blob: 5f7f91f4b9b07ed7e27991634e2c729c5b8a80c3 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.os;
import java.io.FileOutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import org.apache.harmony.dalvik.ddmc.Chunk;
import org.apache.harmony.dalvik.ddmc.ChunkHandler;
import org.apache.harmony.dalvik.ddmc.DdmServer;
import dalvik.bytecode.Opcodes;
import dalvik.system.VMDebug;
/** Provides various debugging functions for Android applications, including
* tracing and allocation counts.
* <p><strong>Logging Trace Files</strong></p>
* <p>Debug can create log files that give details about an application, such as
* a call stack and start/stop times for any running methods. See <a
href="{@docRoot}reference/traceview.html">Running the Traceview Debugging Program</a> for
* information about reading trace files. To start logging trace files, call one
* of the startMethodTracing() methods. To stop tracing, call
* {@link #stopMethodTracing()}.
*/
public final class Debug
{
/**
* Flags for startMethodTracing(). These can be ORed together.
*
* TRACE_COUNT_ALLOCS adds the results from startAllocCounting to the
* trace key file.
*/
public static final int TRACE_COUNT_ALLOCS = VMDebug.TRACE_COUNT_ALLOCS;
/**
* Flags for printLoadedClasses(). Default behavior is to only show
* the class name.
*/
public static final int SHOW_FULL_DETAIL = 1;
public static final int SHOW_CLASSLOADER = (1 << 1);
public static final int SHOW_INITIALIZED = (1 << 2);
// set/cleared by waitForDebugger()
private static volatile boolean mWaiting = false;
private Debug() {}
/*
* How long to wait for the debugger to finish sending requests. I've
* seen this hit 800msec on the device while waiting for a response
* to travel over USB and get processed, so we take that and add
* half a second.
*/
private static final int MIN_DEBUGGER_IDLE = 1300; // msec
/* how long to sleep when polling for activity */
private static final int SPIN_DELAY = 200; // msec
/**
* Default trace file path and file
*/
private static final String DEFAULT_TRACE_PATH_PREFIX = "/sdcard/";
private static final String DEFAULT_TRACE_BODY = "dmtrace";
private static final String DEFAULT_TRACE_EXTENSION = ".trace";
private static final String DEFAULT_TRACE_FILE_PATH =
DEFAULT_TRACE_PATH_PREFIX + DEFAULT_TRACE_BODY
+ DEFAULT_TRACE_EXTENSION;
/**
* This class is used to retrieved various statistics about the memory mappings for this
* process. The returns info broken down by dalvik, native, and other. All results are in kB.
*/
public static class MemoryInfo {
/** The proportional set size for dalvik. */
public int dalvikPss;
/** The private dirty pages used by dalvik. */
public int dalvikPrivateDirty;
/** The shared dirty pages used by dalvik. */
public int dalvikSharedDirty;
/** The proportional set size for the native heap. */
public int nativePss;
/** The private dirty pages used by the native heap. */
public int nativePrivateDirty;
/** The shared dirty pages used by the native heap. */
public int nativeSharedDirty;
/** The proportional set size for everything else. */
public int otherPss;
/** The private dirty pages used by everything else. */
public int otherPrivateDirty;
/** The shared dirty pages used by everything else. */
public int otherSharedDirty;
}
/**
* Wait until a debugger attaches. As soon as the debugger attaches,
* this returns, so you will need to place a breakpoint after the
* waitForDebugger() call if you want to start tracing immediately.
