExts.push_back({
"VK_FUCHSIA_external_memory", 1
});
#endif
}
if (pPropertyCount) {
*pPropertyCount = filteredExts.size();
}
if (pPropertyCount && pProperties) {
for (size_t i = 0; i < *pPropertyCount; ++i) {
pProperties[i] = filteredExts[i];
}
}
return VK_SUCCESS;
}
VkResult on_vkEnumeratePhysicalDevices(
void* context, VkResult,
VkInstance instance, uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices) {
VkEncoder* enc = (VkEncoder*)context;
if (!instance) return VK_ERROR_INITIALIZATION_FAILED;
if (!pPhysicalDeviceCount) return VK_ERROR_INITIALIZATION_FAILED;
AutoLock lock(mLock);
auto it = info_VkInstance.find(instance);
if (it == info_VkInstance.end()) return VK_ERROR_INITIALIZATION_FAILED;
auto& info = it->second;
if (info.physicalDevices.empty()) {
uint32_t physdevCount = 0;
lock.unlock();
VkResult countRes = enc->vkEnumeratePhysicalDevices(
instance, &physdevCount, nullptr);
lock.lock();
if (countRes != VK_SUCCESS) {
ALOGE("%s: failed: could not count host physical devices. "
"Error %d\n", __func__, countRes);
return countRes;
}
info.physicalDevices.resize(physdevCount);
lock.unlock();
VkResult enumRes = enc->vkEnumeratePhysicalDevices(
instance, &physdevCount, info.physicalDevices.data());
lock.lock();
if (enumRes != VK_SUCCESS) {
ALOGE("%s: failed: could not retrieve host physical devices. "
"Error %d\n", __func__, enumRes);
return enumRes;
}
}
*pPhysicalDeviceCount = (uint32_t)info.physicalDevices.size();
if (pPhysicalDevices && *pPhysicalDeviceCount) {
memcpy(pPhysicalDevices,
info.physicalDevices.data(),
sizeof(VkPhysicalDevice) *
info.physicalDevices.size());
}
return VK_SUCCESS;
}
void on_vkGetPhysicalDeviceMemoryProperties(
void*,
VkPhysicalDevice physdev,
VkPhysicalDeviceMemoryProperties* out) {
initHostVisibleMemoryVirtualizationInfo(
physdev,
out,
mFeatureInfo->hasDirectMem,
&mHostVisibleMemoryVirtInfo);
if (mHostVisibleMemoryVirtInfo.virtualizationSupported) {
*out = mHostVisibleMemoryVirtInfo.guestMemoryProperties;
}
}
void on_vkGetPhysicalDeviceMemoryProperties2(
void*,
VkPhysicalDevice physdev,
VkPhysicalDeviceMemoryProperties2* out) {
initHostVisibleMemoryVirtualizationInfo(
physdev,
&out->memoryProperties,
mFeatureInfo->hasDirectMem,
&mHostVisibleMemoryVirtInfo);
if (mHostVisibleMemoryVirtInfo.virtualizationSupported) {
out->memoryProperties = mHostVisibleMemoryVirtInfo.guestMemoryProperties;
}
}
VkResult on_vkCreateInstance(
void* context,
VkResult input_result,
const VkInstanceCreateInfo* createInfo,
const VkAllocationCallbacks*,
VkInstance* pInstance) {
if (input_result != VK_SUCCESS) return input_result;
VkEncoder* enc = (VkEncoder*)context;
uint32_t apiVersion;
VkResult enumInstanceVersionRes =
enc->vkEnumerateInstanceVersion(&apiVersion);
setInstanceInfo(
*pInstance,
createInfo->enabledExtensionCount,
createInfo->ppEnabledExtensionNames,
apiVersion);
return input_result;
}
VkResult on_vkCreateDevice(
void* context,
VkResult input_result,
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks*,
VkDevice* pDevice) {
if (input_result != VK_SUCCESS) return input_result;
VkEncoder* enc = (VkEncoder*)context;
VkPhysicalDeviceProperties props;
VkPhysicalDeviceMemoryProperties memProps;
enc->vkGetPhysicalDeviceProperties(physicalDevice, &props);
enc->vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProps);
setDeviceInfo(
*pDevice, physicalDevice, props, memProps,
pCreateInfo->enabledExtensionCount, pCreateInfo->ppEnabledExtensionNames);
return input_result;
}
void on_vkDestroyDevice_pre(
void* context,
VkDevice device,
const VkAllocationCallbacks*) {
AutoLock lock(mLock);
auto it = info_VkDevice.find(device);
if (it == info_VkDevice.end()) return;
auto info = it->second;
lock.unlock();
VkEncoder* enc = (VkEncoder*)context;
for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) {
for (auto& block : info.hostMemBlocks[i]) {
destroyHostMemAlloc(enc, device, &block);
}
}
if (info.fence != VK_NULL_HANDLE) {
enc->vkDestroyFence(device, info.fence, nullptr);
}
}
VkResult on_vkGetAndroidHardwareBufferPropertiesANDROID(
void*, VkResult,
VkDevice device,
const AHardwareBuffer* buffer,
VkAndroidHardwareBufferPropertiesANDROID* pProperties) {
return getAndroidHardwareBufferPropertiesANDROID(
&mHostVisibleMemoryVirtInfo,
device, buffer, pProperties);
}
VkResult on_vkGetMemoryAndroidHardwareBufferANDROID(
void*, VkResult,
VkDevice device,
const VkMemoryGetAndroidHardwareBufferInfoANDROID *pInfo,
struct AHardwareBuffer** pBuffer) {
if (!pInfo) return VK_ERROR_INITIALIZATION_FAILED;
if (!pInfo->memory) return VK_ERROR_INITIALIZATION_FAILED;
AutoLock lock(mLock);
auto deviceIt = info_VkDevice.find(device);
if (deviceIt == info_VkDevice.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto memoryIt = info_VkDeviceMemory.find(pInfo->memory);
if (memoryIt == info_VkDeviceMemory.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto& info = memoryIt->second;
VkResult queryRes =
getMemoryAndroidHardwareBufferANDROID(&info.ahw);
if (queryRes != VK_SUCCESS) return queryRes;
*pBuffer = info.ahw;
return queryRes;
}
#ifdef VK_USE_PLATFORM_FUCHSIA
VkResult on_vkGetMemoryZirconHandleFUCHSIA(
void*, VkResult,
VkDevice device,
const VkMemoryGetZirconHandleInfoFUCHSIA* pInfo,
uint32_t* pHandle) {
if (!pInfo) return VK_ERROR_INITIALIZATION_FAILED;
if (!pInfo->memory) return VK_ERROR_INITIALIZATION_FAILED;
AutoLock lock(mLock);
auto deviceIt = info_VkDevice.find(device);
if (deviceIt == info_VkDevice.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto memoryIt = info_VkDeviceMemory.find(pInfo->memory);
if (memoryIt == info_VkDeviceMemory.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto& info = memoryIt->second;
if (info.vmoHandle == ZX_HANDLE_INVALID) {
ALOGE("%s: memory cannot be exported", __func__);
return VK_ERROR_INITIALIZATION_FAILED;
}
*pHandle = ZX_HANDLE_INVALID;
zx_handle_duplicate(info.vmoHandle, ZX_RIGHT_SAME_RIGHTS, pHandle);
return VK_SUCCESS;
}
VkResult on_vkGetMemoryZirconHandlePropertiesFUCHSIA(
void*, VkResult,
VkDevice device,
VkExternalMemoryHandleTypeFlagBits handleType,
uint32_t handle,
VkMemoryZirconHandlePropertiesFUCHSIA* pProperties) {
if (handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_TEMP_ZIRCON_VMO_BIT_FUCHSIA) {
return VK_ERROR_INITIALIZATION_FAILED;
}
if (pProperties->sType != VK_STRUCTURE_TYPE_TEMP_MEMORY_ZIRCON_HANDLE_PROPERTIES_FUCHSIA) {
return VK_ERROR_INITIALIZATION_FAILED;
}
AutoLock lock(mLock);
auto deviceIt = info_VkDevice.find(device);
if (deviceIt == info_VkDevice.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto& info = deviceIt->second;
// Device local memory type supported.
pProperties->memoryTypeBits = 0;
for (uint32_t i = 0; i < info.memProps.memoryTypeCount; ++i) {
if (info.memProps.memoryTypes[i].propertyFlags &
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) {
pProperties->memoryTypeBits = 1ull << i;
}
}
return VK_SUCCESS;
}
VkResult on_vkImportSemaphoreZirconHandleFUCHSIA(
void*, VkResult,
VkDevice device,
const VkImportSemaphoreZirconHandleInfoFUCHSIA* pInfo) {
if (!pInfo) return VK_ERROR_INITIALIZATION_FAILED;
if (!pInfo->semaphore) return VK_ERROR_INITIALIZATION_FAILED;
AutoLock lock(mLock);
auto deviceIt = info_VkDevice.find(device);
if (deviceIt == info_VkDevice.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto semaphoreIt = info_VkSemaphore.find(pInfo->semaphore);
if (semaphoreIt == info_VkSemaphore.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto& info = semaphoreIt->second;
if (info.eventHandle != ZX_HANDLE_INVALID) {
zx_handle_close(info.eventHandle);
}
info.eventHandle = pInfo->handle;
return VK_SUCCESS;
}
VkResult on_vkGetSemaphoreZirconHandleFUCHSIA(
void*, VkResult,
VkDevice device,
const VkSemaphoreGetZirconHandleInfoFUCHSIA* pInfo,
uint32_t* pHandle) {
if (!pInfo) return VK_ERROR_INITIALIZATION_FAILED;
if (!pInfo->semaphore) return VK_ERROR_INITIALIZATION_FAILED;
AutoLock lock(mLock);
auto deviceIt = info_VkDevice.find(device);
if (deviceIt == info_VkDevice.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto semaphoreIt = info_VkSemaphore.find(pInfo->semaphore);
if (semaphoreIt == info_VkSemaphore.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto& info = semaphoreIt->second;
if (info.eventHandle == ZX_HANDLE_INVALID) {
return VK_ERROR_INITIALIZATION_FAILED;
}
*pHandle = ZX_HANDLE_INVALID;
zx_handle_duplicate(info.eventHandle, ZX_RIGHT_SAME_RIGHTS, pHandle);
return VK_SUCCESS;
}
VkResult on_vkCreateBufferCollectionFUCHSIA(
void*, VkResult, VkDevice,
const VkBufferCollectionCreateInfoFUCHSIA* pInfo,
const VkAllocationCallbacks*,
VkBufferCollectionFUCHSIA* pCollection) {
fuchsia::sysmem::BufferCollectionTokenSyncPtr token;
if (pInfo->collectionToken) {
token.Bind(zx::channel(pInfo->collectionToken));
} else {
zx_status_t status = mSysmemAllocator->AllocateSharedCollection(token.NewRequest());
if (status != ZX_OK) {
ALOGE("AllocateSharedCollection failed: %d", status);
return VK_ERROR_INITIALIZATION_FAILED;
}
}
auto sysmem_collection = new fuchsia::sysmem::BufferCollectionSyncPtr;
zx_status_t status = mSysmemAllocator->BindSharedCollection(
std::move(token), sysmem_collection->NewRequest());
if (status != ZX_OK) {
ALOGE("BindSharedCollection failed: %d", status);
return VK_ERROR_INITIALIZATION_FAILED;
}
*pCollection = reinterpret_cast<VkBufferCollectionFUCHSIA>(sysmem_collection);
return VK_SUCCESS;
}
void on_vkDestroyBufferCollectionFUCHSIA(
void*, VkResult, VkDevice,
VkBufferCollectionFUCHSIA collection,
const VkAllocationCallbacks*) {
auto sysmem_collection = reinterpret_cast<fuchsia::sysmem::BufferCollectionSyncPtr*>(collection);
if (sysmem_collection->is_bound()) {
(*sysmem_collection)->Close();
}
delete sysmem_collection;
}
VkResult on_vkSetBufferCollectionConstraintsFUCHSIA(
void*, VkResult, VkDevice,
VkBufferCollectionFUCHSIA collection,
const VkImageCreateInfo* pImageInfo) {
fuchsia::sysmem::BufferCollectionConstraints constraints = {};
constraints.usage.vulkan = fuchsia::sysmem::vulkanUsageColorAttachment |
fuchsia::sysmem::vulkanUsageTransferSrc |
fuchsia::sysmem::vulkanUsageTransferDst |
fuchsia::sysmem::vulkanUsageSampled;
constraints.min_buffer_count_for_camping = 1;
constraints.has_buffer_memory_constraints = true;
fuchsia::sysmem::BufferMemoryConstraints& buffer_constraints =
constraints.buffer_memory_constraints;
buffer_constraints.min_size_bytes = pImageInfo->extent.width * pImageInfo->extent.height * 4;
buffer_constraints.max_size_bytes = 0xffffffff;
buffer_constraints.physically_contiguous_required = false;
buffer_constraints.secure_required = false;
buffer_constraints.secure_permitted = false;
buffer_constraints.ram_domain_supported = true;
buffer_constraints.cpu_domain_supported = false;
constraints.image_format_constraints_count = 1;
fuchsia::sysmem::ImageFormatConstraints& image_constraints =
constraints.image_format_constraints[0];
image_constraints.pixel_format.type = fuchsia::sysmem::PixelFormatType::BGRA32;
image_constraints.color_spaces_count = 1;
image_constraints.color_space[0].type = fuchsia::sysmem::ColorSpaceType::SRGB;
image_constraints.min_coded_width = pImageInfo->extent.width;
image_constraints.max_coded_width = 0xfffffff;
image_constraints.min_coded_height = pImageInfo->extent.height;
image_constraints.max_coded_height = 0xffffffff;
image_constraints.min_bytes_per_row = pImageInfo->extent.width * 4;
image_constraints.max_bytes_per_row = 0xffffffff;
image_constraints.max_coded_width_times_coded_height = 0xffffffff;
image_constraints.layers = 1;
image_constraints.coded_width_divisor = 1;
image_constraints.coded_height_divisor = 1;
image_constraints.bytes_per_row_divisor = 1;
image_constraints.start_offset_divisor = 1;
image_constraints.display_width_divisor = 1;
image_constraints.display_height_divisor = 1;
auto sysmem_collection = reinterpret_cast<fuchsia::sysmem::BufferCollectionSyncPtr*>(collection);
(*sysmem_collection)->SetConstraints(true, constraints);
return VK_SUCCESS;
}
#endif
HostMemBlockIndex getOrAllocateHostMemBlockLocked(
HostMemBlocks& blocks,
const VkMemoryAllocateInfo* pAllocateInfo,
VkEncoder* enc,
VkDevice device,
const VkDevice_Info& deviceInfo) {
HostMemBlockIndex res = 0;
bool found = false;
while (!found) {
for (HostMemBlockIndex i = 0; i < blocks.size(); ++i) {
if (blocks[i].initialized &&
blocks[i].initResult == VK_SUCCESS &&
canSubAlloc(
blocks[i].subAlloc,
pAllocateInfo->allocationSize)) {
res = i;
found = true;
return res;
}
}
blocks.push_back({});
auto& hostMemAlloc = blocks.back();
// Uninitialized block; allocate on host.
