blob: 67086833a75b7930ac971ad267d677df8302e70c [file] [log] [blame]
<?xml version='1.0'?>
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
"http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd"
[ ]>
<chapter id="manual.intro.using" xreflabel="Using">
<?dbhtml filename="using.html"?>
<title>Using</title>
<sect1 id="manual.intro.using.lib" xreflabel="Lib">
<title>Linking Library Binary Files</title>
<para>
If you only built a static library (libstdc++.a), or if you
specified static linking, you don't have to worry about this.
But if you built a shared library (libstdc++.so) and linked
against it, then you will need to find that library when you run
the executable.
</para>
<para>
Methods vary for different platforms and different styles, but
the usual ones are printed to the screen during installation.
They include:
</para>
<itemizedlist>
<listitem>
<para>
At runtime set LD_LIBRARY_PATH in your environment
correctly, so that the shared library for libstdc++ can be
found and loaded. Be certain that you understand all of the
other implications and behavior of LD_LIBRARY_PATH first
(few people do, and they get into trouble).
</para>
</listitem>
<listitem>
<para>
Compile the path to find the library at runtime into the
program. This can be done by passing certain options to
g++, which will in turn pass them on to the linker. The
exact format of the options is dependent on which linker you
use:
</para>
<itemizedlist>
<listitem>
<para>
GNU ld (default on Linux):<literal>-Wl,--rpath,<filename class="directory">destdir</filename>/lib</literal>
</para>
</listitem>
<listitem>
<para>
IRIX ld:<literal>
-Wl,-rpath,<filename class="directory">destdir</filename>/lib</literal>
</para>
</listitem>
<listitem>
<para>
Solaris ld:<literal>-Wl,-R<filename class="directory">destdir</filename>/lib</literal>
</para>
</listitem>
<listitem>
<para>
More...? Let us know!
</para>
</listitem>
</itemizedlist>
</listitem>
</itemizedlist>
<para>
Use the <command>ldd</command> utility to show which library the
system thinks it will get at runtime.
</para>
<para>
A libstdc++.la file is also installed, for use with Libtool. If
you use Libtool to create your executables, these details are
taken care of for you.
</para>
</sect1>
<sect1 id="manual.intro.using.headers" xreflabel="Headers">
<title>Headers</title>
<sect2 id="manual.intro.using.headers.all" xreflabel="Header Files">
<title>Header Files</title>
<para>
The C++ standard specifies the entire set of header files that
must be available to all hosted implementations. Actually, the
word &quot;files&quot; is a misnomer, since the contents of the
headers don't necessarily have to be in any kind of external
file. The only rule is that when one <code>#include</code>'s a
header, the contents of that header become available, no matter
how.
</para>
<para>
That said, in practice files are used.
</para>
<para>
There are two main types of include files: header files related
to a specific version of the ISO C++ standard (called Standard
Headers), and all others (TR1, C++ ABI, and Extensions).
</para>
<para>
Two dialects of standard headers are supported, corresponding to
the 1998 standard as updated for 2003, and the draft of the
upcoming 200x standard.
</para>
<para>
C++98/03 include files. These are available in the default compilation mode, i.e. <code>-std=c++98</code> or <code>-std=gnu++98</code>.
</para>
<table frame='all'>
<title>C++ 1998 Library Headers</title>
<tgroup cols='5' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'></colspec>
<colspec colname='c2'></colspec>
<colspec colname='c3'></colspec>
<colspec colname='c4'></colspec>
<tbody>
<row><entry><filename class="headerfile">algorithm</filename></entry><entry><filename class="headerfile">iomanip</filename></entry><entry><filename class="headerfile">list</filename></entry><entry><filename class="headerfile">ostream</filename></entry><entry><filename class="headerfile">streambuf</filename></entry></row>
<row><entry><filename class="headerfile">bitset</filename></entry><entry><filename class="headerfile">ios</filename></entry><entry><filename class="headerfile">locale</filename></entry><entry><filename class="headerfile">queue</filename></entry><entry><filename class="headerfile">string</filename></entry></row>
<row><entry><filename class="headerfile">complex</filename></entry><entry><filename class="headerfile">iosfwd</filename></entry><entry><filename class="headerfile">map</filename></entry><entry><filename class="headerfile">set</filename></entry><entry><filename class="headerfile">typeinfo</filename></entry></row>
<row><entry><filename class="headerfile">deque</filename></entry><entry><filename class="headerfile">iostream</filename></entry><entry><filename class="headerfile">memory</filename></entry><entry><filename class="headerfile">sstream</filename></entry><entry><filename class="headerfile">utility</filename></entry></row>
<row><entry><filename class="headerfile">exception</filename></entry><entry><filename class="headerfile">istream</filename></entry><entry><filename class="headerfile">new</filename></entry><entry><filename class="headerfile">stack</filename></entry><entry><filename class="headerfile">valarray</filename></entry></row>
<row><entry><filename class="headerfile">fstream</filename></entry><entry><filename class="headerfile">iterator</filename></entry><entry><filename class="headerfile">numeric</filename></entry><entry><filename class="headerfile">stdexcept</filename></entry><entry><filename class="headerfile">vector</filename></entry></row>
<row><entry><filename class="headerfile">functional</filename></entry><entry><filename class="headerfile">limits</filename></entry></row>
</tbody>
</tgroup>
</table>
<para></para>
<table frame='all'>
<title>C++ 1998 Library Headers for C Library Facilities</title>
<tgroup cols='5' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'></colspec>
<colspec colname='c2'></colspec>
<colspec colname='c3'></colspec>
<colspec colname='c4'></colspec>
<tbody>
<row><entry><filename class="headerfile">cassert</filename></entry><entry><filename class="headerfile">ciso646</filename></entry><entry><filename class="headerfile">csetjmp</filename></entry><entry><filename class="headerfile">cstdio</filename></entry><entry><filename class="headerfile">ctime</filename></entry></row>
<row><entry><filename class="headerfile">cctype</filename></entry><entry><filename class="headerfile">climits</filename></entry><entry><filename class="headerfile">csignal</filename></entry><entry><filename class="headerfile">cstdlib</filename></entry><entry><filename class="headerfile">cwchar</filename></entry></row>
<row><entry><filename class="headerfile">cerrno</filename></entry><entry><filename class="headerfile">clocale</filename></entry><entry><filename class="headerfile">cstdarg</filename></entry><entry><filename class="headerfile">cstring</filename></entry><entry><filename class="headerfile">cwctype</filename></entry></row>
<row><entry><filename class="headerfile">cfloat</filename></entry><entry><filename class="headerfile">cmath</filename></entry><entry><filename class="headerfile">cstddef</filename></entry></row>
</tbody>
</tgroup>
</table>
<para>C++0x include files. These are only available in C++0x compilation mode, i.e. <code>-std=c++0x</code> or <code>-std=gnu++0x</code>.