*/
public static void waitForDebugger() {
if (!VMDebug.isDebuggingEnabled()) {
//System.out.println("debugging not enabled, not waiting");
return;
}
if (isDebuggerConnected())
return;
// if DDMS is listening, inform them of our plight
System.out.println("Sending WAIT chunk");
byte[] data = new byte[] { 0 }; // 0 == "waiting for debugger"
Chunk waitChunk = new Chunk(ChunkHandler.type("WAIT"), data, 0, 1);
DdmServer.sendChunk(waitChunk);
mWaiting = true;
while (!isDebuggerConnected()) {
try { Thread.sleep(SPIN_DELAY); }
catch (InterruptedException ie) {}
}
mWaiting = false;
System.out.println("Debugger has connected");
/*
* There is no "ready to go" signal from the debugger, and we're
* not allowed to suspend ourselves -- the debugger expects us to
* be running happily, and gets confused if we aren't. We need to
* allow the debugger a chance to set breakpoints before we start
* running again.
*
* Sit and spin until the debugger has been idle for a short while.
*/
while (true) {
long delta = VMDebug.lastDebuggerActivity();
if (delta < 0) {
System.out.println("debugger detached?");
break;
}
if (delta < MIN_DEBUGGER_IDLE) {
System.out.println("waiting for debugger to settle...");
try { Thread.sleep(SPIN_DELAY); }
catch (InterruptedException ie) {}
} else {
System.out.println("debugger has settled (" + delta + ")");
break;
}
}
}
/**
* Returns "true" if one or more threads is waiting for a debugger
* to attach.
*/
public static boolean waitingForDebugger() {
return mWaiting;
}
/**
* Determine if a debugger is currently attached.
*/
public static boolean isDebuggerConnected() {
return VMDebug.isDebuggerConnected();
}
/**
* Change the JDWP port.
*
* @deprecated no longer needed or useful
*/
@Deprecated
public static void changeDebugPort(int port) {}
/**
* This is the pathname to the sysfs file that enables and disables
* tracing on the qemu emulator.
*/
private static final String SYSFS_QEMU_TRACE_STATE = "/sys/qemu_trace/state";
/**
* Enable qemu tracing. For this to work requires running everything inside
* the qemu emulator; otherwise, this method will have no effect. The trace
* file is specified on the command line when the emulator is started. For
* example, the following command line <br />
* <code>emulator -trace foo</code><br />
* will start running the emulator and create a trace file named "foo". This
* method simply enables writing the trace records to the trace file.
*
* <p>
* The main differences between this and {@link #startMethodTracing()} are
* that tracing in the qemu emulator traces every cpu instruction of every
* process, including kernel code, so we have more complete information,
* including all context switches. We can also get more detailed information
* such as cache misses. The sequence of calls is determined by
* post-processing the instruction trace. The qemu tracing is also done
* without modifying the application or perturbing the timing of calls
* because no instrumentation is added to the application being traced.
* </p>
*
* <p>
* One limitation of using this method compared to using
* {@link #startMethodTracing()} on the real device is that the emulator
* does not model all of the real hardware effects such as memory and
* bus contention. The emulator also has a simple cache model and cannot
* capture all the complexities of a real cache.
* </p>
*/
public static void startNativeTracing() {
// Open the sysfs file for writing and write "1" to it.
PrintWriter outStream = null;
try {
FileOutputStream fos = new FileOutputStream(SYSFS_QEMU_TRACE_STATE);
outStream = new PrintWriter(new OutputStreamWriter(fos));
outStream.println("1");
} catch (Exception e) {
} finally {
if (outStream != null)
outStream.close();
}
VMDebug.startEmulatorTracing();
}
/**
* Stop qemu tracing. See {@link #startNativeTracing()} to start tracing.
*
* <p>Tracing can be started and stopped as many times as desired. When
* the qemu emulator itself is stopped then the buffered trace records
* are flushed and written to the trace file. In fact, it is not necessary
* to call this method at all; simply killing qemu is sufficient. But
* starting and stopping a trace is useful for examining a specific
* region of code.</p>
*/
public static void stopNativeTracing() {
VMDebug.stopEmulatorTracing();
// Open the sysfs file for writing and write "0" to it.
PrintWriter outStream = null;
try {
FileOutputStream fos = new FileOutputStream(SYSFS_QEMU_TRACE_STATE);
outStream = new PrintWriter(new OutputStreamWriter(fos));
outStream.println("0");
} catch (Exception e) {
// We could print an error message here but we probably want
// to quietly ignore errors if we are not running in the emulator.
