blob: fafa28083c23c835341cf42e643a3a7f58d0947f [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "IdleMaint.h"
#include "FileDeviceUtils.h"
#include "Utils.h"
#include "VoldUtil.h"
#include "VolumeManager.h"
#include "model/PrivateVolume.h"
#include <thread>
#include <utility>
#include <aidl/android/hardware/health/storage/BnGarbageCollectCallback.h>
#include <aidl/android/hardware/health/storage/IStorage.h>
#include <android-base/chrono_utils.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android/binder_manager.h>
#include <android/hardware/health/storage/1.0/IStorage.h>
#include <fs_mgr.h>
#include <private/android_filesystem_config.h>
#include <wakelock/wakelock.h>
#include <dirent.h>
#include <fcntl.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
using android::base::Basename;
using android::base::ReadFileToString;
using android::base::Realpath;
using android::base::StringPrintf;
using android::base::Timer;
using android::base::WriteStringToFile;
using android::hardware::Return;
using android::hardware::Void;
using AStorage = aidl::android::hardware::health::storage::IStorage;
using ABnGarbageCollectCallback =
aidl::android::hardware::health::storage::BnGarbageCollectCallback;
using AResult = aidl::android::hardware::health::storage::Result;
using HStorage = android::hardware::health::storage::V1_0::IStorage;
using HGarbageCollectCallback = android::hardware::health::storage::V1_0::IGarbageCollectCallback;
using HResult = android::hardware::health::storage::V1_0::Result;
using std::string_literals::operator""s;
namespace android {
namespace vold {
enum class PathTypes {
kMountPoint = 1,
kBlkDevice,
};
enum class IdleMaintStats {
kStopped = 1,
kRunning,
kAbort,
};
static const char* kWakeLock = "IdleMaint";
static const int DIRTY_SEGMENTS_THRESHOLD = 100;
/*
* Timing policy:
* 1. F2FS_GC = 7 mins
* 2. Trim = 1 min
* 3. Dev GC = 2 mins
*/
static const int GC_TIMEOUT_SEC = 420;
static const int DEVGC_TIMEOUT_SEC = 120;
static const int KBYTES_IN_SEGMENT = 2048;
static const int ONE_MINUTE_IN_MS = 60000;
static const int GC_NORMAL_MODE = 0;
static const int GC_URGENT_MID_MODE = 3;
static int32_t previousSegmentWrite = 0;
static IdleMaintStats idle_maint_stat(IdleMaintStats::kStopped);
static std::condition_variable cv_abort, cv_stop;
static std::mutex cv_m;
static void addFromVolumeManager(std::list<std::string>* paths, PathTypes path_type) {
VolumeManager* vm = VolumeManager::Instance();
std::list<std::string> privateIds;
vm->listVolumes(VolumeBase::Type::kPrivate, privateIds);
for (const auto& id : privateIds) {
PrivateVolume* vol = static_cast<PrivateVolume*>(vm->findVolume(id).get());
if (vol != nullptr && vol->getState() == VolumeBase::State::kMounted) {
if (path_type == PathTypes::kMountPoint) {
paths->push_back(vol->getPath());
} else if (path_type == PathTypes::kBlkDevice) {
std::string gc_path;
const std::string& fs_type = vol->getFsType();
if (fs_type == "f2fs" && (Realpath(vol->getRawDmDevPath(), &gc_path) ||
Realpath(vol->getRawDevPath(), &gc_path))) {
paths->push_back(std::string("/sys/fs/") + fs_type + "/" + Basename(gc_path));
}
}
}
}
}
static void addFromFstab(std::list<std::string>* paths, PathTypes path_type, bool only_data_part) {
std::string previous_mount_point;
for (const auto& entry : fstab_default) {
// Skip raw partitions and swap space.
if (entry.fs_type == "emmc" || entry.fs_type == "mtd" || entry.fs_type == "swap") {
continue;
}
// Skip read-only filesystems and bind mounts.
if (entry.flags & (MS_RDONLY | MS_BIND)) {
continue;
}
// Skip anything without an underlying block device, e.g. virtiofs.
if (entry.blk_device[0] != '/') {
continue;
}
if (entry.fs_mgr_flags.vold_managed) {
continue; // Should we trim fat32 filesystems?
}
if (entry.fs_mgr_flags.no_trim) {
continue;
}
if (only_data_part && entry.mount_point != "/data") {
continue;
}
// Skip the multi-type partitions, which are required to be following each other.
