blob: 158121e788adf8bf95d5a06f5cc7f5ab3f3d6aa8 [file] [log] [blame]
/* Copyright (C) 2007 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "bid_internal.h"
/*****************************************************************************
* BID64 nextup
****************************************************************************/
#if DECIMAL_CALL_BY_REFERENCE
void
bid64_nextup (UINT64 * pres,
UINT64 *
px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT64 x = *px;
#else
UINT64
bid64_nextup (UINT64 x _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
_EXC_INFO_PARAM) {
#endif
UINT64 res;
UINT64 x_sign;
UINT64 x_exp;
BID_UI64DOUBLE tmp1;
int x_nr_bits;
int q1, ind;
UINT64 C1; // C1 represents x_signif (UINT64)
// check for NaNs and infinities
if ((x & MASK_NAN) == MASK_NAN) { // check for NaN
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
else
x = x & 0xfe03ffffffffffffull; // clear G6-G12
if ((x & MASK_SNAN) == MASK_SNAN) { // SNaN
// set invalid flag
*pfpsf |= INVALID_EXCEPTION;
// return quiet (SNaN)
res = x & 0xfdffffffffffffffull;
} else { // QNaN
res = x;
}
BID_RETURN (res);
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
if (!(x & 0x8000000000000000ull)) { // x is +inf
res = 0x7800000000000000ull;
} else { // x is -inf
res = 0xf7fb86f26fc0ffffull; // -MAXFP = -999...99 * 10^emax
}
BID_RETURN (res);
}
// unpack the argument
x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
if (C1 > 9999999999999999ull) { // non-canonical
x_exp = 0;
C1 = 0;
}
} else {
x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
C1 = x & MASK_BINARY_SIG1;
}
// check for zeros (possibly from non-canonical values)
if (C1 == 0x0ull) {
// x is 0
res = 0x0000000000000001ull; // MINFP = 1 * 10^emin
} else { // x is not special and is not zero
if (x == 0x77fb86f26fc0ffffull) {
// x = +MAXFP = 999...99 * 10^emax
res = 0x7800000000000000ull; // +inf
} else if (x == 0x8000000000000001ull) {
// x = -MINFP = 1...99 * 10^emin
res = 0x8000000000000000ull; // -0
} else { // -MAXFP <= x <= -MINFP - 1 ulp OR MINFP <= x <= MAXFP - 1 ulp
// can add/subtract 1 ulp to the significand
// Note: we could check here if x >= 10^16 to speed up the case q1 =16
// q1 = nr. of decimal digits in x (1 <= q1 <= 54)
// determine first the nr. of bits in x
if (C1 >= MASK_BINARY_OR2) { // x >= 2^53
// split the 64-bit value in two 32-bit halves to avoid rounding errors
if (C1 >= 0x0000000100000000ull) { // x >= 2^32
tmp1.d = (double) (C1 >> 32); // exact conversion
x_nr_bits =
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
} else { // x < 2^32
tmp1.d = (double) C1; // exact conversion
x_nr_bits =
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
}
} else { // if x < 2^53
tmp1.d = (double) C1; // exact conversion
x_nr_bits =
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
}
q1 = nr_digits[x_nr_bits - 1].digits;
if (q1 == 0) {
q1 = nr_digits[x_nr_bits - 1].digits1;
if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
q1++;
}
// if q1 < P16 then pad the significand with zeros
if (q1 < P16) {
if (x_exp > (UINT64) (P16 - q1)) {
ind = P16 - q1; // 1 <= ind <= P16 - 1
// pad with P16 - q1 zeros, until exponent = emin
// C1 = C1 * 10^ind
C1 = C1 * ten2k64[ind];
x_exp = x_exp - ind;
} else { // pad with zeros until the exponent reaches emin
ind = x_exp;
C1 = C1 * ten2k64[ind];
x_exp = EXP_MIN;
}
}
if (!x_sign) { // x > 0
// add 1 ulp (add 1 to the significand)
C1++;
if (C1 == 0x002386f26fc10000ull) { // if C1 = 10^16
C1 = 0x00038d7ea4c68000ull; // C1 = 10^15
x_exp++;
}
// Ok, because MAXFP = 999...99 * 10^emax was caught already
} else { // x < 0
// subtract 1 ulp (subtract 1 from the significand)
C1--;
if (C1 == 0x00038d7ea4c67fffull && x_exp != 0) { // if C1 = 10^15 - 1
C1 = 0x002386f26fc0ffffull; // C1 = 10^16 - 1
x_exp--;
}
}
// assemble the result
// if significand has 54 bits
if (C1 & MASK_BINARY_OR2) {
res =
x_sign | (x_exp << 51) | MASK_STEERING_BITS | (C1 &
MASK_BINARY_SIG2);
} else { // significand fits in 53 bits
res = x_sign | (x_exp << 53) | C1;
}
} // end -MAXFP <= x <= -MINFP - 1 ulp OR MINFP <= x <= MAXFP - 1 ulp
} // end x is not special and is not zero
BID_RETURN (res);
}
/*****************************************************************************
* BID64 nextdown
****************************************************************************/
#if DECIMAL_CALL_BY_REFERENCE