</para>
<para></para>
<table frame='all'>
<title>C++ 200x Library Headers</title>
<tgroup cols='5' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'></colspec>
<colspec colname='c2'></colspec>
<colspec colname='c3'></colspec>
<colspec colname='c4'></colspec>
<tbody>
<row><entry><filename class="headerfile">algorithm</filename></entry><entry><filename class="headerfile">iomanip</filename></entry><entry><filename class="headerfile">locale</filename></entry><entry><filename class="headerfile">regex</filename></entry><entry><filename class="headerfile">tuple</filename></entry></row>
<row><entry><filename class="headerfile">array</filename></entry><entry><filename class="headerfile">ios</filename></entry><entry><filename class="headerfile">map</filename></entry><entry><filename class="headerfile">set</filename></entry><entry><filename class="headerfile">typeinfo</filename></entry></row>
<row><entry><filename class="headerfile">bitset</filename></entry><entry><filename class="headerfile">iosfwd</filename></entry><entry><filename class="headerfile">memory</filename></entry><entry><filename class="headerfile">sstream</filename></entry><entry><filename class="headerfile">type_traits</filename></entry></row>
<row><entry><filename class="headerfile">complex</filename></entry><entry><filename class="headerfile">iostream</filename></entry><entry><filename class="headerfile">new</filename></entry><entry><filename class="headerfile">stack</filename></entry><entry><filename class="headerfile">unordered_map</filename></entry></row>
<row><entry><filename class="headerfile">deque</filename></entry><entry><filename class="headerfile">istream</filename></entry><entry><filename class="headerfile">numeric</filename></entry><entry><filename class="headerfile">stdexcept</filename></entry><entry><filename class="headerfile">unordered_set</filename></entry></row>
<row><entry><filename class="headerfile">exception</filename></entry><entry><filename class="headerfile">iterator</filename></entry><entry><filename class="headerfile">ostream</filename></entry><entry><filename class="headerfile">streambuf</filename></entry><entry><filename class="headerfile">utility</filename></entry></row>
<row><entry><filename class="headerfile">fstream</filename></entry><entry><filename class="headerfile">limits</filename></entry><entry><filename class="headerfile">queue</filename></entry><entry><filename class="headerfile">string</filename></entry><entry><filename class="headerfile">valarray</filename></entry></row>
<row><entry><filename class="headerfile">functional</filename></entry><entry><filename class="headerfile">list</filename></entry><entry><filename class="headerfile">random</filename></entry><entry><filename class="headerfile">system_error</filename></entry><entry><filename class="headerfile">vector</filename></entry></row>
</tbody>
</tgroup>
</table>
<para></para>
<table frame='all'>
<title>C++ 200x Library Headers for C Library Facilities</title>
<tgroup cols='5' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'></colspec>
<colspec colname='c2'></colspec>
<colspec colname='c3'></colspec>
<colspec colname='c4'></colspec>
<colspec colname='c5'></colspec>
<tbody>
<row><entry><filename class="headerfile">cassert</filename></entry><entry><filename class="headerfile">cfloat</filename></entry><entry><filename class="headerfile">cmath</filename></entry><entry><filename class="headerfile">cstddef</filename></entry><entry><filename class="headerfile">ctgmath</filename></entry></row>
<row><entry><filename class="headerfile">ccomplex</filename></entry><entry><filename class="headerfile">cinttypes</filename></entry><entry><filename class="headerfile">csetjmp</filename></entry><entry><filename class="headerfile">cstdint</filename></entry><entry><filename class="headerfile">ctime</filename></entry></row>
<row><entry><filename class="headerfile">cctype</filename></entry><entry><filename class="headerfile">ciso646</filename></entry><entry><filename class="headerfile">csignal</filename></entry><entry><filename class="headerfile">cstdio</filename></entry><entry><filename class="headerfile">cuchar</filename></entry></row>
<row><entry><filename class="headerfile">cerrno</filename></entry><entry><filename class="headerfile">climits</filename></entry><entry><filename class="headerfile">cstdarg</filename></entry><entry><filename class="headerfile">cstdlib</filename></entry><entry><filename class="headerfile">cwchar</filename></entry></row>
<row><entry><filename class="headerfile">cfenv</filename></entry><entry><filename class="headerfile">clocale</filename></entry><entry><filename class="headerfile">cstdbool</filename></entry><entry><filename class="headerfile">cstring</filename></entry><entry><filename class="headerfile">cwctype</filename></entry></row>
</tbody>
</tgroup>
</table>
<para>
In addition, TR1 includes as:
</para>
<table frame='all'>
<title>C++ TR1 Library Headers</title>
<tgroup cols='5' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'></colspec>
<colspec colname='c2'></colspec>
<colspec colname='c3'></colspec>
