blob: 72b19244a36d4d3aeae1b60fda2d72c5d9a4e9be [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- G N A T . S H A 1 --
-- --
-- B o d y --
-- --
-- Copyright (C) 2002-2006, AdaCore --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Note: the code for this unit is derived from GNAT.MD5
with Ada.Unchecked_Conversion;
package body GNAT.SHA1 is
use Interfaces;
Padding : constant String :=
(1 => Character'Val (16#80#), 2 .. 64 => ASCII.NUL);
Hex_Digit : constant array (Unsigned_32 range 0 .. 15) of Character :=
('0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f');
-- Look-up table for each hex digit of the Message-Digest.
-- Used by function Digest (Context).
type Sixteen_Words is array (Natural range 0 .. 15)
of Interfaces.Unsigned_32;
-- Sixteen 32-bit words, converted from block of 64 characters.
-- Used in procedure Decode and Transform.
procedure Decode (Block : String; X : out Sixteen_Words);
-- Convert a String of 64 characters into 16 32-bit numbers
-- The following functions are the four elementary components of each
-- of the four round groups (0 .. 19, 20 .. 39, 40 .. 59, and 60 .. 79)
-- defined in RFC 3174.
function F0 (B, C, D : Unsigned_32) return Unsigned_32;
pragma Inline (F0);
function F1 (B, C, D : Unsigned_32) return Unsigned_32;
pragma Inline (F1);
function F2 (B, C, D : Unsigned_32) return Unsigned_32;
pragma Inline (F2);
function F3 (B, C, D : Unsigned_32) return Unsigned_32;
pragma Inline (F3);
procedure Transform (Ctx : in out Context; Block : String);
-- Process one block of 64 characters
------------
-- Decode --
------------
procedure Decode (Block : String; X : out Sixteen_Words) is
Cur : Positive := Block'First;
begin
pragma Assert (Block'Length = 64);
for Index in X'Range loop
X (Index) :=
Unsigned_32 (Character'Pos (Block (Cur + 3))) +
Shift_Left (Unsigned_32 (Character'Pos (Block (Cur + 2))), 8) +
Shift_Left (Unsigned_32 (Character'Pos (Block (Cur + 1))), 16) +
Shift_Left (Unsigned_32 (Character'Pos (Block (Cur))), 24);
Cur := Cur + 4;
end loop;
end Decode;
------------
-- Digest --
------------
function Digest (C : Context) return Message_Digest is
Result : Message_Digest;
Cur : Natural := 1;
-- Index in Result where the next character will be placed
Last_Block : String (1 .. 64);
C1 : Context := C;
procedure Convert (X : Unsigned_32);
-- Put the contribution of one of the five H words of the Context in
-- Result. Increments Cur.
-------------
-- Convert --
-------------
procedure Convert (X : Unsigned_32) is
Y : Unsigned_32 := X;
begin
for J in 1 .. 8 loop
Y := Rotate_Left (Y, 4);
Result (Cur) := Hex_Digit (Y and Unsigned_32'(16#0F#));
Cur := Cur + 1;
end loop;
end Convert;
-- Start of processing for Digest
begin
-- Process characters in the context buffer, if any
pragma Assert (C.Last /= C.Buffer'Last);
Last_Block (1 .. C.Last) := C.Buffer (1 .. C.Last);
if C.Last > 55 then
Last_Block (C.Last + 1 .. 64) := Padding (1 .. 64 - C.Last);
Transform (C1, Last_Block);
Last_Block := (others => ASCII.NUL);
else
Last_Block (C.Last + 1 .. 56) := Padding (1 .. 56 - C.Last);
end if;
-- Add the input length (as stored in the context) as 8 characters
Last_Block (57 .. 64) := (others => ASCII.NUL);
declare
L : Unsigned_64 := Unsigned_64 (C.Length) * 8;
Idx : Positive := 64;
begin
while L > 0 loop
Last_Block (Idx) := Character'Val (L and 16#Ff#);
L := Shift_Right (L, 8);
Idx := Idx - 1;
end loop;
end;
Transform (C1, Last_Block);
Convert (C1.H (0));
Convert (C1.H (1));
Convert (C1.H (2));
Convert (C1.H (3));
Convert (C1.H (4));
return Result;
end Digest;
function Digest (S : String) return Message_Digest is
C : Context;
begin
Update (C, S);
return Digest (C);
end Digest;
function Digest
(A : Ada.Streams.Stream_Element_Array) return Message_Digest
is
C : Context;
begin
Update (C, A);
return Digest (C);
end Digest;
--------
-- F0 --