void
bid64_nextdown (UINT64 * pres,
UINT64 *
px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT64 x = *px;
#else
UINT64
bid64_nextdown (UINT64 x _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
_EXC_INFO_PARAM) {
#endif
UINT64 res;
UINT64 x_sign;
UINT64 x_exp;
BID_UI64DOUBLE tmp1;
int x_nr_bits;
int q1, ind;
UINT64 C1; // C1 represents x_signif (UINT64)
// check for NaNs and infinities
if ((x & MASK_NAN) == MASK_NAN) { // check for NaN
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
else
x = x & 0xfe03ffffffffffffull; // clear G6-G12
if ((x & MASK_SNAN) == MASK_SNAN) { // SNaN
// set invalid flag
*pfpsf |= INVALID_EXCEPTION;
// return quiet (SNaN)
res = x & 0xfdffffffffffffffull;
} else { // QNaN
res = x;
}
BID_RETURN (res);
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
if (x & 0x8000000000000000ull) { // x is -inf
res = 0xf800000000000000ull;
} else { // x is +inf
res = 0x77fb86f26fc0ffffull; // +MAXFP = +999...99 * 10^emax
}
BID_RETURN (res);
}
// unpack the argument
x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
if (C1 > 9999999999999999ull) { // non-canonical
x_exp = 0;
C1 = 0;
}
} else {
x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
C1 = x & MASK_BINARY_SIG1;
}
// check for zeros (possibly from non-canonical values)
if (C1 == 0x0ull) {
// x is 0
res = 0x8000000000000001ull; // -MINFP = -1 * 10^emin
} else { // x is not special and is not zero
if (x == 0xf7fb86f26fc0ffffull) {
// x = -MAXFP = -999...99 * 10^emax
res = 0xf800000000000000ull; // -inf
} else if (x == 0x0000000000000001ull) {
// x = +MINFP = 1...99 * 10^emin
res = 0x0000000000000000ull; // -0
} else { // -MAXFP + 1ulp <= x <= -MINFP OR MINFP + 1 ulp <= x <= MAXFP
// can add/subtract 1 ulp to the significand
// Note: we could check here if x >= 10^16 to speed up the case q1 =16
// q1 = nr. of decimal digits in x (1 <= q1 <= 16)
// determine first the nr. of bits in x
if (C1 >= 0x0020000000000000ull) { // x >= 2^53
// split the 64-bit value in two 32-bit halves to avoid
// rounding errors
if (C1 >= 0x0000000100000000ull) { // x >= 2^32
tmp1.d = (double) (C1 >> 32); // exact conversion
x_nr_bits =
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
} else { // x < 2^32
tmp1.d = (double) C1; // exact conversion
x_nr_bits =
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
}
} else { // if x < 2^53
tmp1.d = (double) C1; // exact conversion
x_nr_bits =
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
}
q1 = nr_digits[x_nr_bits - 1].digits;
if (q1 == 0) {
q1 = nr_digits[x_nr_bits - 1].digits1;
if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
q1++;
}
// if q1 < P16 then pad the significand with zeros
if (q1 < P16) {
if (x_exp > (UINT64) (P16 - q1)) {
ind = P16 - q1; // 1 <= ind <= P16 - 1
// pad with P16 - q1 zeros, until exponent = emin
// C1 = C1 * 10^ind
C1 = C1 * ten2k64[ind];
x_exp = x_exp - ind;
} else { // pad with zeros until the exponent reaches emin
ind = x_exp;
C1 = C1 * ten2k64[ind];
x_exp = EXP_MIN;
}
}
if (x_sign) { // x < 0
// add 1 ulp (add 1 to the significand)
C1++;
if (C1 == 0x002386f26fc10000ull) { // if C1 = 10^16
C1 = 0x00038d7ea4c68000ull; // C1 = 10^15
x_exp++;
// Ok, because -MAXFP = -999...99 * 10^emax was caught already
}
} else { // x > 0
// subtract 1 ulp (subtract 1 from the significand)
C1--;
if (C1 == 0x00038d7ea4c67fffull && x_exp != 0) { // if C1 = 10^15 - 1
C1 = 0x002386f26fc0ffffull; // C1 = 10^16 - 1
x_exp--;
}
}
// assemble the result
// if significand has 54 bits
if (C1 & MASK_BINARY_OR2) {
res =
x_sign | (x_exp << 51) | MASK_STEERING_BITS | (C1 &
MASK_BINARY_SIG2);
} else { // significand fits in 53 bits
res = x_sign | (x_exp << 53) | C1;
}
} // end -MAXFP <= x <= -MINFP - 1 ulp OR MINFP <= x <= MAXFP - 1 ulp
} // end x is not special and is not zero
BID_RETURN (res);
}
/*****************************************************************************
* BID64 nextafter
****************************************************************************/
#if DECIMAL_CALL_BY_REFERENCE
void
bid64_nextafter (UINT64 * pres, UINT64 * px,
UINT64 *
py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT64 x = *px;
UINT64 y = *py;
#else
UINT64
bid64_nextafter (UINT64 x,
UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
