blob: a7f60df74693886188b2dcea8de4d3b19990881c [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <math.h>
#include <sys/types.h>
#include <algorithm>
#include <string>
#include <unordered_map>
#include <vector>
#include <android-base/stringprintf.h>
#include "event_selection_set.h"
namespace simpleperf {
struct CounterSum {
uint64_t value = 0;
uint64_t time_enabled = 0;
uint64_t time_running = 0;
void FromCounter(const PerfCounter& counter) {
value = counter.value;
time_enabled = counter.time_enabled;
time_running = counter.time_running;
}
void ToCounter(PerfCounter& counter) const {
counter.value = value;
counter.time_enabled = time_enabled;
counter.time_running = time_running;
}
CounterSum operator+(const CounterSum& other) const {
CounterSum res;
res.value = value + other.value;
res.time_enabled = time_enabled + other.time_enabled;
res.time_running = time_running + other.time_running;
return res;
}
CounterSum operator-(const CounterSum& other) const {
CounterSum res;
res.value = value - other.value;
res.time_enabled = time_enabled - other.time_enabled;
res.time_running = time_running - other.time_running;
return res;
}
};
struct ThreadInfo {
pid_t tid;
pid_t pid;
std::string name;
};
struct CounterSummary {
std::string type_name;
std::string modifier;
uint32_t group_id;
const ThreadInfo* thread;
int cpu; // -1 represents all cpus
uint64_t count;
uint64_t runtime_in_ns;
double scale;
std::string readable_count;
std::string comment;
bool auto_generated;
CounterSummary(const std::string& type_name, const std::string& modifier, uint32_t group_id,
const ThreadInfo* thread, int cpu, uint64_t count, uint64_t runtime_in_ns,
double scale, bool auto_generated, bool csv)
: type_name(type_name),
modifier(modifier),
group_id(group_id),
thread(thread),
cpu(cpu),
count(count),
runtime_in_ns(runtime_in_ns),
scale(scale),
auto_generated(auto_generated) {
readable_count = ReadableCountValue(csv);
}
bool IsMonitoredAtTheSameTime(const CounterSummary& other) const {
// Two summaries are monitored at the same time if they are in the same
// group or are monitored all the time.
if (group_id == other.group_id) {
return true;
}
return IsMonitoredAllTheTime() && other.IsMonitoredAllTheTime();
}
std::string Name() const {
if (modifier.empty()) {
return type_name;
}
return type_name + ":" + modifier;
}
bool IsMonitoredAllTheTime() const {
// If an event runs all the time it is enabled (by not sharing hardware
// counters with other events), the scale of its summary is usually within
// [1, 1 + 1e-5]. By setting SCALE_ERROR_LIMIT to 1e-5, We can identify
// events monitored all the time in most cases while keeping the report
// error rate <= 1e-5.
constexpr double SCALE_ERROR_LIMIT = 1e-5;
return (fabs(scale - 1.0) < SCALE_ERROR_LIMIT);
}
private:
std::string ReadableCountValue(bool csv) {
if (type_name == "cpu-clock" || type_name == "task-clock") {
// Convert nanoseconds to milliseconds.
double value = count / 1e6;
return android::base::StringPrintf("%lf(ms)", value);
} else {
// Convert big numbers to human friendly mode. For example,
// 1000000 will be converted to 1,000,000.
std::string s = android::base::StringPrintf("%" PRIu64, count);
if (csv) {
return s;
} else {
for (size_t i = s.size() - 1, j = 1; i > 0; --i, ++j) {
if (j == 3) {
s.insert(s.begin() + i, ',');
j = 0;
}
}
return s;
}
}
}
};
// Build a vector of CounterSummary.
