blob: 7413599f4d50e34049fb5e89fc71414ec9f4152c [file] [log] [blame]
// Inferno utils/5l/asm.c
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/5l/asm.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package ppc64
import (
"cmd/internal/objabi"
"cmd/internal/sys"
"cmd/link/internal/ld"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"debug/elf"
"encoding/binary"
"fmt"
"log"
"strconv"
"strings"
)
func genpltstub(ctxt *ld.Link, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (sym loader.Sym, firstUse bool) {
// The ppc64 ABI PLT has similar concepts to other
// architectures, but is laid out quite differently. When we
// see an R_PPC64_REL24 relocation to a dynamic symbol
// (indicating that the call needs to go through the PLT), we
// generate up to three stubs and reserve a PLT slot.
//
// 1) The call site will be bl x; nop (where the relocation
// applies to the bl). We rewrite this to bl x_stub; ld
// r2,24(r1). The ld is necessary because x_stub will save
// r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
//
// 2) We reserve space for a pointer in the .plt section (once
// per referenced dynamic function). .plt is a data
// section filled solely by the dynamic linker (more like
// .plt.got on other architectures). Initially, the
// dynamic linker will fill each slot with a pointer to the
// corresponding x@plt entry point.
//
// 3) We generate the "call stub" x_stub (once per dynamic
// function/object file pair). This saves the TOC in the
// TOC save slot, reads the function pointer from x's .plt
// slot and calls it like any other global entry point
// (including setting r12 to the function address).
//
// 4) We generate the "symbol resolver stub" x@plt (once per
// dynamic function). This is solely a branch to the glink
// resolver stub.
//
// 5) We generate the glink resolver stub (only once). This
// computes which symbol resolver stub we came through and
// invokes the dynamic resolver via a pointer provided by
// the dynamic linker. This will patch up the .plt slot to
// point directly at the function so future calls go
// straight from the call stub to the real function, and
// then call the function.
// NOTE: It's possible we could make ppc64 closer to other
// architectures: ppc64's .plt is like .plt.got on other
// platforms and ppc64's .glink is like .plt on other
// platforms.
// Find all R_PPC64_REL24 relocations that reference dynamic
// imports. Reserve PLT entries for these symbols and
// generate call stubs. The call stubs need to live in .text,
// which is why we need to do this pass this early.
//
// This assumes "case 1" from the ABI, where the caller needs
// us to save and restore the TOC pointer.
// Reserve PLT entry and generate symbol
// resolver
addpltsym(ctxt, ldr, r.Sym())
// Generate call stub. Important to note that we're looking
// up the stub using the same version as the parent symbol (s),
// needed so that symtoc() will select the right .TOC. symbol
// when processing the stub. In older versions of the linker
// this was done by setting stub.Outer to the parent, but
// if the stub has the right version initially this is not needed.
n := fmt.Sprintf("%s.%s", ldr.SymName(s), ldr.SymName(r.Sym()))
stub := ldr.CreateSymForUpdate(n, ldr.SymVersion(s))
firstUse = stub.Size() == 0
if firstUse {
gencallstub(ctxt, ldr, 1, stub, r.Sym())
}
// Update the relocation to use the call stub
r.SetSym(stub.Sym())
// Make the symbol writeable so we can fixup toc.
su := ldr.MakeSymbolUpdater(s)
su.MakeWritable()
p := su.Data()
// Check for toc restore slot (a nop), and replace with toc restore.
var nop uint32
if len(p) >= int(r.Off()+8) {
nop = ctxt.Arch.ByteOrder.Uint32(p[r.Off()+4:])
}
if nop != 0x60000000 {
ldr.Errorf(s, "Symbol %s is missing toc restoration slot at offset %d", ldr.SymName(s), r.Off()+4)
}
const o1 = 0xe8410018 // ld r2,24(r1)
ctxt.Arch.ByteOrder.PutUint32(p[r.Off()+4:], o1)
return stub.Sym(), firstUse
}
// Scan relocs and generate PLT stubs and generate/fixup ABI defined functions created by the linker.
func genstubs(ctxt *ld.Link, ldr *loader.Loader) {
var stubs []loader.Sym
var abifuncs []loader.Sym
for _, s := range ctxt.Textp {
relocs := ldr.Relocs(s)
for i := 0; i < relocs.Count(); i++ {
r := relocs.At(i)
switch r.Type() {
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24):
switch ldr.SymType(r.Sym()) {
case sym.SDYNIMPORT:
// This call goes through the PLT, generate and call through a PLT stub.
if sym, firstUse := genpltstub(ctxt, ldr, r, s); firstUse {
stubs = append(stubs, sym)
}
case sym.SXREF:
// Is this an ELF ABI defined function which is (in practice)
// generated by the linker to save/restore callee save registers?
// These are defined similarly for both PPC64 ELF and ELFv2.
targName := ldr.SymName(r.Sym())
if strings.HasPrefix(targName, "_save") || strings.HasPrefix(targName, "_rest") {
if sym, firstUse := rewriteABIFuncReloc(ctxt, ldr, targName, r); firstUse {
abifuncs = append(abifuncs, sym)
}
}
}
// Handle objects compiled with -fno-plt. Rewrite local calls to avoid indirect calling.
// These are 0 sized relocs. They mark the mtctr r12, or bctrl + ld r2,24(r1).