// See fs_mgr.c's mount_with_alternatives().
if (entry.mount_point == previous_mount_point) {
continue;
}
if (path_type == PathTypes::kMountPoint) {
paths->push_back(entry.mount_point);
} else if (path_type == PathTypes::kBlkDevice) {
std::string path;
if (entry.fs_type == "f2fs" &&
Realpath(android::vold::BlockDeviceForPath(entry.mount_point + "/"), &path)) {
paths->push_back("/sys/fs/" + entry.fs_type + "/" + Basename(path));
}
}
previous_mount_point = entry.mount_point;
}
}
void Trim(const android::sp<android::os::IVoldTaskListener>& listener) {
auto wl = android::wakelock::WakeLock::tryGet(kWakeLock);
if (!wl.has_value()) {
return;
}
// Collect both fstab and vold volumes
std::list<std::string> paths;
addFromFstab(&paths, PathTypes::kMountPoint, false);
addFromVolumeManager(&paths, PathTypes::kMountPoint);
for (const auto& path : paths) {
LOG(DEBUG) << "Starting trim of " << path;
android::os::PersistableBundle extras;
extras.putString(String16("path"), String16(path.c_str()));
int fd = open(path.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC | O_NOFOLLOW);
if (fd < 0) {
PLOG(WARNING) << "Failed to open " << path;
if (listener) {
listener->onStatus(-1, extras);
}
continue;
}
struct fstrim_range range;
memset(&range, 0, sizeof(range));
range.len = ULLONG_MAX;
nsecs_t start = systemTime(SYSTEM_TIME_BOOTTIME);
if (ioctl(fd, FITRIM, &range)) {
PLOG(WARNING) << "Trim failed on " << path;
if (listener) {
listener->onStatus(-1, extras);
}
} else {
nsecs_t time = systemTime(SYSTEM_TIME_BOOTTIME) - start;
LOG(INFO) << "Trimmed " << range.len << " bytes on " << path << " in "
<< nanoseconds_to_milliseconds(time) << "ms";
extras.putLong(String16("bytes"), range.len);
extras.putLong(String16("time"), time);
if (listener) {
listener->onStatus(0, extras);
}
}
close(fd);
}
if (listener) {
android::os::PersistableBundle extras;
listener->onFinished(0, extras);
}
}
static bool waitForGc(const std::list<std::string>& paths) {
std::unique_lock<std::mutex> lk(cv_m, std::defer_lock);
bool stop = false, aborted = false;
Timer timer;
while (!stop && !aborted) {
stop = true;
for (const auto& path : paths) {
std::string dirty_segments;
if (!ReadFileToString(path + "/dirty_segments", &dirty_segments)) {
PLOG(WARNING) << "Reading dirty_segments failed in " << path;
continue;
}
if (std::stoi(dirty_segments) > DIRTY_SEGMENTS_THRESHOLD) {
stop = false;
break;
}
}
if (stop) break;
if (timer.duration() >= std::chrono::seconds(GC_TIMEOUT_SEC)) {
LOG(WARNING) << "GC timeout";
break;
}
lk.lock();
aborted =
cv_abort.wait_for(lk, 10s, [] { return idle_maint_stat == IdleMaintStats::kAbort; });
lk.unlock();
}
return aborted;
}
static int startGc(const std::list<std::string>& paths) {
for (const auto& path : paths) {
LOG(DEBUG) << "Start GC on " << path;
if (!WriteStringToFile("1", path + "/gc_urgent")) {
PLOG(WARNING) << "Start GC failed on " << path;
}
}
return android::OK;
}
static int stopGc(const std::list<std::string>& paths) {
for (const auto& path : paths) {
LOG(DEBUG) << "Stop GC on " << path;
if (!WriteStringToFile("0", path + "/gc_urgent")) {
PLOG(WARNING) << "Stop GC failed on " << path;
}
}
return android::OK;
}
static std::string getDevSysfsPath() {
for (const auto& entry : fstab_default) {
if (!entry.sysfs_path.empty()) {
return entry.sysfs_path;
}
}
LOG(WARNING) << "Cannot find dev sysfs path";
return "";
}
static void runDevGcFstab(void) {
std::string path = getDevSysfsPath();
if (path.empty()) {
return;
}
path = path + "/manual_gc";
Timer timer;
LOG(DEBUG) << "Start Dev GC on " << path;