<colspec colname='c4'></colspec>
<colspec colname='c5'></colspec>
<tbody>
<row><entry><filename class="headerfile">tr1/array</filename></entry><entry><filename class="headerfile">tr1/memory</filename></entry><entry><filename class="headerfile">tr1/regex</filename></entry><entry><filename class="headerfile">tr1/type_traits</filename></entry><entry><filename class="headerfile">tr1/unordered_set</filename></entry></row>
<row><entry><filename class="headerfile">tr1/complex</filename></entry><entry><filename class="headerfile">tr1/random</filename></entry><entry><filename class="headerfile">tr1/tuple</filename></entry><entry><filename class="headerfile">tr1/unordered_map</filename></entry><entry><filename class="headerfile">tr1/utility</filename></entry></row>
<row><entry><filename class="headerfile">tr1/functional</filename></entry></row>
</tbody>
</tgroup>
</table>
<para></para>
<table frame='all'>
<title>C++ TR1 Library Headers for C Library Facilities</title>
<tgroup cols='5' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'></colspec>
<colspec colname='c2'></colspec>
<colspec colname='c3'></colspec>
<colspec colname='c4'></colspec>
<colspec colname='c5'></colspec>
<tbody>
<row><entry><filename class="headerfile">tr1/cmath</filename></entry><entry><filename class="headerfile">tr1/cfloat</filename></entry><entry><filename class="headerfile">tr1/cstdarg</filename></entry><entry><filename class="headerfile">tr1/cstdio</filename></entry><entry><filename class="headerfile">tr1/ctime</filename></entry></row>
<row><entry><filename class="headerfile">tr1/ccomplex</filename></entry><entry><filename class="headerfile">tr1/cinttypes</filename></entry><entry><filename class="headerfile">tr1/cstdbool</filename></entry><entry><filename class="headerfile">tr1/cstdlib</filename></entry><entry><filename class="headerfile">tr1/cwchar</filename></entry></row>
<row><entry><filename class="headerfile">tr1/cfenv</filename></entry><entry><filename class="headerfile">tr1/climits</filename></entry><entry><filename class="headerfile">tr1/cstdint</filename></entry><entry><filename class="headerfile">tr1/ctgmath</filename></entry><entry><filename class="headerfile">tr1/cwctype</filename></entry></row>
</tbody>
</tgroup>
</table>
<para>
Also included are files for the C++ ABI interface:
</para>
<table frame='all'>
<title>C++ ABI Headers</title>
<tgroup cols='2' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'></colspec>
<colspec colname='c2'></colspec>
<tbody>
<row><entry><filename class="headerfile">cxxabi.h</filename></entry><entry><filename class="headerfile">cxxabi_forced.h</filename></entry></row>
</tbody>
</tgroup>
</table>
<para>
And a large variety of extensions.
</para>
<table frame='all'>
<title>Extension Headers</title>
<tgroup cols='5' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'></colspec>
<colspec colname='c2'></colspec>
<colspec colname='c3'></colspec>
<colspec colname='c4'></colspec>
<colspec colname='c5'></colspec>
<tbody>
<row><entry><filename class="headerfile">ext/algorithm</filename></entry><entry><filename class="headerfile">ext/debug_allocator.h</filename></entry><entry><filename class="headerfile">ext/mt_allocator.h</filename></entry><entry><filename class="headerfile">ext/pod_char_traits.h</filename></entry><entry><filename class="headerfile">ext/stdio_sync_filebuf.h</filename></entry></row>
<row><entry><filename class="headerfile">ext/array_allocator.h</filename></entry><entry><filename class="headerfile">ext/enc_filebuf.h</filename></entry><entry><filename class="headerfile">ext/new_allocator.h</filename></entry><entry><filename class="headerfile">ext/pool_allocator.h</filename></entry><entry><filename class="headerfile">ext/throw_allocator.h</filename></entry></row>
<row><entry><filename class="headerfile">ext/atomicity.h</filename></entry><entry><filename class="headerfile">ext/functional</filename></entry><entry><filename class="headerfile">ext/numeric</filename></entry><entry><filename class="headerfile">ext/rb_tree</filename></entry><entry><filename class="headerfile">ext/typelist.h</filename></entry></row>
<row><entry><filename class="headerfile">ext/bitmap_allocator.h</filename></entry><entry><filename class="headerfile">ext/iterator</filename></entry><entry><filename class="headerfile">ext/numeric_traits.h</filename></entry><entry><filename class="headerfile">ext/rope</filename></entry><entry><filename class="headerfile">ext/type_traits.h</filename></entry></row>
<row><entry><filename class="headerfile">ext/codecvt_specializations.h</filename></entry><entry><filename class="headerfile">ext/malloc_allocator.h</filename></entry><entry><filename class="headerfile">ext/pb_ds/assoc_container.h</filename></entry><entry><filename class="headerfile">ext/slist</filename></entry><entry><filename class="headerfile">ext/vstring.h</filename></entry></row>
<row><entry><filename class="headerfile">ext/concurrence.h</filename></entry><entry><filename class="headerfile">ext/memory</filename></entry><entry><filename class="headerfile">ext/pb_ds/priority_queue.h</filename></entry><entry><filename class="headerfile">ext/stdio_filebuf.h</filename></entry></row>