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLTSEQ):
if ldr.SymType(r.Sym()) == sym.STEXT {
// This should be an mtctr instruction. Turn it into a nop.
su := ldr.MakeSymbolUpdater(s)
const OP_MTCTR = 31<<26 | 0x9<<16 | 467<<1
const MASK_OP_MTCTR = 63<<26 | 0x3FF<<11 | 0x1FF<<1
rewritetonop(&ctxt.Target, ldr, su, int64(r.Off()), MASK_OP_MTCTR, OP_MTCTR)
}
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLTCALL):
if ldr.SymType(r.Sym()) == sym.STEXT {
// This relocation should point to a bctrl followed by a ld r2, 24(41)
const OP_BL = 0x48000001 // bl 0
const OP_TOCRESTORE = 0xe8410018 // ld r2,24(r1)
const OP_BCTRL = 0x4e800421 // bctrl
// Convert the bctrl into a bl.
su := ldr.MakeSymbolUpdater(s)
rewritetoinsn(&ctxt.Target, ldr, su, int64(r.Off()), 0xFFFFFFFF, OP_BCTRL, OP_BL)
// Turn this reloc into an R_CALLPOWER, and convert the TOC restore into a nop.
su.SetRelocType(i, objabi.R_CALLPOWER)
su.SetRelocAdd(i, r.Add()+int64(ldr.SymLocalentry(r.Sym())))
r.SetSiz(4)
rewritetonop(&ctxt.Target, ldr, su, int64(r.Off()+4), 0xFFFFFFFF, OP_TOCRESTORE)
}
}
}
}
// Append any usage of the go versions of ELF save/restore
// functions to the end of the callstub list to minimize
// chances a trampoline might be needed.
stubs = append(stubs, abifuncs...)
// Put stubs at the beginning (instead of the end).
// So when resolving the relocations to calls to the stubs,
// the addresses are known and trampolines can be inserted
// when necessary.
ctxt.Textp = append(stubs, ctxt.Textp...)
}
func genaddmoduledata(ctxt *ld.Link, ldr *loader.Loader) {
initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt)
if initfunc == nil {
return
}
o := func(op uint32) {
initfunc.AddUint32(ctxt.Arch, op)
}
// addis r2, r12, .TOC.-func@ha
toc := ctxt.DotTOC[0]
rel1, _ := initfunc.AddRel(objabi.R_ADDRPOWER_PCREL)
rel1.SetOff(0)
rel1.SetSiz(8)
rel1.SetSym(toc)
o(0x3c4c0000)
// addi r2, r2, .TOC.-func@l
o(0x38420000)
// mflr r31
o(0x7c0802a6)
// stdu r31, -32(r1)
o(0xf801ffe1)
// addis r3, r2, local.moduledata@got@ha
var tgt loader.Sym
if s := ldr.Lookup("local.moduledata", 0); s != 0 {
tgt = s
} else if s := ldr.Lookup("local.pluginmoduledata", 0); s != 0 {
tgt = s
} else {
tgt = ldr.LookupOrCreateSym("runtime.firstmoduledata", 0)
}
rel2, _ := initfunc.AddRel(objabi.R_ADDRPOWER_GOT)
rel2.SetOff(int32(initfunc.Size()))
rel2.SetSiz(8)
rel2.SetSym(tgt)
o(0x3c620000)
// ld r3, local.moduledata@got@l(r3)
o(0xe8630000)
// bl runtime.addmoduledata
rel3, _ := initfunc.AddRel(objabi.R_CALLPOWER)
rel3.SetOff(int32(initfunc.Size()))
rel3.SetSiz(4)
rel3.SetSym(addmoduledata)
o(0x48000001)
// nop
o(0x60000000)
// ld r31, 0(r1)
o(0xe8010000)
// mtlr r31
o(0x7c0803a6)
// addi r1,r1,32
o(0x38210020)
// blr
o(0x4e800020)
}
// Rewrite ELF (v1 or v2) calls to _savegpr0_n, _savegpr1_n, _savefpr_n, _restfpr_n, _savevr_m, or
// _restvr_m (14<=n<=31, 20<=m<=31). Redirect them to runtime.elf_restgpr0+(n-14)*4,
// runtime.elf_restvr+(m-20)*8, and similar.
//
// These functions are defined in the ELFv2 ABI (generated when using gcc -Os option) to save and
// restore callee-saved registers (as defined in the PPC64 ELF ABIs) from registers n or m to 31 of
// the named type. R12 and R0 are sometimes used in exceptional ways described in the ABI.
//
// Final note, this is only needed when linking internally. The external linker will generate these
// functions if they are used.
func rewriteABIFuncReloc(ctxt *ld.Link, ldr *loader.Loader, tname string, r loader.Reloc) (sym loader.Sym, firstUse bool) {
s := strings.Split(tname, "_")
// A valid call will split like {"", "savegpr0", "20"}
if len(s) != 3 {
return 0, false // Not an abi func.
}
minReg := 14 // _savegpr0_{n}, _savegpr1_{n}, _savefpr_{n}, 14 <= n <= 31
offMul := 4 // 1 instruction per register op.
switch s[1] {
case "savegpr0", "savegpr1", "savefpr":
case "restgpr0", "restgpr1", "restfpr":
case "savevr", "restvr":
minReg = 20 // _savevr_{n} or _restvr_{n}, 20 <= n <= 31
offMul = 8 // 2 instructions per register op.
default:
return 0, false // Not an abi func
}
n, e := strconv.Atoi(s[2])
if e != nil || n < minReg || n > 31 || r.Add() != 0 {
return 0, false // Invalid register number, or non-zero addend. Not an abi func.