while (1) {
std::string require;
if (!ReadFileToString(path, &require)) {
PLOG(WARNING) << "Reading manual_gc failed in " << path;
break;
}
require = android::base::Trim(require);
if (require == "" || require == "off" || require == "disabled") {
LOG(DEBUG) << "No more to do Dev GC";
break;
}
LOG(DEBUG) << "Trigger Dev GC on " << path;
if (!WriteStringToFile("1", path)) {
PLOG(WARNING) << "Start Dev GC failed on " << path;
break;
}
if (timer.duration() >= std::chrono::seconds(DEVGC_TIMEOUT_SEC)) {
LOG(WARNING) << "Dev GC timeout";
break;
}
sleep(2);
}
LOG(DEBUG) << "Stop Dev GC on " << path;
if (!WriteStringToFile("0", path)) {
PLOG(WARNING) << "Stop Dev GC failed on " << path;
}
return;
}
enum class IDL { HIDL, AIDL };
std::ostream& operator<<(std::ostream& os, IDL idl) {
return os << (idl == IDL::HIDL ? "HIDL" : "AIDL");
}
template <IDL idl, typename Result>
class GcCallbackImpl {
protected:
void onFinishInternal(Result result) {
std::unique_lock<std::mutex> lock(mMutex);
mFinished = true;
mResult = result;
lock.unlock();
mCv.notify_all();
}
public:
void wait(uint64_t seconds) {
std::unique_lock<std::mutex> lock(mMutex);
mCv.wait_for(lock, std::chrono::seconds(seconds), [this] { return mFinished; });
if (!mFinished) {
LOG(WARNING) << "Dev GC on " << idl << " HAL timeout";
} else if (mResult != Result::SUCCESS) {
LOG(WARNING) << "Dev GC on " << idl << " HAL failed with " << toString(mResult);
} else {
LOG(INFO) << "Dev GC on " << idl << " HAL successful";
}
}
private:
std::mutex mMutex;
std::condition_variable mCv;
bool mFinished{false};
Result mResult{Result::UNKNOWN_ERROR};
};
class AGcCallbackImpl : public ABnGarbageCollectCallback,
public GcCallbackImpl<IDL::AIDL, AResult> {
ndk::ScopedAStatus onFinish(AResult result) override {
onFinishInternal(result);
return ndk::ScopedAStatus::ok();
}
};
class HGcCallbackImpl : public HGarbageCollectCallback, public GcCallbackImpl<IDL::HIDL, HResult> {
Return<void> onFinish(HResult result) override {
onFinishInternal(result);
return Void();
}
};
template <IDL idl, typename Service, typename GcCallbackImpl, typename GetDescription>
static void runDevGcOnHal(Service service, GcCallbackImpl cb, GetDescription get_description) {
LOG(DEBUG) << "Start Dev GC on " << idl << " HAL";
auto ret = service->garbageCollect(DEVGC_TIMEOUT_SEC, cb);
if (!ret.isOk()) {
LOG(WARNING) << "Cannot start Dev GC on " << idl
<< " HAL: " << std::invoke(get_description, ret);
return;
}
cb->wait(DEVGC_TIMEOUT_SEC);
}
static void runDevGc(void) {
runDevGcFstab();
}
int RunIdleMaint(bool needGC, const android::sp<android::os::IVoldTaskListener>& listener) {
std::unique_lock<std::mutex> lk(cv_m);
bool gc_aborted = false;
if (idle_maint_stat != IdleMaintStats::kStopped) {
LOG(DEBUG) << "idle maintenance is already running";
if (listener) {
android::os::PersistableBundle extras;
listener->onFinished(0, extras);
}
return android::OK;
}
idle_maint_stat = IdleMaintStats::kRunning;
lk.unlock();
LOG(DEBUG) << "idle maintenance started";
auto wl = android::wakelock::WakeLock::tryGet(kWakeLock);
if (!wl.has_value()) {
return android::UNEXPECTED_NULL;
}
if (needGC) {
std::list<std::string> paths;
addFromFstab(&paths, PathTypes::kBlkDevice, false);
addFromVolumeManager(&paths, PathTypes::kBlkDevice);
startGc(paths);
gc_aborted = waitForGc(paths);
stopGc(paths);
}
if (!gc_aborted) {
Trim(nullptr);
runDevGc();
}
lk.lock();
idle_maint_stat = IdleMaintStats::kStopped;
lk.unlock();
cv_stop.notify_all();
if (listener) {
android::os::PersistableBundle extras;