static constexpr VkDeviceSize oneMb = 1048576;
static constexpr VkDeviceSize kDefaultHostMemBlockSize =
16 * oneMb; // 16 mb
VkDeviceSize roundedUpAllocSize =
oneMb * ((pAllocateInfo->allocationSize + oneMb - 1) / oneMb);
VkDeviceSize virtualHeapSize = VIRTUAL_HOST_VISIBLE_HEAP_SIZE;
VkDeviceSize blockSizeNeeded =
std::max(roundedUpAllocSize,
std::min(virtualHeapSize,
kDefaultHostMemBlockSize));
VkMemoryAllocateInfo allocInfoForHost = *pAllocateInfo;
allocInfoForHost.allocationSize = blockSizeNeeded;
// TODO: Support dedicated/external host visible allocation
allocInfoForHost.pNext = nullptr;
mLock.unlock();
VkResult host_res =
enc->vkAllocateMemory(
device,
&allocInfoForHost,
nullptr,
&hostMemAlloc.memory);
mLock.lock();
if (host_res != VK_SUCCESS) {
ALOGE("Could not allocate backing for virtual host visible memory: %d",
host_res);
hostMemAlloc.initialized = true;
hostMemAlloc.initResult = host_res;
return INVALID_HOST_MEM_BLOCK;
}
auto& hostMemInfo = info_VkDeviceMemory[hostMemAlloc.memory];
hostMemInfo.allocationSize = allocInfoForHost.allocationSize;
VkDeviceSize nonCoherentAtomSize =
deviceInfo.props.limits.nonCoherentAtomSize;
hostMemInfo.mappedSize = hostMemInfo.allocationSize;
hostMemInfo.memoryTypeIndex =
pAllocateInfo->memoryTypeIndex;
hostMemAlloc.nonCoherentAtomSize = nonCoherentAtomSize;
uint64_t directMappedAddr = 0;
mLock.unlock();
VkResult directMapResult =
enc->vkMapMemoryIntoAddressSpaceGOOGLE(
device, hostMemAlloc.memory, &directMappedAddr);
mLock.lock();
if (directMapResult != VK_SUCCESS) {
hostMemAlloc.initialized = true;
hostMemAlloc.initResult = directMapResult;
mLock.unlock();
enc->vkFreeMemory(device, hostMemAlloc.memory, nullptr);
mLock.lock();
return INVALID_HOST_MEM_BLOCK;
}
hostMemInfo.mappedPtr =
(uint8_t*)(uintptr_t)directMappedAddr;
hostMemInfo.virtualHostVisibleBacking = true;
VkResult hostMemAllocRes =
finishHostMemAllocInit(
enc,
device,
pAllocateInfo->memoryTypeIndex,
nonCoherentAtomSize,
hostMemInfo.allocationSize,
hostMemInfo.mappedSize,
hostMemInfo.mappedPtr,
&hostMemAlloc);
if (hostMemAllocRes != VK_SUCCESS) {
return INVALID_HOST_MEM_BLOCK;
}
}
// unreacheable, but we need to make Werror happy
return INVALID_HOST_MEM_BLOCK;
}
VkResult on_vkAllocateMemory(
void* context,
VkResult input_result,
VkDevice device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMemory) {
if (input_result != VK_SUCCESS) return input_result;
VkEncoder* enc = (VkEncoder*)context;
VkMemoryAllocateInfo finalAllocInfo = *pAllocateInfo;
VkMemoryDedicatedAllocateInfo dedicatedAllocInfo;
VkImportColorBufferGOOGLE importCbInfo = {
VK_STRUCTURE_TYPE_IMPORT_COLOR_BUFFER_GOOGLE, 0,
};
// VkImportPhysicalAddressGOOGLE importPhysAddrInfo = {
// VK_STRUCTURE_TYPE_IMPORT_PHYSICAL_ADDRESS_GOOGLE, 0,
// };
vk_struct_common* structChain =
structChain = vk_init_struct_chain(
(vk_struct_common*)(&finalAllocInfo));
structChain->pNext = nullptr;
VkExportMemoryAllocateInfo* exportAllocateInfoPtr =
(VkExportMemoryAllocateInfo*)vk_find_struct((vk_struct_common*)pAllocateInfo,
VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO);
VkImportAndroidHardwareBufferInfoANDROID* importAhbInfoPtr =
(VkImportAndroidHardwareBufferInfoANDROID*)vk_find_struct((vk_struct_common*)pAllocateInfo,
VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
VkImportMemoryBufferCollectionFUCHSIA* importBufferCollectionInfoPtr =
(VkImportMemoryBufferCollectionFUCHSIA*)vk_find_struct((vk_struct_common*)pAllocateInfo,
VK_STRUCTURE_TYPE_IMPORT_MEMORY_BUFFER_COLLECTION_FUCHSIA);
VkImportMemoryZirconHandleInfoFUCHSIA* importVmoInfoPtr =
(VkImportMemoryZirconHandleInfoFUCHSIA*)vk_find_struct((vk_struct_common*)pAllocateInfo,
VK_STRUCTURE_TYPE_TEMP_IMPORT_MEMORY_ZIRCON_HANDLE_INFO_FUCHSIA);
VkMemoryDedicatedAllocateInfo* dedicatedAllocInfoPtr =
(VkMemoryDedicatedAllocateInfo*)vk_find_struct((vk_struct_common*)pAllocateInfo,
VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO);
bool shouldPassThroughDedicatedAllocInfo =
!exportAllocateInfoPtr &&
!importAhbInfoPtr &&
!importBufferCollectionInfoPtr &&
!importVmoInfoPtr &&
!isHostVisibleMemoryTypeIndexForGuest(
&mHostVisibleMemoryVirtInfo,
pAllocateInfo->memoryTypeIndex);
if (!exportAllocateInfoPtr &&
(importAhbInfoPtr || importBufferCollectionInfoPtr || importVmoInfoPtr) &&
dedicatedAllocInfoPtr &&
isHostVisibleMemoryTypeIndexForGuest(
&mHostVisibleMemoryVirtInfo,
pAllocateInfo->memoryTypeIndex)) {
ALOGE("FATAL: It is not yet supported to import-allocate "
"external memory that is both host visible and dedicated.");
abort();
}
if (shouldPassThroughDedicatedAllocInfo &&
dedicatedAllocInfoPtr) {
dedicatedAllocInfo = *dedicatedAllocInfoPtr;
structChain->pNext =
(vk_struct_common*)(&dedicatedAllocInfo);
structChain =
(vk_struct_common*)(&dedicatedAllocInfo);
structChain->pNext = nullptr;
}
// State needed for import/export.
bool exportAhb = false;
bool exportVmo = false;
bool importAhb = false;
bool importBufferCollection = false;
bool importVmo = false;
(void)exportVmo;
// Even if we export allocate, the underlying operation
// for the host is always going to be an import operation.
// This is also how Intel's implementation works,
// and is generally simpler;
// even in an export allocation,
// we perform AHardwareBuffer allocation
// on the guest side, at this layer,
// and then we attach a new VkDeviceMemory
// to the AHardwareBuffer on the host via an "import" operation.
AHardwareBuffer* ahw = nullptr;
zx_handle_t vmo_handle = ZX_HANDLE_INVALID;
uint32_t cbHandle = 0;
if (exportAllocateInfoPtr) {
exportAhb =
exportAllocateInfoPtr->handleTypes &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
exportVmo =
exportAllocateInfoPtr->handleTypes &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_TEMP_ZIRCON_VMO_BIT_FUCHSIA;
} else if (importAhbInfoPtr) {
importAhb = true;
} else if (importBufferCollectionInfoPtr) {
importBufferCollection = true;
} else if (importVmoInfoPtr) {
importVmo = true;
}
if (exportAhb) {
bool hasDedicatedImage = dedicatedAllocInfoPtr &&
(dedicatedAllocInfoPtr->image != VK_NULL_HANDLE);
bool hasDedicatedBuffer = dedicatedAllocInfoPtr &&
(dedicatedAllocInfoPtr->buffer != VK_NULL_HANDLE);
VkExtent3D imageExtent = { 0, 0, 0 };
uint32_t imageLayers = 0;
VkFormat imageFormat = VK_FORMAT_UNDEFINED;
VkImageUsageFlags imageUsage = 0;
VkImageCreateFlags imageCreateFlags = 0;
VkDeviceSize bufferSize = 0;
VkDeviceSize allocationInfoAllocSize =
finalAllocInfo.allocationSize;
if (hasDedicatedImage) {
AutoLock lock(mLock);
auto it = info_VkImage.find(
dedicatedAllocInfoPtr->image);
if (it == info_VkImage.end()) return VK_ERROR_INITIALIZATION_FAILED;
const auto& info = it->second;
const auto& imgCi = info.createInfo;
imageExtent = imgCi.extent;
imageLayers = imgCi.arrayLayers;
imageFormat = imgCi.format;
imageUsage = imgCi.usage;
imageCreateFlags = imgCi.flags;
}
if (hasDedicatedBuffer) {
AutoLock lock(mLock);
auto it = info_VkBuffer.find(
dedicatedAllocInfoPtr->buffer);
if (it == info_VkBuffer.end()) return VK_ERROR_INITIALIZATION_FAILED;
const auto& info = it->second;
const auto& bufCi = info.createInfo;
bufferSize = bufCi.size;
}
VkResult ahbCreateRes =
createAndroidHardwareBuffer(
hasDedicatedImage,
hasDedicatedBuffer,
imageExtent,
imageLayers,
imageFormat,
imageUsage,
imageCreateFlags,
bufferSize,
allocationInfoAllocSize,
&ahw);
if (ahbCreateRes != VK_SUCCESS) {
return ahbCreateRes;
}
}
if (importAhb) {
ahw = importAhbInfoPtr->buffer;
// We still need to acquire the AHardwareBuffer.