</tbody>
</tgroup>
</table>
<para></para>
<table frame='all'>
<title>Extension Debug Headers</title>
<tgroup cols='5' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'></colspec>
<colspec colname='c2'></colspec>
<colspec colname='c3'></colspec>
<colspec colname='c4'></colspec>
<colspec colname='c5'></colspec>
<tbody>
<row><entry><filename class="headerfile">debug/bitset</filename></entry><entry><filename class="headerfile">debug/list</filename></entry><entry><filename class="headerfile">debug/set</filename></entry><entry><filename class="headerfile">debug/unordered_map</filename></entry><entry><filename class="headerfile">debug/vector</filename></entry></row>
<row><entry><filename class="headerfile">debug/deque</filename></entry><entry><filename class="headerfile">debug/map</filename></entry><entry><filename class="headerfile">debug/string</filename></entry><entry><filename class="headerfile">debug/unordered_set</filename></entry></row>
</tbody>
</tgroup>
</table>
<para></para>
<table frame='all'>
<title>Extension Parallel Headers</title>
<tgroup cols='2' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'></colspec>
<colspec colname='c2'></colspec>
<tbody>
<row><entry><filename class="headerfile">parallel/algorithm</filename></entry><entry><filename class="headerfile">parallel/numeric</filename></entry></row>
</tbody>
</tgroup>
</table>
</sect2>
<sect2 id="manual.intro.using.headers.mixing" xreflabel="Mixing Headers">
<title>Mixing Headers</title>
<para> A few simple rules.
</para>
<para>First, mixing different dialects of the standard headers is not
possible. It's an all-or-nothing affair. Thus, code like
</para>
<programlisting>
#include &lt;array&gt;
#include &lt;functional&gt;
</programlisting>
<para>Implies C++0x mode. To use the entities in &lt;array&gt;, the C++0x
compilation mode must be used, which implies the C++0x functionality
(and deprecations) in &lt;functional&gt; will be present.
</para>
<para>Second, the other headers can be included with either dialect of
the standard headers, although features and types specific to C++0x
are still only enabled when in C++0x compilation mode. So, to use
rvalue references with <code>__gnu_cxx::vstring</code>, or to use the
debug-mode versions of <code>std::unordered_map</code>, one must use
the <code>std=gnu++0x</code> compiler flag. (Or <code>std=c++0x</code>, of course.)
</para>
<para>A special case of the second rule is the mixing of TR1 and C++0x
facilities. It is possible (although not especially prudent) to
include both the TR1 version and the C++0x version of header in the
same translation unit:
</para>
<programlisting>
#include &lt;tr1/type_traits&gt;
#include &lt;type_traits&gt;
</programlisting>
<para> Several parts of C++0x diverge quite substantially from TR1 predecessors.
</para>
</sect2>
<sect2 id="manual.intro.using.headers.cheaders" xreflabel="C Headers and">
<title>The C Headers and <code>namespace std</code></title>
<para>
The standard specifies that if one includes the C-style header
(&lt;math.h&gt; in this case), the symbols will be available
in the global namespace and perhaps in
namespace <code>std::</code> (but this is no longer a firm
requirement.) One the other hand, including the C++-style
header (&lt;cmath&gt;) guarantees that the entities will be
found in namespace std and perhaps in the global namespace.
</para>
<para>
Usage of C++-style headers is recommended, as then
C-linkage names can be disambiguated by explicit qualification, such
as by <code>std::abort</code>. In addition, the C++-style headers can
use function overloading to provide a simpler interface to certain
families of C-functions. For instance in &lt;cmath&gt;, the
function <code>std::sin</code> has overloads for all the builtin
floating-point types. This means that <code>std::sin</code> can be
used uniformly, instead of a combination
of <code>std::sinf</code>, <code>std::sin</code>,
and <code>std::sinl</code>.
</para>
</sect2>
<sect2 id="manual.intro.using.headers.pre" xreflabel="Precompiled Headers">
<title>Precompiled Headers</title>
<para>There are three base header files that are provided. They can be
used to precompile the standard headers and extensions into binary
files that may the be used to speed compiles that use these headers.
</para>
<itemizedlist>
<listitem>
<para>stdc++.h</para>
<para>Includes all standard headers. Actual content varies depending on
language dialect.
</para>
</listitem>
<listitem>
<para>stdtr1c++.h</para>
<para>Includes all of &lt;stdc++.h&gt;, and adds all the TR1 headers.
</para>
</listitem>
<listitem><para>extc++.h</para>
<para>Includes all of &lt;stdtr1c++.h&gt;, and adds all the Extension headers.
</para></listitem>
</itemizedlist>
<para>How to construct a .gch file from one of these base header files.</para>
<para>First, find the include directory for the compiler. One way to do
this is:</para>
<programlisting>
g++ -v hello.cc
#include &lt;...&gt; search starts here:
/mnt/share/bld/H-x86-gcc.20071201/include/c++/4.3.0
...
End of search list.