listener->onFinished(0, extras);
}
LOG(DEBUG) << "idle maintenance completed";
return android::OK;
}
int AbortIdleMaint(const android::sp<android::os::IVoldTaskListener>& listener) {
auto wl = android::wakelock::WakeLock::tryGet(kWakeLock);
if (!wl.has_value()) {
return android::UNEXPECTED_NULL;
}
std::unique_lock<std::mutex> lk(cv_m);
if (idle_maint_stat != IdleMaintStats::kStopped) {
idle_maint_stat = IdleMaintStats::kAbort;
lk.unlock();
cv_abort.notify_one();
lk.lock();
LOG(DEBUG) << "aborting idle maintenance";
cv_stop.wait(lk, [] { return idle_maint_stat == IdleMaintStats::kStopped; });
}
lk.unlock();
if (listener) {
android::os::PersistableBundle extras;
listener->onFinished(0, extras);
}
LOG(DEBUG) << "idle maintenance stopped";
return android::OK;
}
int getLifeTime(const std::string& path) {
std::string result;
if (!ReadFileToString(path, &result)) {
PLOG(WARNING) << "Reading lifetime estimation failed for " << path;
return -1;
}
return std::stoi(result, 0, 16);
}
int32_t GetStorageLifeTime() {
std::string path = getDevSysfsPath();
if (path.empty()) {
return -1;
}
std::string lifeTimeBasePath = path + "/health_descriptor/life_time_estimation_";
int32_t lifeTime = getLifeTime(lifeTimeBasePath + "c");
if (lifeTime != -1) {
return lifeTime;
}
int32_t lifeTimeA = getLifeTime(lifeTimeBasePath + "a");
int32_t lifeTimeB = getLifeTime(lifeTimeBasePath + "b");
lifeTime = std::max(lifeTimeA, lifeTimeB);
if (lifeTime != -1) {
return lifeTime == 0 ? -1 : lifeTime * 10;
}
return -1;
}
int32_t GetStorageRemainingLifetime() {
std::string path = getDevSysfsPath();
if (path.empty()) {
return -1;
}
std::string lifeTimeBasePath = path + "/health_descriptor/life_time_estimation_";
int32_t lifeTime = getLifeTime(lifeTimeBasePath + "c");
if (lifeTime == -1) {
int32_t lifeTimeA = getLifeTime(lifeTimeBasePath + "a");
int32_t lifeTimeB = getLifeTime(lifeTimeBasePath + "b");
lifeTime = std::max(lifeTimeA, lifeTimeB);
if (lifeTime <= 0) {
return -1;
}
// 1 = 0-10% used, 10 = 90-100% used. Subtract 1 so that a brand new
// device looks 0% used.
lifeTime = (lifeTime - 1) * 10;
}
return 100 - std::clamp(lifeTime, 0, 100);
}
void SetGCUrgentPace(int32_t neededSegments, int32_t minSegmentThreshold, float dirtyReclaimRate,
float reclaimWeight, int32_t gcPeriod, int32_t minGCSleepTime,
int32_t targetDirtyRatio) {
std::list<std::string> paths;
bool needGC = false;
int32_t sleepTime;
addFromFstab(&paths, PathTypes::kBlkDevice, true);
if (paths.empty()) {
LOG(WARNING) << "There is no valid blk device path for data partition";
return;
}
std::string f2fsSysfsPath = paths.front();
std::string freeSegmentsPath = f2fsSysfsPath + "/free_segments";
std::string dirtySegmentsPath = f2fsSysfsPath + "/dirty_segments";
std::string gcSleepTimePath = f2fsSysfsPath + "/gc_urgent_sleep_time";
std::string gcUrgentModePath = f2fsSysfsPath + "/gc_urgent";
std::string ovpSegmentsPath = f2fsSysfsPath + "/ovp_segments";
std::string reservedBlocksPath = f2fsSysfsPath + "/reserved_blocks";
std::string freeSegmentsStr, dirtySegmentsStr, ovpSegmentsStr, reservedBlocksStr;
if (!ReadFileToString(freeSegmentsPath, &freeSegmentsStr)) {
PLOG(WARNING) << "Reading failed in " << freeSegmentsPath;
return;
}
if (!ReadFileToString(dirtySegmentsPath, &dirtySegmentsStr)) {
PLOG(WARNING) << "Reading failed in " << dirtySegmentsPath;
return;
}
if (!ReadFileToString(ovpSegmentsPath, &ovpSegmentsStr)) {
PLOG(WARNING) << "Reading failed in " << ovpSegmentsPath;
return;
}
if (!ReadFileToString(reservedBlocksPath, &reservedBlocksStr)) {