} finally {
if (outStream != null)
outStream.close();
}
}
/**
* Enable "emulator traces", in which information about the current
* method is made available to the "emulator -trace" feature. There
* is no corresponding "disable" call -- this is intended for use by
* the framework when tracing should be turned on and left that way, so
* that traces captured with F9/F10 will include the necessary data.
*
* This puts the VM into "profile" mode, which has performance
* consequences.
*
* To temporarily enable tracing, use {@link #startNativeTracing()}.
*/
public static void enableEmulatorTraceOutput() {
VMDebug.startEmulatorTracing();
}
/**
* Start method tracing with default log name and buffer size. See <a
href="{@docRoot}reference/traceview.html">Running the Traceview Debugging Program</a> for
* information about reading these files. Call stopMethodTracing() to stop
* tracing.
*/
public static void startMethodTracing() {
VMDebug.startMethodTracing(DEFAULT_TRACE_FILE_PATH, 0, 0);
}
/**
* Start method tracing, specifying the trace log file name. The trace
* file will be put under "/sdcard" unless an absolute path is given.
* See <a
href="{@docRoot}reference/traceview.html">Running the Traceview Debugging Program</a> for
* information about reading trace files.
*
* @param traceName Name for the trace log file to create.
* If no name argument is given, this value defaults to "/sdcard/dmtrace.trace".
* If the files already exist, they will be truncated.
* If the trace file given does not end in ".trace", it will be appended for you.
*/
public static void startMethodTracing(String traceName) {
startMethodTracing(traceName, 0, 0);
}
/**
* Start method tracing, specifying the trace log file name and the
* buffer size. The trace files will be put under "/sdcard" unless an
* absolute path is given. See <a
href="{@docRoot}reference/traceview.html">Running the Traceview Debugging Program</a> for
* information about reading trace files.
* @param traceName Name for the trace log file to create.
* If no name argument is given, this value defaults to "/sdcard/dmtrace.trace".
* If the files already exist, they will be truncated.
* If the trace file given does not end in ".trace", it will be appended for you.
*
* @param bufferSize The maximum amount of trace data we gather. If not given, it defaults to 8MB.
*/
public static void startMethodTracing(String traceName, int bufferSize) {
startMethodTracing(traceName, bufferSize, 0);
}
/**
* Start method tracing, specifying the trace log file name and the
* buffer size. The trace files will be put under "/sdcard" unless an
* absolute path is given. See <a
href="{@docRoot}reference/traceview.html">Running the Traceview Debugging Program</a> for
* information about reading trace files.
*
* <p>
* When method tracing is enabled, the VM will run more slowly than
* usual, so the timings from the trace files should only be considered
* in relative terms (e.g. was run #1 faster than run #2). The times
* for native methods will not change, so don't try to use this to
* compare the performance of interpreted and native implementations of the
* same method. As an alternative, consider using "native" tracing
* in the emulator via {@link #startNativeTracing()}.
* </p>
*
* @param traceName Name for the trace log file to create.
* If no name argument is given, this value defaults to "/sdcard/dmtrace.trace".
* If the files already exist, they will be truncated.
* If the trace file given does not end in ".trace", it will be appended for you.
* @param bufferSize The maximum amount of trace data we gather. If not given, it defaults to 8MB.
*/
public static void startMethodTracing(String traceName, int bufferSize,
int flags) {
String pathName = traceName;
if (pathName.charAt(0) != '/')
pathName = DEFAULT_TRACE_PATH_PREFIX + pathName;
if (!pathName.endsWith(DEFAULT_TRACE_EXTENSION))
pathName = pathName + DEFAULT_TRACE_EXTENSION;
VMDebug.startMethodTracing(pathName, bufferSize, flags);
}
/**
* Stop method tracing.