class CounterSummaryBuilder {
public:
CounterSummaryBuilder(bool report_per_thread, bool report_per_core, bool csv,
const std::unordered_map<pid_t, ThreadInfo>& thread_map)
: report_per_thread_(report_per_thread),
report_per_core_(report_per_core),
csv_(csv),
thread_map_(thread_map) {}
void AddCountersForOneEventType(const CountersInfo& info) {
std::unordered_map<uint64_t, CounterSum> sum_map;
for (const auto& counter : info.counters) {
uint64_t key = 0;
if (report_per_thread_) {
key |= counter.tid;
}
if (report_per_core_) {
key |= static_cast<uint64_t>(counter.cpu) << 32;
}
CounterSum& sum = sum_map[key];
CounterSum add;
add.FromCounter(counter.counter);
sum = sum + add;
}
size_t pre_sum_count = summaries_.size();
for (const auto& pair : sum_map) {
pid_t tid = report_per_thread_ ? static_cast<pid_t>(pair.first & UINT32_MAX) : 0;
int cpu = report_per_core_ ? static_cast<int>(pair.first >> 32) : -1;
const CounterSum& sum = pair.second;
AddSummary(info, tid, cpu, sum);
}
if (report_per_thread_ || report_per_core_) {
SortSummaries(summaries_.begin() + pre_sum_count, summaries_.end());
}
}
std::vector<CounterSummary> Build() {
std::vector<CounterSummary> res = std::move(summaries_);
summaries_.clear();
return res;
}
private:
void AddSummary(const CountersInfo& info, pid_t tid, int cpu, const CounterSum& sum) {
double scale = 1.0;
if (sum.time_running < sum.time_enabled && sum.time_running != 0) {
scale = static_cast<double>(sum.time_enabled) / sum.time_running;
}
if ((report_per_thread_ || report_per_core_) && sum.time_running == 0) {
// No need to report threads or cpus not running.
return;
}
const ThreadInfo* thread = nullptr;
if (report_per_thread_) {
auto it = thread_map_.find(tid);
CHECK(it != thread_map_.end());
thread = &it->second;
}
summaries_.emplace_back(info.event_name, info.event_modifier, info.group_id, thread, cpu,
sum.value, sum.time_running, scale, false, csv_);
}
void SortSummaries(std::vector<CounterSummary>::iterator begin,
std::vector<CounterSummary>::iterator end) {
if (report_per_thread_ && report_per_core_) {
// First sort by event count for all cpus in a thread, then sort by event count of each cpu.
std::unordered_map<pid_t, uint64_t> count_per_thread;
for (auto it = begin; it != end; ++it) {
count_per_thread[it->thread->tid] += it->count;
}
std::sort(begin, end, [&](const CounterSummary& s1, const CounterSummary& s2) {
pid_t tid1 = s1.thread->tid;
pid_t tid2 = s2.thread->tid;
if (tid1 != tid2) {
if (count_per_thread[tid1] != count_per_thread[tid2]) {
return count_per_thread[tid1] > count_per_thread[tid2];
}
return tid1 < tid2;
}
return s1.count > s2.count;
});
} else {
std::sort(begin, end, [](const CounterSummary& s1, const CounterSummary& s2) {
return s1.count > s2.count;
});
}
};
const bool report_per_thread_;
const bool report_per_core_;
const bool csv_;
const std::unordered_map<pid_t, ThreadInfo>& thread_map_;
std::vector<CounterSummary> summaries_;
};
class CounterSummaries {
public:
explicit CounterSummaries(std::vector<CounterSummary>&& summaries, bool csv)
: summaries_(std::move(summaries)), csv_(csv) {}
const std::vector<CounterSummary>& Summaries() { return summaries_; }
const CounterSummary* FindSummary(const std::string& type_name, const std::string& modifier,
const ThreadInfo* thread, int cpu);
// If we have two summaries monitoring the same event type at the same time,
// that one is for user space only, and the other is for kernel space only;
// then we can automatically generate a summary combining the two results.
// For example, a summary of branch-misses:u and a summary for branch-misses:k
// can generate a summary of branch-misses.
void AutoGenerateSummaries();
void GenerateComments(double duration_in_sec);
void Show(FILE* fp);
void ShowCSV(FILE* fp);
void ShowText(FILE* fp);
private:
std::string GetCommentForSummary(const CounterSummary& s, double duration_in_sec);
std::string GetRateComment(const CounterSummary& s, char sep);
bool FindRunningTimeForSummary(const CounterSummary& summary, double* running_time_in_sec);
private:
std::vector<CounterSummary> summaries_;
bool csv_;
};
} // namespace simpleperf