_EXC_INFO_PARAM) {
#endif
UINT64 res;
UINT64 tmp1, tmp2;
FPSC tmp_fpsf = 0; // dummy fpsf for calls to comparison functions
int res1, res2;
// check for NaNs or infinities
if (((x & MASK_SPECIAL) == MASK_SPECIAL) ||
((y & MASK_SPECIAL) == MASK_SPECIAL)) {
// x is NaN or infinity or y is NaN or infinity
if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
if ((x & 0x0003ffffffffffffull) > 999999999999999ull)
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
else
x = x & 0xfe03ffffffffffffull; // clear G6-G12
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNAN
// set invalid flag
*pfpsf |= INVALID_EXCEPTION;
// return quiet (x)
res = x & 0xfdffffffffffffffull;
} else { // x is QNaN
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
// set invalid flag
*pfpsf |= INVALID_EXCEPTION;
}
// return x
res = x;
}
BID_RETURN (res);
} else if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
if ((y & 0x0003ffffffffffffull) > 999999999999999ull)
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
else
y = y & 0xfe03ffffffffffffull; // clear G6-G12
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
// set invalid flag
*pfpsf |= INVALID_EXCEPTION;
// return quiet (y)
res = y & 0xfdffffffffffffffull;
} else { // y is QNaN
// return y
res = y;
}
BID_RETURN (res);
} else { // at least one is infinity
if ((x & MASK_ANY_INF) == MASK_INF) { // x = inf
x = x & (MASK_SIGN | MASK_INF);
}
if ((y & MASK_ANY_INF) == MASK_INF) { // y = inf
y = y & (MASK_SIGN | MASK_INF);
}
}
}
// neither x nor y is NaN
// if not infinity, check for non-canonical values x (treated as zero)
if ((x & MASK_ANY_INF) != MASK_INF) { // x != inf
// unpack x
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
// if the steering bits are 11 (condition will be 0), then
// the exponent is G[0:w+1]
if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
9999999999999999ull) {
// non-canonical
x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
}
} else { // if ((x & MASK_STEERING_BITS) != MASK_STEERING_BITS) x is unch.
; // canonical
}
}
// no need to check for non-canonical y
// neither x nor y is NaN
tmp_fpsf = *pfpsf; // save fpsf
#if DECIMAL_CALL_BY_REFERENCE
bid64_quiet_equal (&res1, px,
py _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
bid64_quiet_greater (&res2, px,
py _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#else
res1 =
bid64_quiet_equal (x,
y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
res2 =
bid64_quiet_greater (x,
y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#endif
*pfpsf = tmp_fpsf; // restore fpsf
if (res1) { // x = y
// return x with the sign of y
res = (y & 0x8000000000000000ull) | (x & 0x7fffffffffffffffull);
} else if (res2) { // x > y
#if DECIMAL_CALL_BY_REFERENCE
bid64_nextdown (&res,
px _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#else
res =
bid64_nextdown (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#endif
} else { // x < y
#if DECIMAL_CALL_BY_REFERENCE
bid64_nextup (&res, px _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#else
res = bid64_nextup (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG);
#endif
}
// if the operand x is finite but the result is infinite, signal
// overflow and inexact
if (((x & MASK_INF) != MASK_INF) && ((res & MASK_INF) == MASK_INF)) {
// set the inexact flag
*pfpsf |= INEXACT_EXCEPTION;
// set the overflow flag
*pfpsf |= OVERFLOW_EXCEPTION;
}
// if the result is in (-10^emin, 10^emin), and is different from the
// operand x, signal underflow and inexact
tmp1 = 0x00038d7ea4c68000ull; // +100...0[16] * 10^emin
tmp2 = res & 0x7fffffffffffffffull;
tmp_fpsf = *pfpsf; // save fpsf
#if DECIMAL_CALL_BY_REFERENCE
bid64_quiet_greater (&res1, &tmp1,
&tmp2 _EXC_FLAGS_ARG _EXC_MASKS_ARG
_EXC_INFO_ARG);
bid64_quiet_not_equal (&res2, &x,
&res _EXC_FLAGS_ARG _EXC_MASKS_ARG
_EXC_INFO_ARG);
#else
res1 =
bid64_quiet_greater (tmp1,
tmp2 _EXC_FLAGS_ARG _EXC_MASKS_ARG
_EXC_INFO_ARG);
res2 =
bid64_quiet_not_equal (x,
res _EXC_FLAGS_ARG _EXC_MASKS_ARG
_EXC_INFO_ARG);
#endif
*pfpsf = tmp_fpsf; // restore fpsf
if (res1 && res2) {
// if (bid64_quiet_greater (tmp1, tmp2, &tmp_fpsf) &&
// bid64_quiet_not_equal (x, res, &tmp_fpsf)) {
// set the inexact flag
*pfpsf |= INEXACT_EXCEPTION;
// set the underflow flag
*pfpsf |= UNDERFLOW_EXCEPTION;
}
BID_RETURN (res);
}