</programlisting>
<para>Then, create a precompiled header file with the same flags that
will be used to compile other projects.</para>
<programlisting>
g++ -Winvalid-pch -x c++-header -g -O2 -o ./stdc++.h.gch /mnt/share/bld/H-x86-gcc.20071201/include/c++/4.3.0/x86_64-unknown-linux-gnu/bits/stdc++.h
</programlisting>
<para>The resulting file will be quite large: the current size is around
thirty megabytes. </para>
<para>How to use the resulting file.</para>
<programlisting>
g++ -I. -include stdc++.h -H -g -O2 hello.cc
</programlisting>
<para>Verification that the PCH file is being used is easy:</para>
<programlisting>
g++ -Winvalid-pch -I. -include stdc++.h -H -g -O2 hello.cc -o test.exe
! ./stdc++.h.gch
. /mnt/share/bld/H-x86-gcc.20071201/include/c++/4.3.0/iostream
. /mnt/share/bld/H-x86-gcc.20071201include/c++/4.3.0/string
</programlisting>
<para>The exclamation point to the left of the <code>stdc++.h.gch</code> listing means that the generated PCH file was used, and thus the </para>
<para></para>
<para> Detailed information about creating precompiled header files can be found in the GCC <ulink url="http://gcc.gnu.org/onlinedocs/gcc/Precompiled-Headers.html">documentation</ulink>.
</para>
</sect2>
</sect1>
<sect1 id="manual.intro.using.namespaces" xreflabel="Namespaces">
<title>Namespaces</title>
<sect2 id="manual.intro.using.namespaces.all" xreflabel="Available Namespaces">
<title>Available Namespaces</title>
<para> There are three main namespaces.
</para>
<itemizedlist>
<listitem><para>std</para>
<para>The ISO C++ standards specify that "all library entities are defined
within namespace std." This includes namespaces nested
within <code>namespace std</code>, such as <code>namespace
std::tr1</code>.
</para>
</listitem>
<listitem><para>abi</para>
<para>Specified by the C++ ABI. This ABI specifies a number of type and
function APIs supplemental to those required by the ISO C++ Standard,
but necessary for interoperability.
</para>
</listitem>
<listitem><para>__gnu_</para>
<para>Indicating one of several GNU extensions. Choices
include <code>__gnu_cxx</code>, <code>__gnu_debug</code>, <code>__gnu_parallel</code>,
and <code>__gnu_pbds</code>.
</para></listitem>
</itemizedlist>
<para> A complete list of implementation namespaces (including namespace contents) is available in the generated source <ulink url="http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/namespaces.html">documentation</ulink>.
</para>
</sect2>
<sect2 id="manual.intro.using.namespaces.std" xreflabel="namespace std">
<title>namespace std</title>
<para>
One standard requirement is that the library components are defined
in <code>namespace std::</code>. Thus, in order to use these types or
functions, one must do one of two things:
</para>
<itemizedlist>
<listitem><para>put a kind of <emphasis>using-declaration</emphasis> in your source
(either <code>using namespace std;</code> or i.e. <code>using
std::string;</code>) This approach works well for individual source files, but
should not be used in a global context, like header files.
</para></listitem> <listitem><para>use a <emphasis>fully
qualified name</emphasis>for each library symbol
(i.e. <code>std::string</code>, <code>std::cout</code>) Always can be
used, and usually enhanced, by strategic use of typedefs. (In the
cases where the qualified verbiage becomes unwieldy.)
</para>
</listitem>
</itemizedlist>
</sect2>
<sect2 id="manual.intro.using.namespaces.comp" xreflabel="Using Namespace Composition">
<title>Using Namespace Composition</title>
<para>
Best practice in programming suggests sequestering new data or
functionality in a sanely-named, unique namespace whenever
possible. This is considered an advantage over dumping everything in
the global namespace, as then name look-up can be explicitly enabled or
disabled as above, symbols are consistently mangled without repetitive
naming prefixes or macros, etc.
</para>
<para>For instance, consider a project that defines most of its classes in <code>namespace gtk</code>. It is possible to
adapt <code>namespace gtk</code> to <code>namespace std</code> by using a C++-feature called
<emphasis>namespace composition</emphasis>. This is what happens if
a <emphasis>using</emphasis>-declaration is put into a
namespace-definition: the imported symbol(s) gets imported into the
currently active namespace(s). For example:
</para>
<programlisting>
namespace gtk
{
using std::string;
using std::tr1::array;
class Window { ... };
}
</programlisting>
<para>
In this example, <code>std::string</code> gets imported into
<code>namespace gtk</code>. The result is that use of
<code>std::string</code> inside namespace gtk can just use <code>string</code>, without the explicit qualification.
As an added bonus,
<code>std::string</code> does not get imported into
the global namespace. Additionally, a more elaborate arrangement can be made for backwards compatibility and portability, whereby the
<code>using</code>-declarations can wrapped in macros that
are set based on autoconf-tests to either &quot;&quot; or i.e. <code>using
std::string;</code> (depending on whether the system has
libstdc++ in <code>std::</code> or not). (ideas from
<email>llewelly@dbritsch.dsl.xmission.com</email>, Karl Nelson <email>kenelson@ece.ucdavis.edu</email>)
</para>
</sect2>
</sect1>
<sect1 id="manual.intro.using.macros" xreflabel="Macros">
<title>Macros</title>
<para>All pre-processor switches and configurations are all gathered
in the file <code>c++config.h</code>, which is generated during
the libstdc++ configuration and build process, and included by
files part of the public libstdc++ API. Most of these macros
should not be used by consumers of libstdc++, and are reserved
for internal implementation use. <emphasis>These macros cannot be
redefined</emphasis>. However, a select handful of these macro
control libstdc++ extensions and extra features, or provide
versioning information for the API, and are able to be used.