importAndroidHardwareBuffer(
importAhbInfoPtr, nullptr);
}
if (ahw) {
ALOGD("%s: Import AHardwareBulffer", __func__);
const native_handle_t *handle =
AHardwareBuffer_getNativeHandle(ahw);
const cb_handle_t* cb_handle =
reinterpret_cast<const cb_handle_t*>(handle);
importCbInfo.colorBuffer = cb_handle->hostHandle;
structChain =
vk_append_struct(structChain, (vk_struct_common*)(&importCbInfo));
}
if (importBufferCollection) {
#ifdef VK_USE_PLATFORM_FUCHSIA
auto collection = reinterpret_cast<fuchsia::sysmem::BufferCollectionSyncPtr*>(
importBufferCollectionInfoPtr->collection);
fuchsia::sysmem::BufferCollectionInfo_2 info;
zx_status_t status2;
zx_status_t status = (*collection)->WaitForBuffersAllocated(&status2, &info);
if (status != ZX_OK || status2 != ZX_OK) {
ALOGE("WaitForBuffersAllocated failed: %d %d", status);
return VK_ERROR_INITIALIZATION_FAILED;
}
uint32_t index = importBufferCollectionInfoPtr->index;
if (info.buffer_count < index) {
ALOGE("Invalid buffer index: %d %d", index);
return VK_ERROR_INITIALIZATION_FAILED;
}
vmo_handle = info.buffers[index].vmo.release();
#endif
}
if (importVmo) {
vmo_handle = importVmoInfoPtr->handle;
}
if (vmo_handle != ZX_HANDLE_INVALID) {
uint32_t cb = 0;
#ifdef VK_USE_PLATFORM_FUCHSIA
// TODO(reveman): Remove use of zx_vmo_read. Goldfish FIDL interface
// should provide a mechanism to query the color buffer ID associated
// with a VMO.
zx_status_t status = zx_vmo_read(vmo_handle, &cb, 0, sizeof(cb));
if (status != ZX_OK) {
ALOGE("failed to read color buffer name");
return VK_ERROR_INITIALIZATION_FAILED;
}
#endif
if (cb) {
cbHandle = importCbInfo.colorBuffer = cb;
structChain =
vk_append_struct(structChain, (vk_struct_common*)(&importCbInfo));
}
}
// TODO if (exportVmo) { }
if (!isHostVisibleMemoryTypeIndexForGuest(
&mHostVisibleMemoryVirtInfo,
finalAllocInfo.memoryTypeIndex)) {
if (cbHandle) {
(*mOpenColorBuffer)(cbHandle);
}
input_result =
enc->vkAllocateMemory(
device, &finalAllocInfo, pAllocator, pMemory);
if (input_result != VK_SUCCESS) return input_result;
VkDeviceSize allocationSize = finalAllocInfo.allocationSize;
setDeviceMemoryInfo(
device, *pMemory,
finalAllocInfo.allocationSize,
0, nullptr,
finalAllocInfo.memoryTypeIndex,
ahw,
vmo_handle,
cbHandle);
return VK_SUCCESS;
}
// Device-local memory dealing is over. What follows:
// host-visible memory.
if (ahw) {
ALOGE("%s: Host visible export/import allocation "
"of Android hardware buffers is not supported.",
__func__);
abort();
}
if (vmo_handle != ZX_HANDLE_INVALID) {
ALOGE("%s: Host visible export/import allocation "
"of VMO is not supported yet.",
__func__);
abort();
}
// Host visible memory, non external
bool directMappingSupported = usingDirectMapping();
if (!directMappingSupported) {
input_result =
enc->vkAllocateMemory(
device, &finalAllocInfo, pAllocator, pMemory);
if (input_result != VK_SUCCESS) return input_result;
VkDeviceSize mappedSize =
getNonCoherentExtendedSize(device,
finalAllocInfo.allocationSize);
uint8_t* mappedPtr = (uint8_t*)aligned_buf_alloc(4096, mappedSize);
D("host visible alloc (non-direct): "
"size 0x%llx host ptr %p mapped size 0x%llx",
(unsigned long long)finalAllocInfo.allocationSize, mappedPtr,
(unsigned long long)mappedSize);
setDeviceMemoryInfo(
device, *pMemory,
finalAllocInfo.allocationSize,
mappedSize, mappedPtr,
finalAllocInfo.memoryTypeIndex);
return VK_SUCCESS;
}
// Host visible memory with direct mapping via
// VkImportPhysicalAddressGOOGLE
// if (importPhysAddr) {
// vkAllocateMemory(device, &finalAllocInfo, pAllocator, pMemory);
// host maps the host pointer to the guest physical address
// TODO: the host side page offset of the
// host pointer needs to be returned somehow.
// }
// Host visible memory with direct mapping
AutoLock lock(mLock);
auto it = info_VkDevice.find(device);
if (it == info_VkDevice.end()) return VK_ERROR_DEVICE_LOST;
auto& deviceInfo = it->second;
auto& hostMemBlocksForTypeIndex =
deviceInfo.hostMemBlocks[finalAllocInfo.memoryTypeIndex];
HostMemBlockIndex blockIndex =
getOrAllocateHostMemBlockLocked(
hostMemBlocksForTypeIndex,
&finalAllocInfo,
enc,
device,
deviceInfo);
if (blockIndex == (HostMemBlockIndex) INVALID_HOST_MEM_BLOCK) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
VkDeviceMemory_Info virtualMemInfo;
subAllocHostMemory(
&hostMemBlocksForTypeIndex[blockIndex],
&finalAllocInfo,
&virtualMemInfo.subAlloc);
virtualMemInfo.allocationSize = virtualMemInfo.subAlloc.subAllocSize;
virtualMemInfo.mappedSize = virtualMemInfo.subAlloc.subMappedSize;
virtualMemInfo.mappedPtr = virtualMemInfo.subAlloc.mappedPtr;
virtualMemInfo.memoryTypeIndex = finalAllocInfo.memoryTypeIndex;
virtualMemInfo.directMapped = true;
D("host visible alloc (direct, suballoc): "
"size 0x%llx ptr %p mapped size 0x%llx",
(unsigned long long)virtualMemInfo.allocationSize, virtualMemInfo.mappedPtr,
(unsigned long long)virtualMemInfo.mappedSize);
info_VkDeviceMemory[
virtualMemInfo.subAlloc.subMemory] = virtualMemInfo;
*pMemory = virtualMemInfo.subAlloc.subMemory;
return VK_SUCCESS;
}
void on_vkFreeMemory(
void* context,
VkDevice device,
VkDeviceMemory memory,
const VkAllocationCallbacks* pAllocateInfo) {
AutoLock lock(mLock);
auto it = info_VkDeviceMemory.find(memory);
if (it == info_VkDeviceMemory.end()) return;
auto& info = it->second;
if (!info.directMapped) {
lock.unlock();
VkEncoder* enc = (VkEncoder*)context;
enc->vkFreeMemory(device, memory, pAllocateInfo);
return;
}
subFreeHostMemory(&info.subAlloc);
}
VkResult on_vkMapMemory(
void*,
VkResult host_result,
VkDevice,
VkDeviceMemory memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags,
void** ppData) {
if (host_result != VK_SUCCESS) return host_result;
AutoLock lock(mLock);
auto it = info_VkDeviceMemory.find(memory);
if (it == info_VkDeviceMemory.end()) return VK_ERROR_MEMORY_MAP_FAILED;
auto& info = it->second;
if (!info.mappedPtr) return VK_ERROR_MEMORY_MAP_FAILED;
if (size != VK_WHOLE_SIZE &&
(info.mappedPtr + offset + size > info.mappedPtr + info.allocationSize)) {
return VK_ERROR_MEMORY_MAP_FAILED;
}
*ppData = info.mappedPtr + offset;
return host_result;
}
void on_vkUnmapMemory(
void*,
VkDevice,
VkDeviceMemory) {
// no-op
}
uint32_t transformNonExternalResourceMemoryTypeBitsForGuest(
uint32_t hostBits) {
uint32_t res = 0;
for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) {
if (isNoFlagsMemoryTypeIndexForGuest(
&mHostVisibleMemoryVirtInfo, i)) continue;
if (hostBits & (1 << i)) {
res |= (1 << i);
}
}
return res;
}
uint32_t transformExternalResourceMemoryTypeBitsForGuest(
uint32_t normalBits) {
uint32_t res = 0;
for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) {
if (isNoFlagsMemoryTypeIndexForGuest(
&mHostVisibleMemoryVirtInfo, i)) continue;
if (normalBits & (1 << i) &&
!isHostVisibleMemoryTypeIndexForGuest(
&mHostVisibleMemoryVirtInfo, i)) {
res |= (1 << i);
}
}
return res;
}
void transformNonExternalResourceMemoryRequirementsForGuest(
VkMemoryRequirements* reqs) {
reqs->memoryTypeBits =
transformNonExternalResourceMemoryTypeBitsForGuest(
reqs->memoryTypeBits);
}
void transformExternalResourceMemoryRequirementsForGuest(
VkMemoryRequirements* reqs) {
reqs->memoryTypeBits =
transformExternalResourceMemoryTypeBitsForGuest(
reqs->memoryTypeBits);
}
void transformExternalResourceMemoryDedicatedRequirementsForGuest(
VkMemoryDedicatedRequirements* dedicatedReqs) {
dedicatedReqs->prefersDedicatedAllocation = VK_TRUE;
dedicatedReqs->requiresDedicatedAllocation = VK_TRUE;
}
void transformImageMemoryRequirementsForGuest(
VkImage image,
VkMemoryRequirements* reqs) {
AutoLock lock(mLock);
auto it = info_VkImage.find(image);
if (it == info_VkImage.end()) return;
auto& info = it->second;
if (!info.external ||
!info.externalCreateInfo.handleTypes) {
transformNonExternalResourceMemoryRequirementsForGuest(reqs);
return;
}
transformExternalResourceMemoryRequirementsForGuest(reqs);
}
void transformBufferMemoryRequirementsForGuest(
VkBuffer buffer,
VkMemoryRequirements* reqs) {
AutoLock lock(mLock);
auto it = info_VkBuffer.find(buffer);
if (it == info_VkBuffer.end()) return;
auto& info = it->second;
if (!info.external ||
!info.externalCreateInfo.handleTypes) {
transformNonExternalResourceMemoryRequirementsForGuest(reqs);
return;
}
transformExternalResourceMemoryRequirementsForGuest(reqs);
}
void transformImageMemoryRequirements2ForGuest(
VkImage image,
VkMemoryRequirements2* reqs2) {
AutoLock lock(mLock);
auto it = info_VkImage.find(image);
if (it == info_VkImage.end()) return;
auto& info = it->second;
if (!info.external ||
!info.externalCreateInfo.handleTypes) {
transformNonExternalResourceMemoryRequirementsForGuest(
&reqs2->memoryRequirements);
return;
}
transformExternalResourceMemoryRequirementsForGuest(&reqs2->memoryRequirements);
VkMemoryDedicatedRequirements* dedicatedReqs =
(VkMemoryDedicatedRequirements*)
vk_find_struct(
(vk_struct_common*)reqs2,
VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS);
if (!dedicatedReqs) return;
transformExternalResourceMemoryDedicatedRequirementsForGuest(
dedicatedReqs);
}
void transformBufferMemoryRequirements2ForGuest(
VkBuffer buffer,
VkMemoryRequirements2* reqs2) {
AutoLock lock(mLock);
auto it = info_VkBuffer.find(buffer);
if (it == info_VkBuffer.end()) return;
auto& info = it->second;
if (!info.external ||
!info.externalCreateInfo.handleTypes) {
transformNonExternalResourceMemoryRequirementsForGuest(
&reqs2->memoryRequirements);
return;
}
transformExternalResourceMemoryRequirementsForGuest(&reqs2->memoryRequirements);
VkMemoryDedicatedRequirements* dedicatedReqs =
(VkMemoryDedicatedRequirements*)
vk_find_struct(
(vk_struct_common*)reqs2,
VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS);
if (!dedicatedReqs) return;
transformExternalResourceMemoryDedicatedRequirementsForGuest(
dedicatedReqs);
}
VkResult on_vkCreateImage(
void* context, VkResult,
VkDevice device, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage) {
VkEncoder* enc = (VkEncoder*)context;
uint32_t cbHandle = 0;
VkImageCreateInfo localCreateInfo = *pCreateInfo;
VkNativeBufferANDROID localAnb;
VkExternalMemoryImageCreateInfo localExtImgCi;
VkImageCreateInfo* pCreateInfo_mut = &localCreateInfo;
VkNativeBufferANDROID* anbInfoPtr =
(VkNativeBufferANDROID*)
vk_find_struct(
(vk_struct_common*)pCreateInfo_mut,
VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID);
if (anbInfoPtr) {
localAnb = *anbInfoPtr;
}
VkExternalMemoryImageCreateInfo* extImgCiPtr =
(VkExternalMemoryImageCreateInfo*)
vk_find_struct(
(vk_struct_common*)pCreateInfo_mut,
VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO);
if (extImgCiPtr) {
localExtImgCi = *extImgCiPtr;
}
#ifdef VK_USE_PLATFORM_ANDROID_KHR
VkExternalFormatANDROID localExtFormatAndroid;
VkExternalFormatANDROID* extFormatAndroidPtr =
(VkExternalFormatANDROID*)
vk_find_struct(
(vk_struct_common*)pCreateInfo_mut,
VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID);
if (extFormatAndroidPtr) {
localExtFormatAndroid = *extFormatAndroidPtr;
}
#endif
#ifdef VK_USE_PLATFORM_FUCHSIA
VkFuchsiaImageFormatFUCHSIA* extFuchsiaImageFormatPtr =
(VkFuchsiaImageFormatFUCHSIA*)
vk_find_struct(
(vk_struct_common*)pCreateInfo_mut,
VK_STRUCTURE_TYPE_FUCHSIA_IMAGE_FORMAT_FUCHSIA);
VkBufferCollectionImageCreateInfoFUCHSIA* extBufferCollectionPtr =
(VkBufferCollectionImageCreateInfoFUCHSIA*)
vk_find_struct(
(vk_struct_common*)pCreateInfo_mut,
VK_STRUCTURE_TYPE_BUFFER_COLLECTION_IMAGE_CREATE_INFO_FUCHSIA);
#endif
vk_struct_common* structChain =
vk_init_struct_chain((vk_struct_common*)pCreateInfo_mut);
if (extImgCiPtr) {
structChain =
vk_append_struct(
structChain, (vk_struct_common*)(&localExtImgCi));
}
#ifdef VK_USE_PLATFORM_ANDROID_KHR
if (anbInfoPtr) {
structChain =
vk_append_struct(
structChain, (vk_struct_common*)(&localAnb));
}
if (extFormatAndroidPtr) {
// Do not append external format android;
// instead, replace the local image pCreateInfo_mut format
// with the corresponding Vulkan format
if (extFormatAndroidPtr->externalFormat) {
pCreateInfo_mut->format =
vk_format_from_android(extFormatAndroidPtr->externalFormat);
}
}
#endif
#ifdef VK_USE_PLATFORM_FUCHSIA
VkNativeBufferANDROID native_info = {
.sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
.pNext = NULL,
};
cb_handle_t native_handle(
0, 0, 0, 0, 0, 0, 0, 0, 0, FRAMEWORK_FORMAT_GL_COMPATIBLE);
if (pCreateInfo->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
// Create color buffer.