}
// tname is a valid relocation to an ABI defined register save/restore function. Re-relocate
// them to a go version of these functions in runtime/asm_ppc64x.s
ts := ldr.LookupOrCreateSym("runtime.elf_"+s[1], 0)
r.SetSym(ts)
r.SetAdd(int64((n - minReg) * offMul))
firstUse = !ldr.AttrReachable(ts)
if firstUse {
ldr.SetAttrReachable(ts, true)
// This function only becomes reachable now. It has been dropped from
// the text section (it was unreachable until now), it needs included.
//
// Similarly, TOC regeneration should not happen for these functions,
// remove it from this save/restore function.
if ldr.AttrShared(ts) {
sb := ldr.MakeSymbolUpdater(ts)
sb.SetData(sb.Data()[8:])
sb.SetSize(sb.Size() - 8)
relocs := sb.Relocs()
// Only one PCREL reloc to .TOC. should be present.
if relocs.Count() != 1 {
log.Fatalf("Unexpected number of relocs in %s\n", ldr.SymName(ts))
}
sb.ResetRelocs()
}
}
return ts, firstUse
}
func gentext(ctxt *ld.Link, ldr *loader.Loader) {
if ctxt.DynlinkingGo() {
genaddmoduledata(ctxt, ldr)
}
if ctxt.LinkMode == ld.LinkInternal {
genstubs(ctxt, ldr)
}
}
// Construct a call stub in stub that calls symbol targ via its PLT
// entry.
func gencallstub(ctxt *ld.Link, ldr *loader.Loader, abicase int, stub *loader.SymbolBuilder, targ loader.Sym) {
if abicase != 1 {
// If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC
// relocations, we'll need to implement cases 2 and 3.
log.Fatalf("gencallstub only implements case 1 calls")
}
plt := ctxt.PLT
stub.SetType(sym.STEXT)
// Save TOC pointer in TOC save slot
stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1)
// Load the function pointer from the PLT.
rel, ri1 := stub.AddRel(objabi.R_POWER_TOC)
rel.SetOff(int32(stub.Size()))
rel.SetSiz(2)
rel.SetAdd(int64(ldr.SymPlt(targ)))
rel.SetSym(plt)
if ctxt.Arch.ByteOrder == binary.BigEndian {
rel.SetOff(rel.Off() + int32(rel.Siz()))
}
ldr.SetRelocVariant(stub.Sym(), int(ri1), sym.RV_POWER_HA)
stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha
rel2, ri2 := stub.AddRel(objabi.R_POWER_TOC)
rel2.SetOff(int32(stub.Size()))
rel2.SetSiz(2)
rel2.SetAdd(int64(ldr.SymPlt(targ)))
rel2.SetSym(plt)
if ctxt.Arch.ByteOrder == binary.BigEndian {
rel2.SetOff(rel2.Off() + int32(rel2.Siz()))
}
ldr.SetRelocVariant(stub.Sym(), int(ri2), sym.RV_POWER_LO)
stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12)
// Jump to the loaded pointer
stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr
}
// Rewrite the instruction at offset into newinsn. Also, verify the
// existing instruction under mask matches the check value.
func rewritetoinsn(target *ld.Target, ldr *loader.Loader, su *loader.SymbolBuilder, offset int64, mask, check, newinsn uint32) {
su.MakeWritable()
op := target.Arch.ByteOrder.Uint32(su.Data()[offset:])
if op&mask != check {
ldr.Errorf(su.Sym(), "Rewrite offset 0x%x to 0x%08X failed check (0x%08X&0x%08X != 0x%08X)", offset, newinsn, op, mask, check)
}
su.SetUint32(target.Arch, offset, newinsn)
}
// Rewrite the instruction at offset into a hardware nop instruction. Also, verify the
// existing instruction under mask matches the check value.
func rewritetonop(target *ld.Target, ldr *loader.Loader, su *loader.SymbolBuilder, offset int64, mask, check uint32) {
const NOP = 0x60000000
rewritetoinsn(target, ldr, su, offset, mask, check, NOP)
}
func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool {
if target.IsElf() {
return addelfdynrel(target, ldr, syms, s, r, rIdx)
} else if target.IsAIX() {
return ld.Xcoffadddynrel(target, ldr, syms, s, r, rIdx)
}
return false
}
func addelfdynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool {
targ := r.Sym()
var targType sym.SymKind
if targ != 0 {
targType = ldr.SymType(targ)
}
switch r.Type() {
default:
if r.Type() >= objabi.ElfRelocOffset {
ldr.Errorf(s, "unexpected relocation type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type()))
return false
}
// Handle relocations found in ELF object files.