</para>
<para>All library macros begin with <code>_GLIBCXX_</code> (except for
versions 3.1.x to 3.3.x, which use <code>_GLIBCPP_</code>).
</para>
<para>Below is the macro which users may check for library version
information. </para>
<variablelist>
<varlistentry>
<term><code>__GLIBCXX__</code></term>
<listitem>
<para>The current version of
libstdc++ in compressed ISO date format, form of an unsigned
long. For details on the value of this particular macro for a
particular release, please consult this <ulink url="abi.html">
document</ulink>.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>Below are the macros which users may change with #define/#undef or
with -D/-U compiler flags. The default state of the symbol is
listed.</para>
<para><quote>Configurable</quote> (or <quote>Not configurable</quote>) means
that the symbol is initially chosen (or not) based on
--enable/--disable options at library build and configure time
(documented <link linkend="manual.intro.setup.configure">here</link>), with the
various --enable/--disable choices being translated to
#define/#undef).
</para>
<para> <acronym>ABI</acronym> means that changing from the default value may
mean changing the <acronym>ABI</acronym> of compiled code. In other words, these
choices control code which has already been compiled (i.e., in a
binary such as libstdc++.a/.so). If you explicitly #define or
#undef these macros, the <emphasis>headers</emphasis> may see different code
paths, but the <emphasis>libraries</emphasis> which you link against will not.
Experimenting with different values with the expectation of
consistent linkage requires changing the config headers before
building/installing the library.
</para>
<variablelist>
<varlistentry><term><code>_GLIBCXX_DEPRECATED</code></term>
<listitem>
<para>
Defined by default. Not configurable. ABI-changing. Turning this off
removes older ARM-style iostreams code, and other anachronisms
from the API. This macro is dependent on the version of the
standard being tracked, and as a result may give different results for
<code>-std=c++98</code> and <code>-std=c++0x</code>. This may
be useful in updating old C++ code which no longer meet the
requirements of the language, or for checking current code
against new language standards.
</para>
</listitem></varlistentry>
<varlistentry><term><code>_GLIBCXX_FORCE_NEW</code></term>
<listitem>
<para>
Undefined by default. When defined, memory allocation and
allocators controlled by libstdc++ call operator new/delete
without caching and pooling. Configurable via
<code>--enable-libstdcxx-allocator</code>. ABI-changing.
</para>
</listitem></varlistentry>
<varlistentry><term><code>_GLIBCXX_CONCEPT_CHECKS</code></term>
<listitem>
<para>
Undefined by default. Configurable via
<code>--enable-concept-checks</code>. When defined, performs
compile-time checking on certain template instantiations to
detect violations of the requirements of the standard. This
is described in more detail <ulink
url="../19_diagnostics/howto.html#3">here</ulink>.
</para>
</listitem></varlistentry>
<varlistentry><term><code>_GLIBCXX_DEBUG</code></term>
<listitem>
<para>
Undefined by default. When defined, compiles
user code using the <ulink url="../ext/debug.html#safe">libstdc++ debug
mode</ulink>.
</para>
</listitem></varlistentry>
<varlistentry><term><code>_GLIBCXX_DEBUG_PEDANTIC</code></term>
<listitem>
<para>
Undefined by default. When defined while
compiling with the <ulink url="../ext/debug.html#safe">libstdc++ debug
mode</ulink>, makes the debug mode extremely picky by making the use
of libstdc++ extensions and libstdc++-specific behavior into
errors.
</para>
</listitem></varlistentry>
<varlistentry><term><code>_GLIBCXX_PARALLEL</code></term>
<listitem>
<para>Undefined by default. When defined, compiles
user code using the <ulink url="../ext/parallel_mode.html">libstdc++ parallel
mode</ulink>.
</para>
</listitem></varlistentry>
</variablelist>
</sect1>
<sect1 id="manual.intro.using.concurrency" xreflabel="Concurrency">
<title>Concurrency</title>
<para>This section discusses issues surrounding the proper compilation
of multithreaded applications which use the Standard C++
library. This information is GCC-specific since the C++
standard does not address matters of multithreaded applications.
</para>
<sect2 id="manual.intro.using.concurrency.prereq" xreflabel="Thread Prereq">
<title>Prerequisites</title>
<para>All normal disclaimers aside, multithreaded C++ application are
only supported when libstdc++ and all user code was built with
compilers which report (via <code> gcc/g++ -v </code>) the same thread
model and that model is not <emphasis>single</emphasis>. As long as your
final application is actually single-threaded, then it should be
safe to mix user code built with a thread model of
<emphasis>single</emphasis> with a libstdc++ and other C++ libraries built
with another thread model useful on the platform. Other mixes
may or may not work but are not considered supported. (Thus, if
you distribute a shared C++ library in binary form only, it may
be best to compile it with a GCC configured with
--enable-threads for maximal interchangeability and usefulness
with a user population that may have built GCC with either
--enable-threads or --disable-threads.)