*/
public static void stopMethodTracing() {
VMDebug.stopMethodTracing();
}
/**
* Get an indication of thread CPU usage. The value returned
* indicates the amount of time that the current thread has spent
* executing code or waiting for certain types of I/O.
*
* The time is expressed in nanoseconds, and is only meaningful
* when compared to the result from an earlier call. Note that
* nanosecond resolution does not imply nanosecond accuracy.
*
* On system which don't support this operation, the call returns -1.
*/
public static long threadCpuTimeNanos() {
return VMDebug.threadCpuTimeNanos();
}
/**
* Count the number and aggregate size of memory allocations between
* two points.
*
* The "start" function resets the counts and enables counting. The
* "stop" function disables the counting so that the analysis code
* doesn't cause additional allocations. The "get" function returns
* the specified value.
*
* Counts are kept for the system as a whole and for each thread.
* The per-thread counts for threads other than the current thread
* are not cleared by the "reset" or "start" calls.
*/
public static void startAllocCounting() {
VMDebug.startAllocCounting();
}
public static void stopAllocCounting() {
VMDebug.stopAllocCounting();
}
public static int getGlobalAllocCount() {
return VMDebug.getAllocCount(VMDebug.KIND_GLOBAL_ALLOCATED_OBJECTS);
}
public static int getGlobalAllocSize() {
return VMDebug.getAllocCount(VMDebug.KIND_GLOBAL_ALLOCATED_BYTES);
}
public static int getGlobalFreedCount() {
return VMDebug.getAllocCount(VMDebug.KIND_GLOBAL_FREED_OBJECTS);
}
public static int getGlobalFreedSize() {
return VMDebug.getAllocCount(VMDebug.KIND_GLOBAL_FREED_BYTES);
}
public static int getGlobalExternalAllocCount() {
return VMDebug.getAllocCount(VMDebug.KIND_GLOBAL_EXT_ALLOCATED_OBJECTS);
}
public static int getGlobalExternalAllocSize() {
return VMDebug.getAllocCount(VMDebug.KIND_GLOBAL_EXT_ALLOCATED_BYTES);
}
public static int getGlobalExternalFreedCount() {
return VMDebug.getAllocCount(VMDebug.KIND_GLOBAL_EXT_FREED_OBJECTS);
}
public static int getGlobalExternalFreedSize() {
return VMDebug.getAllocCount(VMDebug.KIND_GLOBAL_EXT_FREED_BYTES);
}
public static int getGlobalGcInvocationCount() {
return VMDebug.getAllocCount(VMDebug.KIND_GLOBAL_GC_INVOCATIONS);
}
public static int getThreadAllocCount() {
return VMDebug.getAllocCount(VMDebug.KIND_THREAD_ALLOCATED_OBJECTS);
}
public static int getThreadAllocSize() {
return VMDebug.getAllocCount(VMDebug.KIND_THREAD_ALLOCATED_BYTES);
}
public static int getThreadExternalAllocCount() {
return VMDebug.getAllocCount(VMDebug.KIND_THREAD_EXT_ALLOCATED_OBJECTS);
}
public static int getThreadExternalAllocSize() {
return VMDebug.getAllocCount(VMDebug.KIND_THREAD_EXT_ALLOCATED_BYTES);
}
public static int getThreadGcInvocationCount() {
return VMDebug.getAllocCount(VMDebug.KIND_THREAD_GC_INVOCATIONS);
}
public static void resetGlobalAllocCount() {
VMDebug.resetAllocCount(VMDebug.KIND_GLOBAL_ALLOCATED_OBJECTS);
}
public static void resetGlobalAllocSize() {
VMDebug.resetAllocCount(VMDebug.KIND_GLOBAL_ALLOCATED_BYTES);
}
public static void resetGlobalFreedCount() {
VMDebug.resetAllocCount(VMDebug.KIND_GLOBAL_FREED_OBJECTS);
}
public static void resetGlobalFreedSize() {
VMDebug.resetAllocCount(VMDebug.KIND_GLOBAL_FREED_BYTES);
}
public static void resetGlobalExternalAllocCount() {
VMDebug.resetAllocCount(VMDebug.KIND_GLOBAL_EXT_ALLOCATED_OBJECTS);
}