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_CALLPOWER)
// This is a local call, so the caller isn't setting
// up r12 and r2 is the same for the caller and
// callee. Hence, we need to go to the local entry
// point. (If we don't do this, the callee will try
// to use r12 to compute r2.)
su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymLocalentry(targ)))
if targType == sym.SDYNIMPORT {
// Should have been handled in elfsetupplt
ldr.Errorf(s, "unexpected R_PPC64_REL24 for dyn import")
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_PCREL)
su.SetRelocAdd(rIdx, r.Add()+4)
if targType == sym.SDYNIMPORT {
ldr.Errorf(s, "unexpected R_PPC_REL32 for dyn import")
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_ADDR)
if targType == sym.SDYNIMPORT {
// These happen in .toc sections
ld.Adddynsym(ldr, target, syms, targ)
rela := ldr.MakeSymbolUpdater(syms.Rela)
rela.AddAddrPlus(target.Arch, s, int64(r.Off()))
rela.AddUint64(target.Arch, elf.R_INFO(uint32(ldr.SymDynid(targ)), uint32(elf.R_PPC64_ADDR64)))
rela.AddUint64(target.Arch, uint64(r.Add()))
su.SetRelocType(rIdx, objabi.ElfRelocOffset) // ignore during relocsym
} else if target.IsPIE() && target.IsInternal() {
// For internal linking PIE, this R_ADDR relocation cannot
// be resolved statically. We need to generate a dynamic
// relocation. Let the code below handle it.
break
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_POWER_TOC)
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO|sym.RV_CHECK_OVERFLOW)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_POWER_TOC)
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_POWER_TOC)
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_POWER_TOC)
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_POWER_TOC)
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS|sym.RV_CHECK_OVERFLOW)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_POWER_TOC)
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_PCREL)
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO)
su.SetRelocAdd(rIdx, r.Add()+2) // Compensate for relocation size of 2
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_PCREL)
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW)
su.SetRelocAdd(rIdx, r.Add()+2)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA):
su := ldr.MakeSymbolUpdater(s)
su.SetRelocType(rIdx, objabi.R_PCREL)
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
su.SetRelocAdd(rIdx, r.Add()+2)
return true
// When compiling with gcc's -fno-plt option (no PLT), the following code and relocation
// sequences may be present to call an external function:
//
// 1. addis Rx,foo@R_PPC64_PLT16_HA
// 2. ld 12,foo@R_PPC64_PLT16_LO_DS(Rx)
// 3. mtctr 12 ; foo@R_PPC64_PLTSEQ
// 4. bctrl ; foo@R_PPC64_PLTCALL
// 5. ld r2,24(r1)
//
// Note, 5 is required to follow the R_PPC64_PLTCALL. Similarly, relocations targeting
// instructions 3 and 4 are zero sized informational relocations.
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLT16_HA),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLT16_LO_DS):
su := ldr.MakeSymbolUpdater(s)
isPLT16_LO_DS := r.Type() == objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_PLT16_LO_DS)
if isPLT16_LO_DS {
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS)
} else {
ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
}
su.SetRelocType(rIdx, objabi.R_POWER_TOC)
if targType == sym.SDYNIMPORT {
// This is an external symbol, make space in the GOT and retarget the reloc.
ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_PPC64_GLOB_DAT))
su.SetRelocSym(rIdx, syms.GOT)
su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ)))
} else if targType == sym.STEXT {
if isPLT16_LO_DS {
// Expect an ld opcode to nop
const MASK_OP_LD = 63<<26 | 0x3
const OP_LD = 58 << 26
rewritetonop(target, ldr, su, int64(r.Off()), MASK_OP_LD, OP_LD)
} else {
// Expect an addis opcode to nop
const MASK_OP_ADDIS = 63 << 26
const OP_ADDIS = 15 << 26
rewritetonop(target, ldr, su, int64(r.Off()), MASK_OP_ADDIS, OP_ADDIS)
}
// And we can ignore this reloc now.
su.SetRelocType(rIdx, objabi.ElfRelocOffset)
} else {
ldr.Errorf(s, "unexpected PLT relocation target symbol type %s", targType.String())
}
return true
}
// Handle references to ELF symbols from our own object files.
relocs := ldr.Relocs(s)
r = relocs.At(rIdx)
switch r.Type() {
case objabi.R_ADDR:
if ldr.SymType(s) == sym.STEXT {
log.Fatalf("R_ADDR relocation in text symbol %s is unsupported\n", ldr.SymName(s))
}
if target.IsPIE() && target.IsInternal() {
// When internally linking, generate dynamic relocations
// for all typical R_ADDR relocations. The exception
// are those R_ADDR that are created as part of generating
// the dynamic relocations and must be resolved statically.
//
// There are three phases relevant to understanding this:
//
// dodata() // we are here
// address() // symbol address assignment
// reloc() // resolution of static R_ADDR relocs
//
// At this point symbol addresses have not been
// assigned yet (as the final size of the .rela section
// will affect the addresses), and so we cannot write
// the Elf64_Rela.r_offset now. Instead we delay it
// until after the 'address' phase of the linker is
// complete. We do this via Addaddrplus, which creates
// a new R_ADDR relocation which will be resolved in
// the 'reloc' phase.
//
// These synthetic static R_ADDR relocs must be skipped
// now, or else we will be caught in an infinite loop
// of generating synthetic relocs for our synthetic
// relocs.
//
// Furthermore, the rela sections contain dynamic
// relocations with R_ADDR relocations on
// Elf64_Rela.r_offset. This field should contain the
// symbol offset as determined by reloc(), not the
// final dynamically linked address as a dynamic
// relocation would provide.
switch ldr.SymName(s) {
case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic":
return false
}
} else {
// Either internally linking a static executable,
// in which case we can resolve these relocations
// statically in the 'reloc' phase, or externally
// linking, in which case the relocation will be
// prepared in the 'reloc' phase and passed to the
// external linker in the 'asmb' phase.
if ldr.SymType(s) != sym.SDATA && ldr.SymType(s) != sym.SRODATA {
break
}
}
// Generate R_PPC64_RELATIVE relocations for best
// efficiency in the dynamic linker.