cbHandle = (*mCreateColorBuffer)(pCreateInfo_mut->extent.width,
pCreateInfo_mut->extent.height,
0x1908 /*GL_RGBA*/);
native_handle.hostHandle = cbHandle;
native_info.handle = (uint32_t*)&native_handle;
native_info.stride = 0;
native_info.format = 1; // RGBA
native_info.usage = GRALLOC_USAGE_HW_FB;
if (pCreateInfo_mut->pNext) {
abort();
}
pCreateInfo_mut->pNext = &native_info;
bool is_physically_contiguous = false;
if (extBufferCollectionPtr) {
auto collection = reinterpret_cast<fuchsia::sysmem::BufferCollectionSyncPtr*>(
extBufferCollectionPtr->collection);
fuchsia::sysmem::BufferCollectionInfo_2 info;
zx_status_t status2;
zx_status_t status = (*collection)->WaitForBuffersAllocated(&status2, &info);
if (status == ZX_OK && status2 == ZX_OK) {
is_physically_contiguous =
info.settings.has_image_format_constraints &&
info.settings.buffer_settings.is_physically_contiguous;
} else {
ALOGE("WaitForBuffersAllocated failed: %d %d", status, status2);
}
} else if (extFuchsiaImageFormatPtr) {
auto imageFormat = static_cast<const uint8_t*>(
extFuchsiaImageFormatPtr->imageFormat);
size_t imageFormatSize =
extFuchsiaImageFormatPtr->imageFormatSize;
std::vector<uint8_t> message(
imageFormat, imageFormat + imageFormatSize);
fidl::Message msg(fidl::BytePart(message.data(),
imageFormatSize,
imageFormatSize),
fidl::HandlePart());
const char* err_msg = nullptr;
zx_status_t status = msg.Decode(
fuchsia::sysmem::SingleBufferSettings::FidlType, &err_msg);
if (status != ZX_OK) {
ALOGE("Invalid SingleBufferSettings: %d %s", status,
err_msg);
abort();
}
fidl::Decoder decoder(std::move(msg));
fuchsia::sysmem::SingleBufferSettings settings;
fuchsia::sysmem::SingleBufferSettings::Decode(
&decoder, &settings, 0);
is_physically_contiguous =
settings.buffer_settings.is_physically_contiguous;
}
if (is_physically_contiguous) {
// Replace the local image pCreateInfo_mut format
// with the color buffer format if physically contiguous
// and a potential display layer candidate.
// TODO(reveman): Remove this after adding BGRA color
// buffer support.
pCreateInfo_mut->format = VK_FORMAT_R8G8B8A8_UNORM;
}
}
#endif
VkResult res = enc->vkCreateImage(device, pCreateInfo_mut, pAllocator, pImage);
if (res != VK_SUCCESS) return res;
AutoLock lock(mLock);
auto it = info_VkImage.find(*pImage);
if (it == info_VkImage.end()) return VK_ERROR_INITIALIZATION_FAILED;
auto& info = it->second;
info.device = device;
info.createInfo = *pCreateInfo_mut;
info.createInfo.pNext = nullptr;
info.cbHandle = cbHandle;
if (!extImgCiPtr) return res;
info.external = true;
info.externalCreateInfo = *extImgCiPtr;
return res;
}
VkResult on_vkCreateSamplerYcbcrConversion(
void* context, VkResult,
VkDevice device,
const VkSamplerYcbcrConversionCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSamplerYcbcrConversion* pYcbcrConversion) {
VkSamplerYcbcrConversionCreateInfo localCreateInfo = *pCreateInfo;
VkSamplerYcbcrConversionCreateInfo* pCreateInfo_mut = &localCreateInfo;
#ifdef VK_USE_PLATFORM_ANDROID_KHR
VkExternalFormatANDROID localExtFormatAndroid;
VkExternalFormatANDROID* extFormatAndroidPtr =
(VkExternalFormatANDROID*)
vk_find_struct(
(vk_struct_common*)pCreateInfo_mut,
VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID);
if (extFormatAndroidPtr) {
localExtFormatAndroid = *extFormatAndroidPtr;
}
#endif
vk_struct_common* structChain =
vk_init_struct_chain((vk_struct_common*)pCreateInfo_mut);
#ifdef VK_USE_PLATFORM_ANDROID_KHR
if (extFormatAndroidPtr) {
if (extFormatAndroidPtr->externalFormat) {
pCreateInfo_mut->format =
vk_format_from_android(extFormatAndroidPtr->externalFormat);
}
}
#endif
VkEncoder* enc = (VkEncoder*)context;
return enc->vkCreateSamplerYcbcrConversion(
device, pCreateInfo, pAllocator, pYcbcrConversion);
}
VkResult on_vkCreateSamplerYcbcrConversionKHR(
void* context, VkResult,
VkDevice device,
const VkSamplerYcbcrConversionCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSamplerYcbcrConversion* pYcbcrConversion) {
VkSamplerYcbcrConversionCreateInfo localCreateInfo = *pCreateInfo;
VkSamplerYcbcrConversionCreateInfo* pCreateInfo_mut = &localCreateInfo;
#ifdef VK_USE_PLATFORM_ANDROID_KHR
VkExternalFormatANDROID localExtFormatAndroid;
VkExternalFormatANDROID* extFormatAndroidPtr =
(VkExternalFormatANDROID*)
vk_find_struct(
(vk_struct_common*)pCreateInfo_mut,
VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID);
if (extFormatAndroidPtr) {
localExtFormatAndroid = *extFormatAndroidPtr;
}
#endif
vk_struct_common* structChain =
vk_init_struct_chain((vk_struct_common*)pCreateInfo_mut);
#ifdef VK_USE_PLATFORM_ANDROID_KHR
if (extFormatAndroidPtr) {
pCreateInfo_mut->format =
vk_format_from_android(extFormatAndroidPtr->externalFormat);
}
#endif
VkEncoder* enc = (VkEncoder*)context;
return enc->vkCreateSamplerYcbcrConversionKHR(
device, pCreateInfo, pAllocator, pYcbcrConversion);
}
void on_vkDestroyImage(
void* context,
VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
VkEncoder* enc = (VkEncoder*)context;
enc->vkDestroyImage(device, image, pAllocator);
}
void on_vkGetImageMemoryRequirements(
void *context, VkDevice device, VkImage image,
VkMemoryRequirements *pMemoryRequirements) {
VkEncoder* enc = (VkEncoder*)context;
enc->vkGetImageMemoryRequirements(
device, image, pMemoryRequirements);
transformImageMemoryRequirementsForGuest(
image, pMemoryRequirements);
}
void on_vkGetImageMemoryRequirements2(
void *context, VkDevice device, const VkImageMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements) {
VkEncoder* enc = (VkEncoder*)context;
enc->vkGetImageMemoryRequirements2(
device, pInfo, pMemoryRequirements);
transformImageMemoryRequirements2ForGuest(
pInfo->image, pMemoryRequirements);
}
void on_vkGetImageMemoryRequirements2KHR(
void *context, VkDevice device, const VkImageMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements) {
VkEncoder* enc = (VkEncoder*)context;
enc->vkGetImageMemoryRequirements2KHR(
device, pInfo, pMemoryRequirements);
transformImageMemoryRequirements2ForGuest(
pInfo->image, pMemoryRequirements);
}
VkResult on_vkBindImageMemory(
void* context, VkResult,
VkDevice device, VkImage image, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
#ifdef VK_USE_PLATFORM_FUCHSIA
auto imageIt = info_VkImage.find(image);
if (imageIt == info_VkImage.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto& imageInfo = imageIt->second;
if (imageInfo.cbHandle) {
auto memoryIt = info_VkDeviceMemory.find(memory);
if (memoryIt == info_VkDeviceMemory.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto& memoryInfo = memoryIt->second;
zx_status_t status;
if (memoryInfo.vmoHandle == ZX_HANDLE_INVALID) {
status = zx_vmo_create(memoryInfo.allocationSize, 0,
&memoryInfo.vmoHandle);
if (status != ZX_OK) {
ALOGE("%s: failed to alloc vmo", __func__);
abort();
}
}
// TODO(reveman): Remove use of zx_vmo_write. Sysmem
// and goldfish pipe driver should manage this association.
status = zx_vmo_write(memoryInfo.vmoHandle, &imageInfo.cbHandle,
0, sizeof(imageInfo.cbHandle));
if (status != ZX_OK) {
ALOGE("%s: failed writing color buffer id to vmo", __func__);
abort();
}
// Color buffer backed images are already bound.