</para>
<para>When you link a multithreaded application, you will probably
need to add a library or flag to g++. This is a very
non-standardized area of GCC across ports. Some ports support a
special flag (the spelling isn't even standardized yet) to add
all required macros to a compilation (if any such flags are
required then you must provide the flag for all compilations not
just linking) and link-library additions and/or replacements at
link time. The documentation is weak. Here is a quick summary
to display how ad hoc this is: On Solaris, both -pthreads and
-threads (with subtly different meanings) are honored. On OSF,
-pthread and -threads (with subtly different meanings) are
honored. On Linux/i386, -pthread is honored. On FreeBSD,
-pthread is honored. Some other ports use other switches.
AFAIK, none of this is properly documented anywhere other than
in ``gcc -dumpspecs'' (look at lib and cpp entries).
</para>
</sect2>
<sect2 id="manual.intro.using.concurrency.thread_safety" xreflabel="Thread Safety">
<title>Thread Safety</title>
<para>
We currently use the <ulink url="http://www.sgi.com/tech/stl/thread_safety.html">SGI STL</ulink> definition of thread safety.
</para>
<para>The library strives to be thread-safe when all of the following
conditions are met:
</para>
<itemizedlist>
<listitem>
<para>The system's libc is itself thread-safe,
</para>
</listitem>
<listitem>
<para>
The compiler in use reports a thread model other than
'single'. This can be tested via output from <code>gcc
-v</code>. Multi-thread capable versions of gcc output
something like this:
</para>
<programlisting>
%gcc -v
Using built-in specs.
...
Thread model: posix
gcc version 4.1.2 20070925 (Red Hat 4.1.2-33)
</programlisting>
<para>Look for "Thread model" lines that aren't equal to "single."</para>
</listitem>
<listitem>
<para>
Requisite command-line flags are used for atomic operations
and threading. Examples of this include <code>-pthread</code>
and <code>-march=native</code>, although specifics vary
depending on the host environment. See <ulink
url="http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html">Machine
Dependent Options</ulink>.
</para>
</listitem>
<listitem>
<para>
An implementation of atomicity.h functions
exists for the architecture in question. See the internals documentation for more <ulink url="../ext/concurrence.html">details</ulink>.
</para>
</listitem>
</itemizedlist>
<para>The user-code must guard against concurrent method calls which may
access any particular library object's state. Typically, the
application programmer may infer what object locks must be held
based on the objects referenced in a method call. Without getting
into great detail, here is an example which requires user-level
locks:
</para>
<programlisting>
library_class_a shared_object_a;
thread_main () {
library_class_b *object_b = new library_class_b;
shared_object_a.add_b (object_b); // must hold lock for shared_object_a
shared_object_a.mutate (); // must hold lock for shared_object_a
}
// Multiple copies of thread_main() are started in independent threads.</programlisting>
<para>Under the assumption that object_a and object_b are never exposed to
another thread, here is an example that should not require any
user-level locks:
</para>
<programlisting>
thread_main () {
library_class_a object_a;
library_class_b *object_b = new library_class_b;
object_a.add_b (object_b);
object_a.mutate ();
} </programlisting>
<para>All library objects are safe to use in a multithreaded program as
long as each thread carefully locks out access by any other
thread while it uses any object visible to another thread, i.e.,
treat library objects like any other shared resource. In general,
this requirement includes both read and write access to objects;
unless otherwise documented as safe, do not assume that two threads
may access a shared standard library object at the same time.
</para>
<para>See chapters <ulink url="../17_intro/howto.html#3">17</ulink> (library
introduction), <ulink url="../23_containers/howto.html#3">23</ulink>
(containers), and <ulink url="../27_io/howto.html#9">27</ulink> (I/O) for
more information.
</para>
</sect2>
<sect2 id="manual.intro.using.concurrency.atomics" xreflabel="Atomics">
<title>Atomics</title>
<para>
</para>
</sect2>
<sect2 id="manual.intro.using.concurrency.io" xreflabel="IO">
<title>IO</title>
<para>I'll assume that you have already read the
<ulink url="../17_intro/howto.html#3">general notes on library threads</ulink>,
and the
<ulink url="../23_containers/howto.html#3">notes on threaded container
access</ulink> (you might not think of an I/O stream as a container, but
the points made there also hold here). If you have not read them,
please do so first.
</para>
<para>This gets a bit tricky. Please read carefully, and bear with me.
</para>
<sect3 id="concurrency.io.structure" xreflabel="Structure">
<title>Structure</title>
<para>A wrapper
type called <code>__basic_file</code> provides our abstraction layer
for the <code>std::filebuf</code> classes. Nearly all decisions dealing
with actual input and output must be made in <code>__basic_file</code>.
</para>
<para>A generic locking mechanism is somewhat in place at the filebuf layer,
but is not used in the current code. Providing locking at any higher
level is akin to providing locking within containers, and is not done
for the same reasons (see the links above).
</para>
</sect3>
<sect3 id="concurrency.io.defaults" xreflabel="Defaults">
<title>Defaults</title>
<para>The __basic_file type is simply a collection of small wrappers around
the C stdio layer (again, see the link under Structure). We do no
locking ourselves, but simply pass through to calls to <code>fopen</code>,
<code>fwrite</code>, and so forth.
</para>
<para>So, for 3.0, the question of &quot;is multithreading safe for I/O&quot;
must be answered with, &quot;is your platform's C library threadsafe
for I/O?&quot; Some are by default, some are not; many offer multiple
implementations of the C library with varying tradeoffs of threadsafety
and efficiency. You, the programmer, are always required to take care
with multiple threads.
</para>
<para>(As an example, the POSIX standard requires that C stdio FILE*
operations are atomic. POSIX-conforming C libraries (e.g, on Solaris
and GNU/Linux) have an internal mutex to serialize operations on
FILE*s. However, you still need to not do stupid things like calling
<code>fclose(fs)</code> in one thread followed by an access of
<code>fs</code> in another.)