//
// As noted above, symbol addresses have not been
// assigned yet, so we can't generate the final reloc
// entry yet. We ultimately want:
//
// r_offset = s + r.Off
// r_info = R_PPC64_RELATIVE
// r_addend = targ + r.Add
//
// The dynamic linker will set *offset = base address +
// addend.
//
// AddAddrPlus is used for r_offset and r_addend to
// generate new R_ADDR relocations that will update
// these fields in the 'reloc' phase.
rela := ldr.MakeSymbolUpdater(syms.Rela)
rela.AddAddrPlus(target.Arch, s, int64(r.Off()))
if r.Siz() == 8 {
rela.AddUint64(target.Arch, elf.R_INFO(0, uint32(elf.R_PPC64_RELATIVE)))
} else {
ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ))
}
rela.AddAddrPlus(target.Arch, targ, int64(r.Add()))
// Not mark r done here. So we still apply it statically,
// so in the file content we'll also have the right offset
// to the relocation target. So it can be examined statically
// (e.g. go version).
return true
}
return false
}
func xcoffreloc1(arch *sys.Arch, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, sectoff int64) bool {
rs := r.Xsym
emitReloc := func(v uint16, off uint64) {
out.Write64(uint64(sectoff) + off)
out.Write32(uint32(ldr.SymDynid(rs)))
out.Write16(v)
}
var v uint16
switch r.Type {
default:
return false
case objabi.R_ADDR, objabi.R_DWARFSECREF:
v = ld.XCOFF_R_POS
if r.Size == 4 {
v |= 0x1F << 8
} else {
v |= 0x3F << 8
}
emitReloc(v, 0)
case objabi.R_ADDRPOWER_TOCREL:
case objabi.R_ADDRPOWER_TOCREL_DS:
emitReloc(ld.XCOFF_R_TOCU|(0x0F<<8), 2)
emitReloc(ld.XCOFF_R_TOCL|(0x0F<<8), 6)
case objabi.R_POWER_TLS_LE:
// This only supports 16b relocations. It is fixed up in archreloc.
emitReloc(ld.XCOFF_R_TLS_LE|0x0F<<8, 2)
case objabi.R_CALLPOWER:
if r.Size != 4 {
return false
}
emitReloc(ld.XCOFF_R_RBR|0x19<<8, 0)
case objabi.R_XCOFFREF:
emitReloc(ld.XCOFF_R_REF|0x3F<<8, 0)
}
return true
}
func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool {
// Beware that bit0~bit15 start from the third byte of a instruction in Big-Endian machines.
rt := r.Type
if rt == objabi.R_ADDR || rt == objabi.R_POWER_TLS || rt == objabi.R_CALLPOWER {
} else {
if ctxt.Arch.ByteOrder == binary.BigEndian {
sectoff += 2
}
}
out.Write64(uint64(sectoff))
elfsym := ld.ElfSymForReloc(ctxt, r.Xsym)
switch rt {
default:
return false
case objabi.R_ADDR, objabi.R_DWARFSECREF:
switch r.Size {
case 4:
out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32)
case 8:
out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32)
default:
return false
}
case objabi.R_ADDRPOWER_D34:
out.Write64(uint64(elf.R_PPC64_D34) | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER_PCREL34:
out.Write64(uint64(elf.R_PPC64_PCREL34) | uint64(elfsym)<<32)
case objabi.R_POWER_TLS:
out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32)
case objabi.R_POWER_TLS_LE:
out.Write64(uint64(elf.R_PPC64_TPREL16_HA) | uint64(elfsym)<<32)
out.Write64(uint64(r.Xadd))
out.Write64(uint64(sectoff + 4))
out.Write64(uint64(elf.R_PPC64_TPREL16_LO) | uint64(elfsym)<<32)
case objabi.R_POWER_TLS_LE_TPREL34:
out.Write64(uint64(elf.R_PPC64_TPREL34) | uint64(elfsym)<<32)
case objabi.R_POWER_TLS_IE_PCREL34:
out.Write64(uint64(elf.R_PPC64_GOT_TPREL_PCREL34) | uint64(elfsym)<<32)
case objabi.R_POWER_TLS_IE:
out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32)
out.Write64(uint64(r.Xadd))
out.Write64(uint64(sectoff + 4))
out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER:
out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
out.Write64(uint64(r.Xadd))
out.Write64(uint64(sectoff + 4))
out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER_DS:
out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
out.Write64(uint64(r.Xadd))
out.Write64(uint64(sectoff + 4))
out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER_GOT:
out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32)
out.Write64(uint64(r.Xadd))
out.Write64(uint64(sectoff + 4))
out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER_PCREL:
out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32)
out.Write64(uint64(r.Xadd))
out.Write64(uint64(sectoff + 4))
out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32)
r.Xadd += 4
case objabi.R_ADDRPOWER_TOCREL:
out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
out.Write64(uint64(r.Xadd))
out.Write64(uint64(sectoff + 4))
out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32)
case objabi.R_ADDRPOWER_TOCREL_DS:
out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
out.Write64(uint64(r.Xadd))
out.Write64(uint64(sectoff + 4))
out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32)
case objabi.R_CALLPOWER:
if r.Size != 4 {
return false
}
out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32)
}
out.Write64(uint64(r.Xadd))
return true
}
func elfsetupplt(ctxt *ld.Link, plt, got *loader.SymbolBuilder, dynamic loader.Sym) {
if plt.Size() == 0 {
// The dynamic linker stores the address of the
// dynamic resolver and the DSO identifier in the two
// doublewords at the beginning of the .plt section
// before the PLT array. Reserve space for these.