return VK_SUCCESS;
}
#endif
VkEncoder* enc = (VkEncoder*)context;
return enc->vkBindImageMemory(device, image, memory, memoryOffset);
}
VkResult on_vkBindImageMemory2(
void* context, VkResult,
VkDevice device, uint32_t bindingCount, const VkBindImageMemoryInfo* pBindInfos) {
VkEncoder* enc = (VkEncoder*)context;
return enc->vkBindImageMemory2(device, bindingCount, pBindInfos);
}
VkResult on_vkBindImageMemory2KHR(
void* context, VkResult,
VkDevice device, uint32_t bindingCount, const VkBindImageMemoryInfo* pBindInfos) {
VkEncoder* enc = (VkEncoder*)context;
return enc->vkBindImageMemory2KHR(device, bindingCount, pBindInfos);
}
VkResult on_vkCreateBuffer(
void* context, VkResult,
VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBuffer *pBuffer) {
VkEncoder* enc = (VkEncoder*)context;
VkResult res = enc->vkCreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
if (res != VK_SUCCESS) return res;
AutoLock lock(mLock);
auto it = info_VkBuffer.find(*pBuffer);
if (it == info_VkBuffer.end()) return VK_ERROR_INITIALIZATION_FAILED;
auto& info = it->second;
info.createInfo = *pCreateInfo;
info.createInfo.pNext = nullptr;
VkExternalMemoryBufferCreateInfo* extBufCi =
(VkExternalMemoryBufferCreateInfo*)vk_find_struct((vk_struct_common*)pCreateInfo,
VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO);
if (!extBufCi) return res;
info.external = true;
info.externalCreateInfo = *extBufCi;
return res;
}
void on_vkDestroyBuffer(
void* context,
VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
VkEncoder* enc = (VkEncoder*)context;
enc->vkDestroyBuffer(device, buffer, pAllocator);
}
void on_vkGetBufferMemoryRequirements(
void* context, VkDevice device, VkBuffer buffer, VkMemoryRequirements *pMemoryRequirements) {
VkEncoder* enc = (VkEncoder*)context;
enc->vkGetBufferMemoryRequirements(
device, buffer, pMemoryRequirements);
transformBufferMemoryRequirementsForGuest(
buffer, pMemoryRequirements);
}
void on_vkGetBufferMemoryRequirements2(
void* context, VkDevice device, const VkBufferMemoryRequirementsInfo2* pInfo,
VkMemoryRequirements2* pMemoryRequirements) {
VkEncoder* enc = (VkEncoder*)context;
enc->vkGetBufferMemoryRequirements2(device, pInfo, pMemoryRequirements);
transformBufferMemoryRequirements2ForGuest(
pInfo->buffer, pMemoryRequirements);
}
void on_vkGetBufferMemoryRequirements2KHR(
void* context, VkDevice device, const VkBufferMemoryRequirementsInfo2* pInfo,
VkMemoryRequirements2* pMemoryRequirements) {
VkEncoder* enc = (VkEncoder*)context;
enc->vkGetBufferMemoryRequirements2KHR(device, pInfo, pMemoryRequirements);
transformBufferMemoryRequirements2ForGuest(
pInfo->buffer, pMemoryRequirements);
}
VkResult on_vkBindBufferMemory(
void *context, VkResult,
VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset) {
VkEncoder *enc = (VkEncoder *)context;
return enc->vkBindBufferMemory(
device, buffer, memory, memoryOffset);
}
VkResult on_vkBindBufferMemory2(
void *context, VkResult,
VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo *pBindInfos) {
VkEncoder *enc = (VkEncoder *)context;
return enc->vkBindBufferMemory2(
device, bindInfoCount, pBindInfos);
}
VkResult on_vkBindBufferMemory2KHR(
void *context, VkResult,
VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo *pBindInfos) {
VkEncoder *enc = (VkEncoder *)context;
return enc->vkBindBufferMemory2KHR(
device, bindInfoCount, pBindInfos);
}
void ensureSyncDeviceFd() {
if (mSyncDeviceFd >= 0) return;
#ifdef VK_USE_PLATFORM_ANDROID_KHR
mSyncDeviceFd = goldfish_sync_open();
if (mSyncDeviceFd >= 0) {
ALOGD("%s: created sync device for current Vulkan process: %d\n", __func__, mSyncDeviceFd);
} else {
ALOGD("%s: failed to create sync device for current Vulkan process\n", __func__);
}
#endif
}
VkResult on_vkCreateSemaphore(
void* context, VkResult input_result,
VkDevice device, const VkSemaphoreCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSemaphore* pSemaphore) {
VkEncoder* enc = (VkEncoder*)context;
VkSemaphoreCreateInfo finalCreateInfo = *pCreateInfo;
VkExportSemaphoreCreateInfoKHR* exportSemaphoreInfoPtr =
(VkExportSemaphoreCreateInfoKHR*)vk_find_struct(
(vk_struct_common*)pCreateInfo,
VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO_KHR);
#ifdef VK_USE_PLATFORM_FUCHSIA
bool exportEvent = exportSemaphoreInfoPtr &&
(exportSemaphoreInfoPtr->handleTypes &
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TEMP_ZIRCON_EVENT_BIT_FUCHSIA);
if (exportEvent) {
finalCreateInfo.pNext = nullptr;
}
#endif
#ifdef VK_USE_PLATFORM_ANDROID_KHR
bool exportSyncFd = exportSemaphoreInfoPtr &&
(exportSemaphoreInfoPtr->handleTypes &
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT);
if (exportSyncFd) {
finalCreateInfo.pNext = nullptr;
}
#endif
input_result = enc->vkCreateSemaphore(
device, &finalCreateInfo, pAllocator, pSemaphore);
zx_handle_t event_handle = ZX_HANDLE_INVALID;
#ifdef VK_USE_PLATFORM_FUCHSIA
if (exportEvent) {
zx_event_create(0, &event_handle);
}
#endif
AutoLock lock(mLock);
auto it = info_VkSemaphore.find(*pSemaphore);
if (it == info_VkSemaphore.end()) return VK_ERROR_INITIALIZATION_FAILED;
auto& info = it->second;
info.device = device;
info.eventHandle = event_handle;
#ifdef VK_USE_PLATFORM_ANDROID_KHR
if (exportSyncFd) {
ensureSyncDeviceFd();
if (exportSyncFd) {
int syncFd = -1;
goldfish_sync_queue_work(
mSyncDeviceFd,
get_host_u64_VkSemaphore(*pSemaphore) /* the handle */,
GOLDFISH_SYNC_VULKAN_SEMAPHORE_SYNC /* thread handle (doubling as type field) */,
&syncFd);
info.syncFd = syncFd;
}
}
#endif
return VK_SUCCESS;
}
void on_vkDestroySemaphore(
void* context,
VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks *pAllocator) {
VkEncoder* enc = (VkEncoder*)context;
enc->vkDestroySemaphore(device, semaphore, pAllocator);
}
// https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#vkGetSemaphoreFdKHR
// Each call to vkGetSemaphoreFdKHR must create a new file descriptor and transfer ownership
// of it to the application. To avoid leaking resources, the application must release ownership
// of the file descriptor when it is no longer needed.
VkResult on_vkGetSemaphoreFdKHR(
void* context, VkResult,
VkDevice device, const VkSemaphoreGetFdInfoKHR* pGetFdInfo,
int* pFd) {
#ifdef VK_USE_PLATFORM_ANDROID_KHR
VkEncoder* enc = (VkEncoder*)context;
bool getSyncFd =
pGetFdInfo->handleType & VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
if (getSyncFd) {
AutoLock lock(mLock);
auto it = info_VkSemaphore.find(pGetFdInfo->semaphore);
if (it == info_VkSemaphore.end()) return VK_ERROR_OUT_OF_HOST_MEMORY;
auto& semInfo = it->second;
*pFd = dup(semInfo.syncFd);
return VK_SUCCESS;
} else {
// opaque fd
int hostFd = 0;
VkResult result = enc->vkGetSemaphoreFdKHR(device, pGetFdInfo, &hostFd);
if (result != VK_SUCCESS) {
return result;
}
*pFd = memfd_create("vk_opaque_fd", 0);
write(*pFd, &hostFd, sizeof(hostFd));
return VK_SUCCESS;
}
#else
(void)context;
(void)device;
(void)pGetFdInfo;
(void)pFd;
return VK_ERROR_INCOMPATIBLE_DRIVER;
#endif
}
VkResult on_vkImportSemaphoreFdKHR(
void* context, VkResult input_result,
VkDevice device,
const VkImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo) {
#ifdef VK_USE_PLATFORM_ANDROID_KHR
VkEncoder* enc = (VkEncoder*)context;
if (input_result != VK_SUCCESS) {
return input_result;
}
if (pImportSemaphoreFdInfo->handleType &
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT) {
VkImportSemaphoreFdInfoKHR tmpInfo = *pImportSemaphoreFdInfo;
AutoLock lock(mLock);
auto semaphoreIt = info_VkSemaphore.find(pImportSemaphoreFdInfo->semaphore);
auto& info = semaphoreIt->second;
if (info.syncFd >= 0) {
close(info.syncFd);
}
info.syncFd = pImportSemaphoreFdInfo->fd;
return VK_SUCCESS;
} else {
int fd = pImportSemaphoreFdInfo->fd;
int err = lseek(fd, 0, SEEK_SET);
if (err == -1) {
ALOGE("lseek fail on import semaphore");
}
int hostFd = 0;
read(fd, &hostFd, sizeof(hostFd));
VkImportSemaphoreFdInfoKHR tmpInfo = *pImportSemaphoreFdInfo;
tmpInfo.fd = hostFd;
VkResult result = enc->vkImportSemaphoreFdKHR(device, &tmpInfo);
close(fd);
return result;
}
#else
(void)context;
(void)input_result;
(void)device;
(void)pImportSemaphoreFdInfo;
return VK_ERROR_INCOMPATIBLE_DRIVER;
#endif
}
VkResult on_vkQueueSubmit(
void* context, VkResult input_result,
VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence fence) {
std::vector<VkSemaphore> pre_signal_semaphores;
std::vector<zx_handle_t> post_wait_events;
std::vector<int> post_wait_sync_fds;
VkDevice device = VK_NULL_HANDLE;
VkFence* pFence = nullptr;
VkEncoder* enc = (VkEncoder*)context;
AutoLock lock(mLock);
for (uint32_t i = 0; i < submitCount; ++i) {
for (uint32_t j = 0; j < pSubmits[i].waitSemaphoreCount; ++j) {
auto it = info_VkSemaphore.find(pSubmits[i].pWaitSemaphores[j]);
if (it != info_VkSemaphore.end()) {
auto& semInfo = it->second;
#ifdef VK_USE_PLATFORM_FUCHSIA
if (semInfo.eventHandle) {
// Wait here instead of passing semaphore to host.
zx_object_wait_one(semInfo.eventHandle,
ZX_EVENT_SIGNALED,
ZX_TIME_INFINITE,
nullptr);
pre_signal_semaphores.push_back(pSubmits[i].pWaitSemaphores[j]);
}
#endif
#ifdef VK_USE_PLATFORM_ANDROID_KHR
if (semInfo.syncFd >= 0) {
// Wait here instead of passing semaphore to host.