public static void resetGlobalExternalAllocSize() {
VMDebug.resetAllocCount(VMDebug.KIND_GLOBAL_EXT_ALLOCATED_BYTES);
}
public static void resetGlobalExternalFreedCount() {
VMDebug.resetAllocCount(VMDebug.KIND_GLOBAL_EXT_FREED_OBJECTS);
}
public static void resetGlobalExternalFreedSize() {
VMDebug.resetAllocCount(VMDebug.KIND_GLOBAL_EXT_FREED_BYTES);
}
public static void resetGlobalGcInvocationCount() {
VMDebug.resetAllocCount(VMDebug.KIND_GLOBAL_GC_INVOCATIONS);
}
public static void resetThreadAllocCount() {
VMDebug.resetAllocCount(VMDebug.KIND_THREAD_ALLOCATED_OBJECTS);
}
public static void resetThreadAllocSize() {
VMDebug.resetAllocCount(VMDebug.KIND_THREAD_ALLOCATED_BYTES);
}
public static void resetThreadExternalAllocCount() {
VMDebug.resetAllocCount(VMDebug.KIND_THREAD_EXT_ALLOCATED_OBJECTS);
}
public static void resetThreadExternalAllocSize() {
VMDebug.resetAllocCount(VMDebug.KIND_THREAD_EXT_ALLOCATED_BYTES);
}
public static void resetThreadGcInvocationCount() {
VMDebug.resetAllocCount(VMDebug.KIND_THREAD_GC_INVOCATIONS);
}
public static void resetAllCounts() {
VMDebug.resetAllocCount(VMDebug.KIND_ALL_COUNTS);
}
/**
* Returns the size of the native heap.
* @return The size of the native heap in bytes.
*/
public static native long getNativeHeapSize();
/**
* Returns the amount of allocated memory in the native heap.
* @return The allocated size in bytes.
*/
public static native long getNativeHeapAllocatedSize();
/**
* Returns the amount of free memory in the native heap.
* @return The freed size in bytes.
*/
public static native long getNativeHeapFreeSize();
/**
* Retrieves information about this processes memory usages. This information is broken down by
* how much is in use by dalivk, the native heap, and everything else.
*/
public static native void getMemoryInfo(MemoryInfo memoryInfo);
/**
* Establish an object allocation limit in the current thread. Useful
* for catching regressions in code that is expected to operate
* without causing any allocations.
*
* Pass in the maximum number of allowed allocations. Use -1 to disable
* the limit. Returns the previous limit.
*
* The preferred way to use this is:
*
* int prevLimit = -1;
* try {
* prevLimit = Debug.setAllocationLimit(0);
* ... do stuff that's not expected to allocate memory ...
* } finally {
* Debug.setAllocationLimit(prevLimit);
* }
*
* This allows limits to be nested. The try/finally ensures that the
* limit is reset if something fails.
*
* Exceeding the limit causes a dalvik.system.AllocationLimitError to
* be thrown from a memory allocation call. The limit is reset to -1
* when this happens.
*
* The feature may be disabled in the VM configuration. If so, this
* call has no effect, and always returns -1.
*/
public static int setAllocationLimit(int limit) {
return VMDebug.setAllocationLimit(limit);
}
/**
* Establish a global object allocation limit. This is similar to
* {@link #setAllocationLimit(int)} but applies to all threads in
* the VM. It will coexist peacefully with per-thread limits.
*
* [ The value of "limit" is currently restricted to 0 (no allocations
* allowed) or -1 (no global limit). This may be changed in a future
* release. ]
*/
public static int setGlobalAllocationLimit(int limit) {
if (limit != 0 && limit != -1)
throw new IllegalArgumentException("limit must be 0 or -1");
return VMDebug.setGlobalAllocationLimit(limit);
}
/**
* Dump a list of all currently loaded class to the log file.