--------
function F0
(B, C, D : Interfaces.Unsigned_32) return Interfaces.Unsigned_32
is
begin
return (B and C) or ((not B) and D);
end F0;
--------
-- F1 --
--------
function F1
(B, C, D : Interfaces.Unsigned_32) return Interfaces.Unsigned_32
is
begin
return B xor C xor D;
end F1;
--------
-- F2 --
--------
function F2
(B, C, D : Interfaces.Unsigned_32) return Interfaces.Unsigned_32
is
begin
return (B and C) or (B and D) or (C and D);
end F2;
--------
-- F3 --
--------
function F3
(B, C, D : Interfaces.Unsigned_32) return Interfaces.Unsigned_32
renames F1;
---------------
-- Transform --
---------------
procedure Transform
(Ctx : in out Context;
Block : String)
is
W : array (0 .. 79) of Interfaces.Unsigned_32;
A, B, C, D, E, Temp : Interfaces.Unsigned_32;
begin
pragma Assert (Block'Length = 64);
-- a. Divide data block into sixteen words
Decode (Block, Sixteen_Words (W (0 .. 15)));
-- b. Prepare working block of 80 words
for T in 16 .. 79 loop
-- W(t) = S^1(W(t-3) XOR W(t-8) XOR W(t-14) XOR W(t-16))
W (T) := Rotate_Left
(W (T - 3) xor W (T - 8) xor W (T - 14) xor W (T - 16), 1);
end loop;
-- c. Set up transformation variables
A := Ctx.H (0);
B := Ctx.H (1);
C := Ctx.H (2);
D := Ctx.H (3);
E := Ctx.H (4);
-- d. For each of the 80 rounds, compute:
-- TEMP = S^5(A) + f(t;B,C,D) + E + W(t) + K(t);
-- E = D; D = C; C = S^30(B); B = A; A = TEMP;
for T in 0 .. 19 loop
Temp := Rotate_Left (A, 5) + F0 (B, C, D) + E + W (T) + 16#5A827999#;
E := D; D := C; C := Rotate_Left (B, 30); B := A; A := Temp;
end loop;
for T in 20 .. 39 loop
Temp := Rotate_Left (A, 5) + F1 (B, C, D) + E + W (T) + 16#6ED9EBA1#;
E := D; D := C; C := Rotate_Left (B, 30); B := A; A := Temp;
end loop;
for T in 40 .. 59 loop
Temp := Rotate_Left (A, 5) + F2 (B, C, D) + E + W (T) + 16#8F1BBCDC#;
E := D; D := C; C := Rotate_Left (B, 30); B := A; A := Temp;
end loop;
for T in 60 .. 79 loop
Temp := Rotate_Left (A, 5) + F3 (B, C, D) + E + W (T) + 16#CA62C1D6#;
E := D; D := C; C := Rotate_Left (B, 30); B := A; A := Temp;
end loop;
-- e. Update context:
-- H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E
Ctx.H (0) := Ctx.H (0) + A;
Ctx.H (1) := Ctx.H (1) + B;
Ctx.H (2) := Ctx.H (2) + C;
Ctx.H (3) := Ctx.H (3) + D;
Ctx.H (4) := Ctx.H (4) + E;
end Transform;
------------
-- Update --
------------
procedure Update
(C : in out Context;
Input : String)
is
Inp : constant String := C.Buffer (1 .. C.Last) & Input;
Cur : Positive := Inp'First;
begin
C.Length := C.Length + Input'Length;
while Cur + 63 <= Inp'Last loop
Transform (C, Inp (Cur .. Cur + 63));
Cur := Cur + 64;
end loop;
C.Last := Inp'Last - Cur + 1;
C.Buffer (1 .. C.Last) := Inp (Cur .. Inp'Last);
end Update;
procedure Update
(C : in out Context;
Input : Ada.Streams.Stream_Element_Array)
is
subtype Stream_Array is Ada.Streams.Stream_Element_Array (Input'Range);
subtype Stream_String is
String (1 + Integer (Input'First) .. 1 + Integer (Input'Last));
function To_String is new Ada.Unchecked_Conversion
(Stream_Array, Stream_String);
String_Input : constant String := To_String (Input);
begin
Update (C, String_Input);
end Update;
-----------------
-- Wide_Digest --
-----------------
function Wide_Digest (W : Wide_String) return Message_Digest is
C : Context;
begin
Wide_Update (C, W);
return Digest (C);
end Wide_Digest;
-----------------
-- Wide_Update --
-----------------
procedure Wide_Update
(C : in out Context;
Input : Wide_String)
is
String_Input : String (1 .. 2 * Input'Length);
Cur : Positive := 1;
begin
for Index in Input'Range loop
String_Input (Cur) :=
Character'Val
(Unsigned_32 (Wide_Character'Pos (Input (Index))) and 16#FF#);
Cur := Cur + 1;
String_Input (Cur) :=
Character'Val
(Shift_Right (Unsigned_32 (Wide_Character'Pos (Input (Index))), 8)
and 16#FF#);
Cur := Cur + 1;
end loop;
Update (C, String_Input);
end Wide_Update;
end GNAT.SHA1;