sync_wait(semInfo.syncFd, 3000);
pre_signal_semaphores.push_back(pSubmits[i].pWaitSemaphores[j]);
}
#endif
}
}
for (uint32_t j = 0; j < pSubmits[i].signalSemaphoreCount; ++j) {
auto it = info_VkSemaphore.find(pSubmits[i].pSignalSemaphores[j]);
if (it != info_VkSemaphore.end()) {
auto& semInfo = it->second;
#ifdef VK_USE_PLATFORM_FUCHSIA
if (semInfo.eventHandle) {
post_wait_events.push_back(semInfo.eventHandle);
device = semInfo.device;
pFence = &info_VkDevice[device].fence;
}
#endif
#ifdef VK_USE_PLATFORM_ANDROID_KHR
if (semInfo.syncFd >= 0) {
post_wait_sync_fds.push_back(semInfo.syncFd);
device = semInfo.device;
pFence = &info_VkDevice[device].fence;
}
#endif
}
}
}
lock.unlock();
if (!pre_signal_semaphores.empty()) {
VkSubmitInfo submit_info = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.waitSemaphoreCount = 0,
.pWaitSemaphores = nullptr,
.pWaitDstStageMask = nullptr,
.signalSemaphoreCount = static_cast<uint32_t>(pre_signal_semaphores.size()),
.pSignalSemaphores = pre_signal_semaphores.data()};
enc->vkQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
}
input_result = enc->vkQueueSubmit(queue, submitCount, pSubmits, fence);
if (input_result != VK_SUCCESS) return input_result;
if (post_wait_events.empty())
return VK_SUCCESS;
if (*pFence == VK_NULL_HANDLE) {
VkFenceCreateInfo fence_create_info = {
VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, 0, 0,
};
enc->vkCreateFence(device, &fence_create_info, nullptr, pFence);
}
enc->vkQueueSubmit(queue, 0, nullptr, *pFence);
static constexpr uint64_t MAX_WAIT_NS =
5ULL * 1000ULL * 1000ULL * 1000ULL;
enc->vkWaitForFences(device, 1, pFence, VK_TRUE, MAX_WAIT_NS);
enc->vkResetFences(device, 1, pFence);
#ifdef VK_USE_PLATFORM_FUCHSIA
for (auto& event : post_wait_events) {
zx_object_signal(event, 0, ZX_EVENT_SIGNALED);
}
#endif
#ifdef VK_USE_PLATFORM_ANDROID_KHR
for (auto& fd : post_wait_sync_fds) {
goldfish_sync_signal(fd);
}
#endif
return VK_SUCCESS;
}
void unwrap_VkNativeBufferANDROID(
const VkImageCreateInfo* pCreateInfo,
VkImageCreateInfo* local_pCreateInfo) {
if (!pCreateInfo->pNext) return;
const VkNativeBufferANDROID* nativeInfo =
reinterpret_cast<const VkNativeBufferANDROID*>(pCreateInfo->pNext);
if (VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID != nativeInfo->sType) {
return;
}
const cb_handle_t* cb_handle =
reinterpret_cast<const cb_handle_t*>(nativeInfo->handle);
if (!cb_handle) return;
VkNativeBufferANDROID* nativeInfoOut =
reinterpret_cast<VkNativeBufferANDROID*>(
const_cast<void*>(
local_pCreateInfo->pNext));
if (!nativeInfoOut->handle) {
ALOGE("FATAL: Local native buffer info not properly allocated!");
abort();
}
*(uint32_t*)(nativeInfoOut->handle) = cb_handle->hostHandle;
}
void unwrap_vkAcquireImageANDROID_nativeFenceFd(int fd, int*) {
if (fd != -1) {
sync_wait(fd, 3000);
}
}
// Action of vkMapMemoryIntoAddressSpaceGOOGLE:
// 1. preprocess (on_vkMapMemoryIntoAddressSpaceGOOGLE_pre):
// uses address space device to reserve the right size of
// memory.
// 2. the reservation results in a physical address. the physical
// address is set as |*pAddress|.
// 3. after pre, the API call is encoded to the host, where the
// value of pAddress is also sent (the physical address).
// 4. the host will obtain the actual gpu pointer and send it
// back out in |*pAddress|.
// 5. postprocess (on_vkMapMemoryIntoAddressSpaceGOOGLE) will run,
// using the mmap() method of GoldfishAddressSpaceBlock to obtain
// a pointer in guest userspace corresponding to the host pointer.
VkResult on_vkMapMemoryIntoAddressSpaceGOOGLE_pre(
void*,
VkResult,
VkDevice,
VkDeviceMemory memory,
uint64_t* pAddress) {
AutoLock lock(mLock);
auto it = info_VkDeviceMemory.find(memory);
if (it == info_VkDeviceMemory.end()) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
auto& memInfo = it->second;
memInfo.goldfishAddressSpaceBlock =
new GoldfishAddressSpaceBlock;
auto& block = *(memInfo.goldfishAddressSpaceBlock);
block.allocate(
mGoldfishAddressSpaceBlockProvider.get(),
memInfo.mappedSize);
*pAddress = block.physAddr();
return VK_SUCCESS;
}
VkResult on_vkMapMemoryIntoAddressSpaceGOOGLE(
void*,
VkResult input_result,
VkDevice,
VkDeviceMemory memory,
uint64_t* pAddress) {
if (input_result != VK_SUCCESS) {
return input_result;
}
// Now pAddress points to the gpu addr from host.
AutoLock lock(mLock);
auto it = info_VkDeviceMemory.find(memory);
if (it == info_VkDeviceMemory.end()) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
auto& memInfo = it->second;
auto& block = *(memInfo.goldfishAddressSpaceBlock);
uint64_t gpuAddr = *pAddress;
void* userPtr = block.mmap(gpuAddr);
D("%s: Got new host visible alloc. "
"Sizeof void: %zu map size: %zu Range: [%p %p]",
__func__,
sizeof(void*), (size_t)memInfo.mappedSize,
userPtr,
(unsigned char*)userPtr + memInfo.mappedSize);
*pAddress = (uint64_t)(uintptr_t)userPtr;
return input_result;
}
bool isDescriptorTypeImageInfo(VkDescriptorType descType) {
return (descType == VK_DESCRIPTOR_TYPE_SAMPLER) ||
(descType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) ||
(descType == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE) ||
(descType == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) ||
(descType == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT);
}
bool isDescriptorTypeBufferInfo(VkDescriptorType descType) {
return (descType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) ||
(descType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) ||
(descType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER) ||
(descType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
}
bool isDescriptorTypeBufferView(VkDescriptorType descType) {
return (descType == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) ||
(descType == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER);
}
VkResult initDescriptorUpdateTemplateBuffers(
const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
VkDescriptorUpdateTemplate descriptorUpdateTemplate) {
AutoLock lock(mLock);
auto it = info_VkDescriptorUpdateTemplate.find(descriptorUpdateTemplate);
if (it == info_VkDescriptorUpdateTemplate.end()) {
return VK_ERROR_INITIALIZATION_FAILED;
}
auto& info = it->second;
size_t imageInfosNeeded = 0;
size_t bufferInfosNeeded = 0;
size_t bufferViewsNeeded = 0;
for (uint32_t i = 0; i < pCreateInfo->descriptorUpdateEntryCount; ++i) {
const auto& entry = pCreateInfo->pDescriptorUpdateEntries[i];
uint32_t descCount = entry.descriptorCount;
VkDescriptorType descType = entry.descriptorType;
info.templateEntries.push_back(entry);
for (uint32_t j = 0; j < descCount; ++j) {
if (isDescriptorTypeImageInfo(descType)) {
++imageInfosNeeded;
info.imageInfoEntryIndices.push_back(i);
} else if (isDescriptorTypeBufferInfo(descType)) {
++bufferInfosNeeded;
info.bufferInfoEntryIndices.push_back(i);
} else if (isDescriptorTypeBufferView(descType)) {
++bufferViewsNeeded;
info.bufferViewEntryIndices.push_back(i);
} else {
ALOGE("%s: FATAL: Unknown descriptor type %d\n", __func__, descType);
abort();
}
}
}
// To be filled in later (our flat structure)
info.imageInfos.resize(imageInfosNeeded);
info.bufferInfos.resize(bufferInfosNeeded);
info.bufferViews.resize(bufferViewsNeeded);
return VK_SUCCESS;
}
VkResult on_vkCreateDescriptorUpdateTemplate(
void* context, VkResult input_result,
VkDevice device,
const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate) {
(void)context;
(void)device;
(void)pAllocator;
if (input_result != VK_SUCCESS) return input_result;
return initDescriptorUpdateTemplateBuffers(pCreateInfo, *pDescriptorUpdateTemplate);
}
VkResult on_vkCreateDescriptorUpdateTemplateKHR(
void* context, VkResult input_result,
VkDevice device,
const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate) {
(void)context;
(void)device;
(void)pAllocator;
if (input_result != VK_SUCCESS) return input_result;
return initDescriptorUpdateTemplateBuffers(pCreateInfo, *pDescriptorUpdateTemplate);
}
void on_vkUpdateDescriptorSetWithTemplate(
void* context,
VkDevice device,
VkDescriptorSet descriptorSet,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void* pData) {
VkEncoder* enc = (VkEncoder*)context;
uint8_t* userBuffer = (uint8_t*)pData;
if (!userBuffer) return;
AutoLock lock(mLock);
auto it = info_VkDescriptorUpdateTemplate.find(descriptorUpdateTemplate);
if (it == info_VkDescriptorUpdateTemplate.end()) {
return;
}
auto& info = it->second;
size_t currImageInfoOffset = 0;
size_t currBufferInfoOffset = 0;
size_t currBufferViewOffset = 0;
for (const auto& entry : info.templateEntries) {
VkDescriptorType descType = entry.descriptorType;
auto offset = entry.offset;
auto stride = entry.stride;
uint32_t descCount = entry.descriptorCount;
if (isDescriptorTypeImageInfo(descType)) {
if (!stride) stride = sizeof(VkDescriptorImageInfo);
for (uint32_t j = 0; j < descCount; ++j) {
memcpy(((uint8_t*)info.imageInfos.data()) + currImageInfoOffset,
userBuffer + offset + j * stride,
sizeof(VkDescriptorImageInfo));
currImageInfoOffset += sizeof(VkDescriptorImageInfo);
}
} else if (isDescriptorTypeBufferInfo(descType)) {
if (!stride) stride = sizeof(VkDescriptorBufferInfo);
for (uint32_t j = 0; j < descCount; ++j) {
memcpy(((uint8_t*)info.bufferInfos.data()) + currBufferInfoOffset,
userBuffer + offset + j * stride,
sizeof(VkDescriptorBufferInfo));
currBufferInfoOffset += sizeof(VkDescriptorBufferInfo);
}
} else if (isDescriptorTypeBufferView(descType)) {
if (!stride) stride = sizeof(VkBufferView);
for (uint32_t j = 0; j < descCount; ++j) {
memcpy(((uint8_t*)info.bufferViews.data()) + currBufferViewOffset,
userBuffer + offset + j * stride,
sizeof(VkBufferView));
currBufferViewOffset += sizeof(VkBufferView);
}
} else {
ALOGE("%s: FATAL: Unknown descriptor type %d\n", __func__, descType);
abort();
}
}
enc->vkUpdateDescriptorSetWithTemplateSizedGOOGLE(
device,
descriptorSet,
descriptorUpdateTemplate,
(uint32_t)info.imageInfos.size(),
(uint32_t)info.bufferInfos.size(),
(uint32_t)info.bufferViews.size(),
info.imageInfoEntryIndices.data(),
info.bufferInfoEntryIndices.data(),
info.bufferViewEntryIndices.data(),
info.imageInfos.data(),
info.bufferInfos.data(),
info.bufferViews.data());
}
VkResult on_vkGetPhysicalDeviceImageFormatProperties2_common(
bool isKhr,
void* context, VkResult input_result,
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo,
VkImageFormatProperties2* pImageFormatProperties) {
VkEncoder* enc = (VkEncoder*)context;
(void)input_result;
VkAndroidHardwareBufferUsageANDROID* output_ahw_usage =
(VkAndroidHardwareBufferUsageANDROID*)vk_find_struct(
(vk_struct_common*)pImageFormatProperties,
VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID);
VkResult hostRes;
if (isKhr) {
hostRes = enc->vkGetPhysicalDeviceImageFormatProperties2KHR(
physicalDevice, pImageFormatInfo,
pImageFormatProperties);
} else {
hostRes = enc->vkGetPhysicalDeviceImageFormatProperties2(
physicalDevice, pImageFormatInfo,
pImageFormatProperties);
}
if (hostRes != VK_SUCCESS) return hostRes;
if (output_ahw_usage) {
output_ahw_usage->androidHardwareBufferUsage =
getAndroidHardwareBufferUsageFromVkUsage(
pImageFormatInfo->flags,
pImageFormatInfo->usage);
}
return hostRes;
}
VkResult on_vkGetPhysicalDeviceImageFormatProperties2(
void* context, VkResult input_result,
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo,