plt.SetSize(16)
}
}
func machoreloc1(*sys.Arch, *ld.OutBuf, *loader.Loader, loader.Sym, loader.ExtReloc, int64) bool {
return false
}
// Return the value of .TOC. for symbol s
func symtoc(ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) int64 {
v := ldr.SymVersion(s)
if out := ldr.OuterSym(s); out != 0 {
v = ldr.SymVersion(out)
}
toc := syms.DotTOC[v]
if toc == 0 {
ldr.Errorf(s, "TOC-relative relocation in object without .TOC.")
return 0
}
return ldr.SymValue(toc)
}
// archreloctoc relocates a TOC relative symbol.
func archreloctoc(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 {
rs := r.Sym()
var o1, o2 uint32
var t int64
useAddi := false
if target.IsBigEndian() {
o1 = uint32(val >> 32)
o2 = uint32(val)
} else {
o1 = uint32(val)
o2 = uint32(val >> 32)
}
// On AIX, TOC data accesses are always made indirectly against R2 (a sequence of addis+ld+load/store). If the
// The target of the load is known, the sequence can be written into addis+addi+load/store. On Linux,
// TOC data accesses are always made directly against R2 (e.g addis+load/store).
if target.IsAIX() {
if !strings.HasPrefix(ldr.SymName(rs), "TOC.") {
ldr.Errorf(s, "archreloctoc called for a symbol without TOC anchor")
}
relocs := ldr.Relocs(rs)
tarSym := relocs.At(0).Sym()
if target.IsInternal() && tarSym != 0 && ldr.AttrReachable(tarSym) && ldr.SymSect(tarSym).Seg == &ld.Segdata {
t = ldr.SymValue(tarSym) + r.Add() - ldr.SymValue(syms.TOC)
// change ld to addi in the second instruction
o2 = (o2 & 0x03FF0000) | 0xE<<26
useAddi = true
} else {
t = ldr.SymValue(rs) + r.Add() - ldr.SymValue(syms.TOC)
}
} else {
t = ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s)
}
if t != int64(int32(t)) {
ldr.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", ldr.SymName(s), rs, t)
}
if t&0x8000 != 0 {
t += 0x10000
}
o1 |= uint32((t >> 16) & 0xFFFF)
switch r.Type() {
case objabi.R_ADDRPOWER_TOCREL_DS:
if useAddi {
o2 |= uint32(t) & 0xFFFF
} else {
if t&3 != 0 {
ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs))
}
o2 |= uint32(t) & 0xFFFC
}
case objabi.R_ADDRPOWER_TOCREL:
o2 |= uint32(t) & 0xffff
default:
return -1
}
if target.IsBigEndian() {
return int64(o1)<<32 | int64(o2)
}
return int64(o2)<<32 | int64(o1)
}
// archrelocaddr relocates a symbol address.
// This code is for linux only.
func archrelocaddr(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 {
rs := r.Sym()
if target.IsAIX() {
ldr.Errorf(s, "archrelocaddr called for %s relocation\n", ldr.SymName(rs))
}
o1, o2 := unpackInstPair(target, val)
// Verify resulting address fits within a 31 bit (2GB) address space.
// This is a restriction arising from the usage of lis (HA) + d-form
// (LO) instruction sequences used to implement absolute relocations
// on PPC64 prior to ISA 3.1 (P10). For consistency, maintain this
// restriction for ISA 3.1 unless it becomes problematic.
t := ldr.SymAddr(rs) + r.Add()
if t < 0 || t >= 1<<31 {
ldr.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", ldr.SymName(s), ldr.SymValue(rs))
}
switch r.Type() {
case objabi.R_ADDRPOWER_PCREL34:
// S + A - P
t -= (ldr.SymValue(s) + int64(r.Off()))
o1 |= computePrefix34HI(t)
o2 |= computeLO(int32(t))
case objabi.R_ADDRPOWER_D34:
o1 |= computePrefix34HI(t)
o2 |= computeLO(int32(t))
case objabi.R_ADDRPOWER:
o1 |= computeHA(int32(t))
o2 |= computeLO(int32(t))
case objabi.R_ADDRPOWER_DS:
o1 |= computeHA(int32(t))
o2 |= computeLO(int32(t))
if t&3 != 0 {
ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs))
}
default:
return -1
}
return packInstPair(target, o1, o2)
}
// Determine if the code was compiled so that the TOC register R2 is initialized and maintained.
func r2Valid(ctxt *ld.Link) bool {
switch ctxt.BuildMode {
case ld.BuildModeCArchive, ld.BuildModeCShared, ld.BuildModePIE, ld.BuildModeShared, ld.BuildModePlugin:
return true
}
// -linkshared option
return ctxt.IsSharedGoLink()
}
// resolve direct jump relocation r in s, and add trampoline if necessary.
func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) {
// Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it.
// For internal linking, trampolines are always created for long calls.