PLOG(WARNING) << "Reading failed in " << reservedBlocksPath;
return;
}
int32_t freeSegments = std::stoi(freeSegmentsStr);
int32_t dirtySegments = std::stoi(dirtySegmentsStr);
int32_t reservedSegments = std::stoi(ovpSegmentsStr) + std::stoi(reservedBlocksStr) / 512;
freeSegments = freeSegments > reservedSegments ? freeSegments - reservedSegments : 0;
int32_t totalSegments = freeSegments + dirtySegments;
int32_t finalTargetSegments = 0;
if (totalSegments < minSegmentThreshold) {
LOG(INFO) << "The sum of free segments: " << freeSegments
<< ", dirty segments: " << dirtySegments << " is under " << minSegmentThreshold;
} else {
int32_t dirtyRatio = dirtySegments * 100 / totalSegments;
int32_t neededForTargetRatio =
(dirtyRatio > targetDirtyRatio)
? totalSegments * (dirtyRatio - targetDirtyRatio) / 100
: 0;
neededSegments *= reclaimWeight;
neededSegments = (neededSegments > freeSegments) ? neededSegments - freeSegments : 0;
finalTargetSegments = std::max(neededSegments, neededForTargetRatio);
if (finalTargetSegments == 0) {
LOG(INFO) << "Enough free segments: " << freeSegments;
} else {
finalTargetSegments =
std::min(finalTargetSegments, (int32_t)(dirtySegments * dirtyReclaimRate));
if (finalTargetSegments == 0) {
LOG(INFO) << "Low dirty segments: " << dirtySegments;
} else if (neededSegments >= neededForTargetRatio) {
LOG(INFO) << "Trigger GC, because of needed segments exceeding free segments";
needGC = true;
} else {
LOG(INFO) << "Trigger GC for target dirty ratio diff of: "
<< dirtyRatio - targetDirtyRatio;
needGC = true;
}
}
}
if (!needGC) {
if (!WriteStringToFile(std::to_string(GC_NORMAL_MODE), gcUrgentModePath)) {
PLOG(WARNING) << "Writing failed in " << gcUrgentModePath;
}
return;
}
sleepTime = gcPeriod * ONE_MINUTE_IN_MS / finalTargetSegments;
if (sleepTime < minGCSleepTime) {
sleepTime = minGCSleepTime;
}
if (!WriteStringToFile(std::to_string(sleepTime), gcSleepTimePath)) {
PLOG(WARNING) << "Writing failed in " << gcSleepTimePath;
return;
}
if (!WriteStringToFile(std::to_string(GC_URGENT_MID_MODE), gcUrgentModePath)) {
PLOG(WARNING) << "Writing failed in " << gcUrgentModePath;
return;
}
LOG(INFO) << "Successfully set gc urgent mode: "
<< "free segments: " << freeSegments << ", reclaim target: " << finalTargetSegments
<< ", sleep time: " << sleepTime;
}
static int32_t getLifeTimeWrite() {
std::list<std::string> paths;
addFromFstab(&paths, PathTypes::kBlkDevice, true);
if (paths.empty()) {
LOG(WARNING) << "There is no valid blk device path for data partition";
return -1;
}
std::string writeKbytesPath = paths.front() + "/lifetime_write_kbytes";
std::string writeKbytesStr;
if (!ReadFileToString(writeKbytesPath, &writeKbytesStr)) {
PLOG(WARNING) << "Reading failed in " << writeKbytesPath;
return -1;
}
unsigned long long writeBytes = std::strtoull(writeKbytesStr.c_str(), NULL, 0);
/* Careful: values > LLONG_MAX can appear in the file due to a kernel bug. */
if (writeBytes / KBYTES_IN_SEGMENT > INT32_MAX) {
LOG(WARNING) << "Bad lifetime_write_kbytes: " << writeKbytesStr;
return -1;
}
return writeBytes / KBYTES_IN_SEGMENT;
}
void RefreshLatestWrite() {
int32_t segmentWrite = getLifeTimeWrite();
if (segmentWrite != -1) {
previousSegmentWrite = segmentWrite;
}
}
int32_t GetWriteAmount() {
int32_t currentSegmentWrite = getLifeTimeWrite();
if (currentSegmentWrite == -1) {
return -1;
}
int32_t writeAmount = currentSegmentWrite - previousSegmentWrite;
previousSegmentWrite = currentSegmentWrite;
return writeAmount;
}
} // namespace vold
} // namespace android