</para>
<para>So, if your platform's C library is threadsafe, then your
<code>fstream</code> I/O operations will be threadsafe at the lowest
level. For higher-level operations, such as manipulating the data
contained in the stream formatting classes (e.g., setting up callbacks
inside an <code>std::ofstream</code>), you need to guard such accesses
like any other critical shared resource.
</para>
</sect3>
<sect3 id="concurrency.io.future" xreflabel="Future">
<title>Future</title>
<para> A
second choice may be available for I/O implementations: libio. This is
disabled by default, and in fact will not currently work due to other
issues. It will be revisited, however.
</para>
<para>The libio code is a subset of the guts of the GNU libc (glibc) I/O
implementation. When libio is in use, the <code>__basic_file</code>
type is basically derived from FILE. (The real situation is more
complex than that... it's derived from an internal type used to
implement FILE. See libio/libioP.h to see scary things done with
vtbls.) The result is that there is no &quot;layer&quot; of C stdio
to go through; the filebuf makes calls directly into the same
functions used to implement <code>fread</code>, <code>fwrite</code>,
and so forth, using internal data structures. (And when I say
&quot;makes calls directly,&quot; I mean the function is literally
replaced by a jump into an internal function. Fast but frightening.
*grin*)
</para>
<para>Also, the libio internal locks are used. This requires pulling in
large chunks of glibc, such as a pthreads implementation, and is one
of the issues preventing widespread use of libio as the libstdc++
cstdio implementation.
</para>
<para>But we plan to make this work, at least as an option if not a future
default. Platforms running a copy of glibc with a recent-enough
version will see calls from libstdc++ directly into the glibc already
installed. For other platforms, a copy of the libio subsection will
be built and included in libstdc++.
</para>
</sect3>
<sect3 id="concurrency.io.alt" xreflabel="Alt">
<title>Alternatives</title>
<para>Don't forget that other cstdio implementations are possible. You could
easily write one to perform your own forms of locking, to solve your
&quot;interesting&quot; problems.
</para>
</sect3>
</sect2>
<sect2 id="manual.intro.using.concurrency.containers" xreflabel="Containers">
<title>Containers</title>
<para>This section discusses issues surrounding the design of
multithreaded applications which use Standard C++ containers.
All information in this section is current as of the gcc 3.0
release and all later point releases. Although earlier gcc
releases had a different approach to threading configuration and
proper compilation, the basic code design rules presented here
were similar. For information on all other aspects of
multithreading as it relates to libstdc++, including details on
the proper compilation of threaded code (and compatibility between
threaded and non-threaded code), see Chapter 17.
</para>
<para>Two excellent pages to read when working with the Standard C++
containers and threads are
<ulink url="http://www.sgi.com/tech/stl/thread_safety.html">SGI's
http://www.sgi.com/tech/stl/thread_safety.html</ulink> and
<ulink url="http://www.sgi.com/tech/stl/Allocators.html">SGI's
http://www.sgi.com/tech/stl/Allocators.html</ulink>.
</para>
<para><emphasis>However, please ignore all discussions about the user-level
configuration of the lock implementation inside the STL
container-memory allocator on those pages. For the sake of this
discussion, libstdc++ configures the SGI STL implementation,
not you. This is quite different from how gcc pre-3.0 worked.
In particular, past advice was for people using g++ to
explicitly define _PTHREADS or other macros or port-specific
compilation options on the command line to get a thread-safe
STL. This is no longer required for any port and should no
longer be done unless you really know what you are doing and
assume all responsibility.</emphasis>
</para>
<para>Since the container implementation of libstdc++ uses the SGI
code, we use the same definition of thread safety as SGI when
discussing design. A key point that beginners may miss is the
fourth major paragraph of the first page mentioned above
(&quot;For most clients,&quot;...), which points out that
locking must nearly always be done outside the container, by
client code (that'd be you, not us). There is a notable
exceptions to this rule. Allocators called while a container or
element is constructed uses an internal lock obtained and
released solely within libstdc++ code (in fact, this is the
reason STL requires any knowledge of the thread configuration).
</para>
<para>For implementing a container which does its own locking, it is
trivial to provide a wrapper class which obtains the lock (as
SGI suggests), performs the container operation, and then
releases the lock. This could be templatized <emphasis>to a certain
extent</emphasis>, on the underlying container and/or a locking
mechanism. Trying to provide a catch-all general template
solution would probably be more trouble than it's worth.
</para>
<para>The STL implementation is currently configured to use the
high-speed caching memory allocator. Some people like to
test and/or normally run threaded programs with a different
default. For all details about how to globally override this
at application run-time see <ulink url="../ext/howto.html#3">here</ulink>.
</para>
<para>There is a better way (not standardized yet): It is possible to
force the malloc-based allocator on a per-case-basis for some
application code. The library team generally believes that this
is a better way to tune an application for high-speed using this
implementation of the STL. There is
<ulink url="../ext/howto.html#3">more information on allocators here</ulink>.
</para>
</sect2>
</sect1>
<sect1 id="manual.intro.using.exception_safety" xreflabel="Exception Safety">
<title>Exception Safety</title>
<para></para>
</sect1>
<!-- Section 0x : Debug -->
<xi:include xmlns:xi="http://www.w3.org/2001/XInclude"
parse="xml" href="debug.xml">
</xi:include>
</chapter>