*
* @param flags See constants above.
*/
public static void printLoadedClasses(int flags) {
VMDebug.printLoadedClasses(flags);
}
/**
* Get the number of loaded classes.
* @return the number of loaded classes.
*/
public static int getLoadedClassCount() {
return VMDebug.getLoadedClassCount();
}
/**
* Returns the number of sent transactions from this process.
* @return The number of sent transactions or -1 if it could not read t.
*/
public static native int getBinderSentTransactions();
/**
* Returns the number of received transactions from the binder driver.
* @return The number of received transactions or -1 if it could not read the stats.
*/
public static native int getBinderReceivedTransactions();
/**
* Returns the number of active local Binder objects that exist in the
* current process.
*/
public static final native int getBinderLocalObjectCount();
/**
* Returns the number of references to remote proxy Binder objects that
* exist in the current process.
*/
public static final native int getBinderProxyObjectCount();
/**
* Returns the number of death notification links to Binder objects that
* exist in the current process.
*/
public static final native int getBinderDeathObjectCount();
/**
* API for gathering and querying instruction counts.
*
* Example usage:
* Debug.InstructionCount icount = new Debug.InstructionCount();
* icount.resetAndStart();
* [... do lots of stuff ...]
* if (icount.collect()) {
* System.out.println("Total instructions executed: "
* + icount.globalTotal());
* System.out.println("Method invocations: "
* + icount.globalMethodInvocations());
* }
*/
public static class InstructionCount {
private static final int NUM_INSTR = 256;
private int[] mCounts;
public InstructionCount() {
mCounts = new int[NUM_INSTR];
}
/**
* Reset counters and ensure counts are running. Counts may
* have already been running.
*
* @return true if counting was started
*/
public boolean resetAndStart() {
try {
VMDebug.startInstructionCounting();
VMDebug.resetInstructionCount();
} catch (UnsupportedOperationException uoe) {
return false;
}
return true;
}
/**
* Collect instruction counts. May or may not stop the
* counting process.
*/
public boolean collect() {
try {
VMDebug.stopInstructionCounting();
VMDebug.getInstructionCount(mCounts);
} catch (UnsupportedOperationException uoe) {
return false;
}
return true;
}
/**
* Return the total number of instructions executed globally (i.e. in
* all threads).
*/
public int globalTotal() {
int count = 0;
for (int i = 0; i < NUM_INSTR; i++)
count += mCounts[i];
return count;
}
/**
* Return the total number of method-invocation instructions
* executed globally.
*/
public int globalMethodInvocations() {
int count = 0;
//count += mCounts[Opcodes.OP_EXECUTE_INLINE];
count += mCounts[Opcodes.OP_INVOKE_VIRTUAL];
count += mCounts[Opcodes.OP_INVOKE_SUPER];
count += mCounts[Opcodes.OP_INVOKE_DIRECT];
count += mCounts[Opcodes.OP_INVOKE_STATIC];
count += mCounts[Opcodes.OP_INVOKE_INTERFACE];
count += mCounts[Opcodes.OP_INVOKE_VIRTUAL_RANGE];
count += mCounts[Opcodes.OP_INVOKE_SUPER_RANGE];
count += mCounts[Opcodes.OP_INVOKE_DIRECT_RANGE];
count += mCounts[Opcodes.OP_INVOKE_STATIC_RANGE];
count += mCounts[Opcodes.OP_INVOKE_INTERFACE_RANGE];
//count += mCounts[Opcodes.OP_INVOKE_DIRECT_EMPTY];
count += mCounts[Opcodes.OP_INVOKE_VIRTUAL_QUICK];
count += mCounts[Opcodes.OP_INVOKE_VIRTUAL_QUICK_RANGE];
count += mCounts[Opcodes.OP_INVOKE_SUPER_QUICK];
count += mCounts[Opcodes.OP_INVOKE_SUPER_QUICK_RANGE];
return count;
}
};
}