// For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in
// r2. For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created.
if ctxt.IsExternal() && r2Valid(ctxt) {
// The TOC pointer is valid. The external linker will insert trampolines.
return
}
relocs := ldr.Relocs(s)
r := relocs.At(ri)
var t int64
// ldr.SymValue(rs) == 0 indicates a cross-package jump to a function that is not yet
// laid out. Conservatively use a trampoline. This should be rare, as we lay out packages
// in dependency order.
if ldr.SymValue(rs) != 0 {
t = ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
}
switch r.Type() {
case objabi.R_CALLPOWER:
// If branch offset is too far then create a trampoline.
if (ctxt.IsExternal() && ldr.SymSect(s) != ldr.SymSect(rs)) || (ctxt.IsInternal() && int64(int32(t<<6)>>6) != t) || ldr.SymValue(rs) == 0 || (*ld.FlagDebugTramp > 1 && ldr.SymPkg(s) != ldr.SymPkg(rs)) {
var tramp loader.Sym
for i := 0; ; i++ {
// Using r.Add as part of the name is significant in functions like duffzero where the call
// target is at some offset within the function. Calls to duff+8 and duff+256 must appear as
// distinct trampolines.
oName := ldr.SymName(rs)
name := oName
if r.Add() == 0 {
name += fmt.Sprintf("-tramp%d", i)
} else {
name += fmt.Sprintf("%+x-tramp%d", r.Add(), i)
}
// Look up the trampoline in case it already exists
tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs)))
if oName == "runtime.deferreturn" {
ldr.SetIsDeferReturnTramp(tramp, true)
}
if ldr.SymValue(tramp) == 0 {
break
}
// Note, the trampoline is always called directly. The addend of the original relocation is accounted for in the
// trampoline itself.
t = ldr.SymValue(tramp) - (ldr.SymValue(s) + int64(r.Off()))
// With internal linking, the trampoline can be used if it is not too far.
// With external linking, the trampoline must be in this section for it to be reused.
if (ctxt.IsInternal() && int64(int32(t<<6)>>6) == t) || (ctxt.IsExternal() && ldr.SymSect(s) == ldr.SymSect(tramp)) {
break
}
}
if ldr.SymType(tramp) == 0 {
trampb := ldr.MakeSymbolUpdater(tramp)
ctxt.AddTramp(trampb)
gentramp(ctxt, ldr, trampb, rs, r.Add())
}
sb := ldr.MakeSymbolUpdater(s)
relocs := sb.Relocs()
r := relocs.At(ri)
r.SetSym(tramp)
r.SetAdd(0) // This was folded into the trampoline target address
}
default:
ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type()))
}
}
func gentramp(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) {
tramp.SetSize(16) // 4 instructions
P := make([]byte, tramp.Size())
var o1, o2 uint32
if ctxt.IsAIX() {
// On AIX, the address is retrieved with a TOC symbol.
// For internal linking, the "Linux" way might still be used.
// However, all text symbols are accessed with a TOC symbol as
// text relocations aren't supposed to be possible.
// So, keep using the external linking way to be more AIX friendly.
o1 = uint32(0x3c000000) | 12<<21 | 2<<16 // addis r12, r2, toctargetaddr hi
o2 = uint32(0xe8000000) | 12<<21 | 12<<16 // ld r12, r12, toctargetaddr lo
toctramp := ldr.CreateSymForUpdate("TOC."+ldr.SymName(tramp.Sym()), 0)
toctramp.SetType(sym.SXCOFFTOC)
toctramp.AddAddrPlus(ctxt.Arch, target, offset)
r, _ := tramp.AddRel(objabi.R_ADDRPOWER_TOCREL_DS)
r.SetOff(0)
r.SetSiz(8) // generates 2 relocations: HA + LO
r.SetSym(toctramp.Sym())
} else {
// Used for default build mode for an executable
// Address of the call target is generated using
// relocation and doesn't depend on r2 (TOC).
o1 = uint32(0x3c000000) | 12<<21 // lis r12,targetaddr hi
o2 = uint32(0x38000000) | 12<<21 | 12<<16 // addi r12,r12,targetaddr lo
// ELFv2 save/restore functions use R0/R12 in special ways, therefore trampolines
// as generated here will not always work correctly.
if strings.HasPrefix(ldr.SymName(target), "runtime.elf_") {
log.Fatalf("Internal linker does not support trampolines to ELFv2 ABI"+
" register save/restore function %s", ldr.SymName(target))
}
t := ldr.SymValue(target)
if t == 0 || r2Valid(ctxt) || ctxt.IsExternal() {
// Target address is unknown, generate relocations
r, _ := tramp.AddRel(objabi.R_ADDRPOWER)
if r2Valid(ctxt) {
// Use a TOC relative address if R2 holds the TOC pointer
o1 |= uint32(2 << 16) // Transform lis r31,ha into addis r31,r2,ha
r.SetType(objabi.R_ADDRPOWER_TOCREL)
}
r.SetOff(0)
r.SetSiz(8) // generates 2 relocations: HA + LO
r.SetSym(target)
r.SetAdd(offset)
} else {
// The target address is known, resolve it
t += offset
o1 |= (uint32(t) + 0x8000) >> 16 // HA
o2 |= uint32(t) & 0xFFFF // LO
}
}
o3 := uint32(0x7c0903a6) | 12<<21 // mtctr r12
o4 := uint32(0x4e800420) // bctr
ctxt.Arch.ByteOrder.PutUint32(P, o1)
ctxt.Arch.ByteOrder.PutUint32(P[4:], o2)
ctxt.Arch.ByteOrder.PutUint32(P[8:], o3)
ctxt.Arch.ByteOrder.PutUint32(P[12:], o4)
tramp.SetData(P)
}
// Unpack a pair of 32 bit instruction words from
// a 64 bit relocation into instN and instN+1 in endian order.
func unpackInstPair(target *ld.Target, r int64) (uint32, uint32) {
if target.IsBigEndian() {
return uint32(r >> 32), uint32(r)
}
return uint32(r), uint32(r >> 32)
}
// Pack a pair of 32 bit instruction words o1, o2 into 64 bit relocation
// in endian order.
func packInstPair(target *ld.Target, o1, o2 uint32) int64 {
if target.IsBigEndian() {
return (int64(o1) << 32) | int64(o2)
}
return int64(o1) | (int64(o2) << 32)
}
// Compute the high-adjusted value (always a signed 32b value) per the ELF ABI.