VkImageFormatProperties2* pImageFormatProperties) {
return on_vkGetPhysicalDeviceImageFormatProperties2_common(
false /* not KHR */, context, input_result,
physicalDevice, pImageFormatInfo, pImageFormatProperties);
}
VkResult on_vkGetPhysicalDeviceImageFormatProperties2KHR(
void* context, VkResult input_result,
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo,
VkImageFormatProperties2* pImageFormatProperties) {
return on_vkGetPhysicalDeviceImageFormatProperties2_common(
true /* is KHR */, context, input_result,
physicalDevice, pImageFormatInfo, pImageFormatProperties);
}
VkResult on_vkBeginCommandBuffer(
void* context, VkResult input_result,
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo) {
VkEncoder* enc = (VkEncoder*)context;
(void)input_result;
if (!supportsDeferredCommands()) {
return enc->vkBeginCommandBuffer(commandBuffer, pBeginInfo);
}
enc->vkBeginCommandBufferAsyncGOOGLE(commandBuffer, pBeginInfo);
return VK_SUCCESS;
}
VkResult on_vkEndCommandBuffer(
void* context, VkResult input_result,
VkCommandBuffer commandBuffer) {
VkEncoder* enc = (VkEncoder*)context;
(void)input_result;
if (!supportsDeferredCommands()) {
return enc->vkEndCommandBuffer(commandBuffer);
}
enc->vkEndCommandBufferAsyncGOOGLE(commandBuffer);
return VK_SUCCESS;
}
VkResult on_vkResetCommandBuffer(
void* context, VkResult input_result,
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags) {
VkEncoder* enc = (VkEncoder*)context;
(void)input_result;
if (!supportsDeferredCommands()) {
return enc->vkResetCommandBuffer(commandBuffer, flags);
}
enc->vkResetCommandBufferAsyncGOOGLE(commandBuffer, flags);
return VK_SUCCESS;
}
uint32_t getApiVersionFromInstance(VkInstance instance) const {
AutoLock lock(mLock);
uint32_t api = kMinApiVersion;
auto it = info_VkInstance.find(instance);
if (it == info_VkInstance.end()) return api;
api = it->second.highestApiVersion;
return api;
}
uint32_t getApiVersionFromDevice(VkDevice device) const {
AutoLock lock(mLock);
uint32_t api = kMinApiVersion;
auto it = info_VkDevice.find(device);
if (it == info_VkDevice.end()) return api;
api = it->second.apiVersion;
return api;
}
bool hasInstanceExtension(VkInstance instance, const std::string& name) const {
AutoLock lock(mLock);
auto it = info_VkInstance.find(instance);
if (it == info_VkInstance.end()) return false;
return it->second.enabledExtensions.find(name) !=
it->second.enabledExtensions.end();
}
bool hasDeviceExtension(VkDevice device, const std::string& name) const {
AutoLock lock(mLock);
auto it = info_VkDevice.find(device);
if (it == info_VkDevice.end()) return false;
return it->second.enabledExtensions.find(name) !=
it->second.enabledExtensions.end();
}
private:
mutable Lock mLock;
HostVisibleMemoryVirtualizationInfo mHostVisibleMemoryVirtInfo;
std::unique_ptr<EmulatorFeatureInfo> mFeatureInfo;
std::unique_ptr<GoldfishAddressSpaceBlockProvider> mGoldfishAddressSpaceBlockProvider;
PFN_CreateColorBuffer mCreateColorBuffer;
PFN_OpenColorBuffer mOpenColorBuffer;
PFN_CloseColorBuffer mCloseColorBuffer;
std::vector<VkExtensionProperties> mHostInstanceExtensions;
std::vector<VkExtensionProperties> mHostDeviceExtensions;
int mSyncDeviceFd = -1;
#ifdef VK_USE_PLATFORM_FUCHSIA
fuchsia::sysmem::AllocatorSyncPtr mSysmemAllocator;
#endif
};
ResourceTracker::ResourceTracker() : mImpl(new ResourceTracker::Impl()) { }
ResourceTracker::~ResourceTracker() { }
VulkanHandleMapping* ResourceTracker::createMapping() {
return &mImpl->createMapping;
}
VulkanHandleMapping* ResourceTracker::unwrapMapping() {
return &mImpl->unwrapMapping;
}
VulkanHandleMapping* ResourceTracker::destroyMapping() {
return &mImpl->destroyMapping;
}
VulkanHandleMapping* ResourceTracker::defaultMapping() {
return &mImpl->defaultMapping;
}
static ResourceTracker* sTracker = nullptr;
// static
ResourceTracker* ResourceTracker::get() {
if (!sTracker) {
// To be initialized once on vulkan device open.
sTracker = new ResourceTracker;
}
return sTracker;
}
#define HANDLE_REGISTER_IMPL(type) \
void ResourceTracker::register_##type(type obj) { \
mImpl->register_##type(obj); \
} \
void ResourceTracker::unregister_##type(type obj) { \
mImpl->unregister_##type(obj); \
} \
GOLDFISH_VK_LIST_HANDLE_TYPES(HANDLE_REGISTER_IMPL)
bool ResourceTracker::isMemoryTypeHostVisible(
VkDevice device, uint32_t typeIndex) const {
return mImpl->isMemoryTypeHostVisible(device, typeIndex);
}
uint8_t* ResourceTracker::getMappedPointer(VkDeviceMemory memory) {
return mImpl->getMappedPointer(memory);
}
VkDeviceSize ResourceTracker::getMappedSize(VkDeviceMemory memory) {
return mImpl->getMappedSize(memory);
}
VkDeviceSize ResourceTracker::getNonCoherentExtendedSize(VkDevice device, VkDeviceSize basicSize) const {
return mImpl->getNonCoherentExtendedSize(device, basicSize);
}
bool ResourceTracker::isValidMemoryRange(const VkMappedMemoryRange& range) const {
return mImpl->isValidMemoryRange(range);
}
void ResourceTracker::setupFeatures(const EmulatorFeatureInfo* features) {
mImpl->setupFeatures(features);
}
bool ResourceTracker::hostSupportsVulkan() const {
return mImpl->hostSupportsVulkan();
}
bool ResourceTracker::usingDirectMapping() const {
return mImpl->usingDirectMapping();
}
uint32_t ResourceTracker::getApiVersionFromInstance(VkInstance instance) const {
return mImpl->getApiVersionFromInstance(instance);
}
uint32_t ResourceTracker::getApiVersionFromDevice(VkDevice device) const {
return mImpl->getApiVersionFromDevice(device);
}
bool ResourceTracker::hasInstanceExtension(VkInstance instance, const std::string &name) const {
return mImpl->hasInstanceExtension(instance, name);
}
bool ResourceTracker::hasDeviceExtension(VkDevice device, const std::string &name) const {
return mImpl->hasDeviceExtension(device, name);
}
void ResourceTracker::setColorBufferFunctions(
PFN_CreateColorBuffer create,
PFN_OpenColorBuffer open,
PFN_CloseColorBuffer close) {
mImpl->setColorBufferFunctions(create, open, close);
}
VkResult ResourceTracker::on_vkEnumerateInstanceExtensionProperties(
void* context,
VkResult input_result,
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties) {
return mImpl->on_vkEnumerateInstanceExtensionProperties(
context, input_result, pLayerName, pPropertyCount, pProperties);
}
VkResult ResourceTracker::on_vkEnumerateDeviceExtensionProperties(
void* context,
VkResult input_result,
VkPhysicalDevice physicalDevice,
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties) {
return mImpl->on_vkEnumerateDeviceExtensionProperties(
context, input_result, physicalDevice, pLayerName, pPropertyCount, pProperties);
}
VkResult ResourceTracker::on_vkEnumeratePhysicalDevices(
void* context, VkResult input_result,
VkInstance instance, uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices) {
return mImpl->on_vkEnumeratePhysicalDevices(
context, input_result, instance, pPhysicalDeviceCount,
pPhysicalDevices);
}
void ResourceTracker::on_vkGetPhysicalDeviceMemoryProperties(
void* context,
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties* pMemoryProperties) {
mImpl->on_vkGetPhysicalDeviceMemoryProperties(
context, physicalDevice, pMemoryProperties);
}
void ResourceTracker::on_vkGetPhysicalDeviceMemoryProperties2(
void* context,
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2* pMemoryProperties) {
mImpl->on_vkGetPhysicalDeviceMemoryProperties2(
context, physicalDevice, pMemoryProperties);
}
void ResourceTracker::on_vkGetPhysicalDeviceMemoryProperties2KHR(
void* context,
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2* pMemoryProperties) {
mImpl->on_vkGetPhysicalDeviceMemoryProperties2(
context, physicalDevice, pMemoryProperties);
}
VkResult ResourceTracker::on_vkCreateInstance(
void* context,
VkResult input_result,
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance) {
return mImpl->on_vkCreateInstance(
context, input_result, pCreateInfo, pAllocator, pInstance);
}
VkResult ResourceTracker::on_vkCreateDevice(
void* context,
VkResult input_result,
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice) {
return mImpl->on_vkCreateDevice(
context, input_result, physicalDevice, pCreateInfo, pAllocator, pDevice);
}
void ResourceTracker::on_vkDestroyDevice_pre(
void* context,
VkDevice device,
const VkAllocationCallbacks* pAllocator) {
mImpl->on_vkDestroyDevice_pre(context, device, pAllocator);
}
VkResult ResourceTracker::on_vkAllocateMemory(
void* context,
VkResult input_result,
VkDevice device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMemory) {
return mImpl->on_vkAllocateMemory(
context, input_result, device, pAllocateInfo, pAllocator, pMemory);
}
void ResourceTracker::on_vkFreeMemory(
void* context,
VkDevice device,
VkDeviceMemory memory,
const VkAllocationCallbacks* pAllocator) {
return mImpl->on_vkFreeMemory(
context, device, memory, pAllocator);
}
VkResult ResourceTracker::on_vkMapMemory(
void* context,
VkResult input_result,
VkDevice device,
VkDeviceMemory memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
void** ppData) {
return mImpl->on_vkMapMemory(
context, input_result, device, memory, offset, size, flags, ppData);
}
void ResourceTracker::on_vkUnmapMemory(
void* context,
VkDevice device,
VkDeviceMemory memory) {
mImpl->on_vkUnmapMemory(context, device, memory);
}
VkResult ResourceTracker::on_vkCreateImage(
void* context, VkResult input_result,
VkDevice device, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage) {
return mImpl->on_vkCreateImage(
context, input_result,
device, pCreateInfo, pAllocator, pImage);
}
void ResourceTracker::on_vkDestroyImage(
void* context,
VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
mImpl->on_vkDestroyImage(context,
device, image, pAllocator);
}
void ResourceTracker::on_vkGetImageMemoryRequirements(
void *context, VkDevice device, VkImage image,
VkMemoryRequirements *pMemoryRequirements) {
mImpl->on_vkGetImageMemoryRequirements(
context, device, image, pMemoryRequirements);
}
void ResourceTracker::on_vkGetImageMemoryRequirements2(
void *context, VkDevice device, const VkImageMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements) {
mImpl->on_vkGetImageMemoryRequirements2(
context, device, pInfo, pMemoryRequirements);
}
void ResourceTracker::on_vkGetImageMemoryRequirements2KHR(
void *context, VkDevice device, const VkImageMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements) {
mImpl->on_vkGetImageMemoryRequirements2KHR(
context, device, pInfo, pMemoryRequirements);
}
VkResult ResourceTracker::on_vkBindImageMemory(
void* context, VkResult input_result,
VkDevice device, VkImage image, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return mImpl->on_vkBindImageMemory(
context, input_result, device, image, memory, memoryOffset);
}
VkResult ResourceTracker::on_vkBindImageMemory2(
void* context, VkResult input_result,
VkDevice device, uint32_t bindingCount, const VkBindImageMemoryInfo* pBindInfos) {
return mImpl->on_vkBindImageMemory2(
context, input_result, device, bindingCount, pBindInfos);
}
VkResult ResourceTracker::on_vkBindImageMemory2KHR(
void* context, VkResult input_result,
VkDevice device, uint32_t bindingCount, const VkBindImageMemoryInfo* pBindInfos) {
return mImpl->on_vkBindImageMemory2KHR(
context, input_result, device, bindingCount, pBindInfos);
}
VkResult ResourceTracker::on_vkCreateBuffer(
void* context, VkResult input_result,
VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBuffer *pBuffer) {
return mImpl->on_vkCreateBuffer(
context, input_result,
device, pCreateInfo, pAllocator, pBuffer);
}
void ResourceTracker::on_vkDestroyBuffer(
void* context,
VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
mImpl->on_vkDestroyBuffer(context, device, buffer, pAllocator);
}
void ResourceTracker::on_vkGetBufferMemoryRequirements(
void* context, VkDevice device, VkBuffer buffer, VkMemoryRequirements *pMemoryRequirements) {
mImpl->on_vkGetBufferMemoryRequirements(context, device, buffer, pMemoryRequirements);
}
void ResourceTracker::on_vkGetBufferMemoryRequirements2(
void* context, VkDevice device, const VkBufferMemoryRequirementsInfo2* pInfo,
VkMemoryRequirements2* pMemoryRequirements) {
mImpl->on_vkGetBufferMemoryRequirements2(
context, device, pInfo, pMemoryRequirements);
}
void ResourceTracker::on_vkGetBufferMemoryRequirements2KHR(
void* context, VkDevice device, const VkBufferMemoryRequirementsInfo2* pInfo,
VkMemoryRequirements2* pMemoryRequirements) {
mImpl->on_vkGetBufferMemoryRequirements2KHR(
context, device, pInfo, pMemoryRequirements);
}
VkResult ResourceTracker::on_vkBindBufferMemory(
void* context, VkResult input_result,
VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset) {
return mImpl->on_vkBindBufferMemory(
context, input_result,
device, buffer, memory, memoryOffset);
}
VkResult ResourceTracker::on_vkBindBufferMemory2(
void* context, VkResult input_result,
VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo *pBindInfos) {
return mImpl->on_vkBindBufferMemory2(
context, input_result,
device, bindInfoCount, pBindInfos);
}
VkResult ResourceTracker::on_vkBindBufferMemory2KHR(
void* context, VkResult input_result,
VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo *pBindInfos) {
return mImpl->on_vkBindBufferMemory2KHR(
context, input_result,
device, bindInfoCount, pBindInfos);
}
VkResult ResourceTracker::on_vkCreateSemaphore(
void* context, VkResult input_result,
VkDevice device, const VkSemaphoreCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkSemaphore *pSemaphore) {
return mImpl->on_vkCreateSemaphore(
context, input_result,
device, pCreateInfo, pAllocator, pSemaphore);
}
void ResourceTracker::on_vkDestroySemaphore(
void* context,
VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks *pAllocator) {
mImpl->on_vkDestroySemaphore(context, device, semaphore, pAllocator);
}
VkResult ResourceTracker::on_vkQueueSubmit(
void* context, VkResult input_result,
VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence fence) {
return mImpl->on_vkQueueSubmit(
context, input_result, queue, submitCount, pSubmits, fence);
}
VkResult ResourceTracker::on_vkGetSemaphoreFdKHR(
void* context, VkResult input_result,
VkDevice device,
const VkSemaphoreGetFdInfoKHR* pGetFdInfo,
int* pFd) {
return mImpl->on_vkGetSemaphoreFdKHR(context, input_result, device, pGetFdInfo, pFd);
}
VkResult ResourceTracker::on_vkImportSemaphoreFdKHR(
void* context, VkResult input_result,
VkDevice device,
const VkImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo) {
return mImpl->on_vkImportSemaphoreFdKHR(context, input_result, device, pImportSemaphoreFdInfo);
}
void ResourceTracker::unwrap_VkNativeBufferANDROID(
const VkImageCreateInfo* pCreateInfo,
VkImageCreateInfo* local_pCreateInfo) {
mImpl->unwrap_VkNativeBufferANDROID(pCreateInfo, local_pCreateInfo);
}
void ResourceTracker::unwrap_vkAcquireImageANDROID_nativeFenceFd(int fd, int* fd_out) {
mImpl->unwrap_vkAcquireImageANDROID_nativeFenceFd(fd, fd_out);
}
#ifdef VK_USE_PLATFORM_FUCHSIA
VkResult ResourceTracker::on_vkGetMemoryZirconHandleFUCHSIA(
void* context, VkResult input_result,
VkDevice device,
const VkMemoryGetZirconHandleInfoFUCHSIA* pInfo,
uint32_t* pHandle) {
return mImpl->on_vkGetMemoryZirconHandleFUCHSIA(
context, input_result, device, pInfo, pHandle);
}
VkResult ResourceTracker::on_vkGetMemoryZirconHandlePropertiesFUCHSIA(
void* context, VkResult input_result,
VkDevice device,
VkExternalMemoryHandleTypeFlagBits handleType,
uint32_t handle,
VkMemoryZirconHandlePropertiesFUCHSIA* pProperties) {
return mImpl->on_vkGetMemoryZirconHandlePropertiesFUCHSIA(
context, input_result, device, handleType, handle, pProperties);
}
VkResult ResourceTracker::on_vkGetSemaphoreZirconHandleFUCHSIA(
void* context, VkResult input_result,
VkDevice device,
const VkSemaphoreGetZirconHandleInfoFUCHSIA* pInfo,
uint32_t* pHandle) {
return mImpl->on_vkGetSemaphoreZirconHandleFUCHSIA(
context, input_result, device, pInfo, pHandle);
}
VkResult ResourceTracker::on_vkImportSemaphoreZirconHandleFUCHSIA(
void* context, VkResult input_result,
VkDevice device,
const VkImportSemaphoreZirconHandleInfoFUCHSIA* pInfo) {
return mImpl->on_vkImportSemaphoreZirconHandleFUCHSIA(
context, input_result, device, pInfo);
}
VkResult ResourceTracker::on_vkCreateBufferCollectionFUCHSIA(
void* context, VkResult input_result,
VkDevice device,
const VkBufferCollectionCreateInfoFUCHSIA* pInfo,
const VkAllocationCallbacks* pAllocator,
VkBufferCollectionFUCHSIA* pCollection) {
return mImpl->on_vkCreateBufferCollectionFUCHSIA(
context, input_result, device, pInfo, pAllocator, pCollection);
}
void ResourceTracker::on_vkDestroyBufferCollectionFUCHSIA(
void* context, VkResult input_result,
VkDevice device,
VkBufferCollectionFUCHSIA collection,
const VkAllocationCallbacks* pAllocator) {
return mImpl->on_vkDestroyBufferCollectionFUCHSIA(
context, input_result, device, collection, pAllocator);
}
VkResult ResourceTracker::on_vkSetBufferCollectionConstraintsFUCHSIA(
void* context, VkResult input_result,
VkDevice device,
VkBufferCollectionFUCHSIA collection,
const VkImageCreateInfo* pImageInfo) {
return mImpl->on_vkSetBufferCollectionConstraintsFUCHSIA(
context, input_result, device, collection, pImageInfo);
}
#endif
VkResult ResourceTracker::on_vkGetAndroidHardwareBufferPropertiesANDROID(
void* context, VkResult input_result,
VkDevice device,
const AHardwareBuffer* buffer,
VkAndroidHardwareBufferPropertiesANDROID* pProperties) {
return mImpl->on_vkGetAndroidHardwareBufferPropertiesANDROID(
context, input_result, device, buffer, pProperties);
}
VkResult ResourceTracker::on_vkGetMemoryAndroidHardwareBufferANDROID(
void* context, VkResult input_result,
VkDevice device,
const VkMemoryGetAndroidHardwareBufferInfoANDROID *pInfo,
struct AHardwareBuffer** pBuffer) {
return mImpl->on_vkGetMemoryAndroidHardwareBufferANDROID(
context, input_result,
device, pInfo, pBuffer);
}
VkResult ResourceTracker::on_vkCreateSamplerYcbcrConversion(
void* context, VkResult input_result,
VkDevice device,
const VkSamplerYcbcrConversionCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSamplerYcbcrConversion* pYcbcrConversion) {
return mImpl->on_vkCreateSamplerYcbcrConversion(
context, input_result, device, pCreateInfo, pAllocator, pYcbcrConversion);
}
VkResult ResourceTracker::on_vkCreateSamplerYcbcrConversionKHR(
void* context, VkResult input_result,
VkDevice device,
const VkSamplerYcbcrConversionCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSamplerYcbcrConversion* pYcbcrConversion) {
return mImpl->on_vkCreateSamplerYcbcrConversionKHR(
context, input_result, device, pCreateInfo, pAllocator, pYcbcrConversion);
}
VkResult ResourceTracker::on_vkMapMemoryIntoAddressSpaceGOOGLE_pre(
void* context,
VkResult input_result,
VkDevice device,
VkDeviceMemory memory,
uint64_t* pAddress) {
return mImpl->on_vkMapMemoryIntoAddressSpaceGOOGLE_pre(
context, input_result, device, memory, pAddress);
}
VkResult ResourceTracker::on_vkMapMemoryIntoAddressSpaceGOOGLE(
void* context,
VkResult input_result,
VkDevice device,
VkDeviceMemory memory,
uint64_t* pAddress) {
return mImpl->on_vkMapMemoryIntoAddressSpaceGOOGLE(
context, input_result, device, memory, pAddress);
}
VkResult ResourceTracker::on_vkCreateDescriptorUpdateTemplate(
void* context, VkResult input_result,
VkDevice device,
const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate) {
return mImpl->on_vkCreateDescriptorUpdateTemplate(
context, input_result,
device, pCreateInfo, pAllocator, pDescriptorUpdateTemplate);
}
VkResult ResourceTracker::on_vkCreateDescriptorUpdateTemplateKHR(
void* context, VkResult input_result,
VkDevice device,
const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate) {
return mImpl->on_vkCreateDescriptorUpdateTemplateKHR(
context, input_result,
device, pCreateInfo, pAllocator, pDescriptorUpdateTemplate);
}
void ResourceTracker::on_vkUpdateDescriptorSetWithTemplate(
void* context,
VkDevice device,
VkDescriptorSet descriptorSet,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void* pData) {
mImpl->on_vkUpdateDescriptorSetWithTemplate(
context, device, descriptorSet,
descriptorUpdateTemplate, pData);
}
VkResult ResourceTracker::on_vkGetPhysicalDeviceImageFormatProperties2(
void* context, VkResult input_result,
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo,
VkImageFormatProperties2* pImageFormatProperties) {
return mImpl->on_vkGetPhysicalDeviceImageFormatProperties2(
context, input_result, physicalDevice, pImageFormatInfo,
pImageFormatProperties);
}
VkResult ResourceTracker::on_vkGetPhysicalDeviceImageFormatProperties2KHR(
void* context, VkResult input_result,
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo,
VkImageFormatProperties2* pImageFormatProperties) {
return mImpl->on_vkGetPhysicalDeviceImageFormatProperties2KHR(
context, input_result, physicalDevice, pImageFormatInfo,
pImageFormatProperties);
}
VkResult ResourceTracker::on_vkBeginCommandBuffer(
void* context, VkResult input_result,
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo) {
return mImpl->on_vkBeginCommandBuffer(
context, input_result, commandBuffer, pBeginInfo);
}
VkResult ResourceTracker::on_vkEndCommandBuffer(
void* context, VkResult input_result,
VkCommandBuffer commandBuffer) {
return mImpl->on_vkEndCommandBuffer(
context, input_result, commandBuffer);
}
VkResult ResourceTracker::on_vkResetCommandBuffer(
void* context, VkResult input_result,
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags) {
return mImpl->on_vkResetCommandBuffer(
context, input_result, commandBuffer, flags);
}
void ResourceTracker::deviceMemoryTransform_tohost(
VkDeviceMemory* memory, uint32_t memoryCount,
VkDeviceSize* offset, uint32_t offsetCount,
VkDeviceSize* size, uint32_t sizeCount,
uint32_t* typeIndex, uint32_t typeIndexCount,
uint32_t* typeBits, uint32_t typeBitsCount) {
mImpl->deviceMemoryTransform_tohost(
memory, memoryCount,
offset, offsetCount,
size, sizeCount,
typeIndex, typeIndexCount,
typeBits, typeBitsCount);
}
void ResourceTracker::deviceMemoryTransform_fromhost(
VkDeviceMemory* memory, uint32_t memoryCount,
VkDeviceSize* offset, uint32_t offsetCount,
VkDeviceSize* size, uint32_t sizeCount,
uint32_t* typeIndex, uint32_t typeIndexCount,
uint32_t* typeBits, uint32_t typeBitsCount) {
mImpl->deviceMemoryTransform_fromhost(
memory, memoryCount,
offset, offsetCount,
size, sizeCount,
typeIndex, typeIndexCount,
typeBits, typeBitsCount);
}
#define DEFINE_TRANSFORMED_TYPE_IMPL(type) \
void ResourceTracker::transformImpl_##type##_tohost(const type*, uint32_t) { } \
void ResourceTracker::transformImpl_##type##_fromhost(const type*, uint32_t) { } \
LIST_TRANSFORMED_TYPES(DEFINE_TRANSFORMED_TYPE_IMPL)
} // namespace goldfish_vk