// The returned value is always 0 <= x <= 0xFFFF.
func computeHA(val int32) uint32 {
return uint32(uint16((val + 0x8000) >> 16))
}
// Compute the low value (the lower 16 bits of any 32b value) per the ELF ABI.
// The returned value is always 0 <= x <= 0xFFFF.
func computeLO(val int32) uint32 {
return uint32(uint16(val))
}
// Compute the high 18 bits of a signed 34b constant. Used to pack the high 18 bits
// of a prefix34 relocation field. This assumes the input is already restricted to
// 34 bits.
func computePrefix34HI(val int64) uint32 {
return uint32((val >> 16) & 0x3FFFF)
}
func computeTLSLEReloc(target *ld.Target, ldr *loader.Loader, rs, s loader.Sym) int64 {
// The thread pointer points 0x7000 bytes after the start of the
// thread local storage area as documented in section "3.7.2 TLS
// Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI
// Specification".
v := ldr.SymValue(rs) - 0x7000
if target.IsAIX() {
// On AIX, the thread pointer points 0x7800 bytes after
// the TLS.
v -= 0x800
}
if int64(int32(v)) != v {
ldr.Errorf(s, "TLS offset out of range %d", v)
}
return v
}
func archreloc(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) (relocatedOffset int64, nExtReloc int, ok bool) {
rs := r.Sym()
if target.IsExternal() {
// On AIX, relocations (except TLS ones) must be also done to the
// value with the current addresses.
switch rt := r.Type(); rt {
default:
if !target.IsAIX() {
return val, nExtReloc, false
}
case objabi.R_POWER_TLS, objabi.R_POWER_TLS_IE_PCREL34, objabi.R_POWER_TLS_LE_TPREL34:
nExtReloc = 1
return val, nExtReloc, true
case objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE:
if target.IsAIX() && rt == objabi.R_POWER_TLS_LE {
// Fixup val, an addis/addi pair of instructions, which generate a 32b displacement
// from the threadpointer (R13), into a 16b relocation. XCOFF only supports 16b
// TLS LE relocations. Likewise, verify this is an addis/addi sequence.
const expectedOpcodes = 0x3C00000038000000
const expectedOpmasks = 0xFC000000FC000000
if uint64(val)&expectedOpmasks != expectedOpcodes {
ldr.Errorf(s, "relocation for %s+%d is not an addis/addi pair: %16x", ldr.SymName(rs), r.Off(), uint64(val))
}
nval := (int64(uint32(0x380d0000)) | val&0x03e00000) << 32 // addi rX, r13, $0
nval |= int64(0x60000000) // nop
val = nval
nExtReloc = 1
} else {
nExtReloc = 2
}
return val, nExtReloc, true
case objabi.R_ADDRPOWER,
objabi.R_ADDRPOWER_DS,
objabi.R_ADDRPOWER_TOCREL,
objabi.R_ADDRPOWER_TOCREL_DS,
objabi.R_ADDRPOWER_GOT,
objabi.R_ADDRPOWER_PCREL:
nExtReloc = 2 // need two ELF relocations, see elfreloc1
if !target.IsAIX() {
return val, nExtReloc, true
}
case objabi.R_CALLPOWER, objabi.R_ADDRPOWER_D34, objabi.R_ADDRPOWER_PCREL34:
nExtReloc = 1
if !target.IsAIX() {
return val, nExtReloc, true
}
}
}
switch r.Type() {
case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS:
return archreloctoc(ldr, target, syms, r, s, val), nExtReloc, true
case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS, objabi.R_ADDRPOWER_D34, objabi.R_ADDRPOWER_PCREL34:
return archrelocaddr(ldr, target, syms, r, s, val), nExtReloc, true
case objabi.R_CALLPOWER:
// Bits 6 through 29 = (S + A - P) >> 2
t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
tgtName := ldr.SymName(rs)
// If we are linking PIE or shared code, all golang generated object files have an extra 2 instruction prologue
// to regenerate the TOC pointer from R12. The exception are two special case functions tested below. Note,
// local call offsets for externally generated objects are accounted for when converting into golang relocs.
if !ldr.AttrExternal(rs) && ldr.AttrShared(rs) && tgtName != "runtime.duffzero" && tgtName != "runtime.duffcopy" {
// Furthermore, only apply the offset if the target looks like the start of a function call.
if r.Add() == 0 && ldr.SymType(rs) == sym.STEXT {
t += 8
}
}
if t&3 != 0 {
ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t)
}
// If branch offset is too far then create a trampoline.
if int64(int32(t<<6)>>6) != t {
ldr.Errorf(s, "direct call too far: %s %x", ldr.SymName(rs), t)
}
return val | int64(uint32(t)&^0xfc000003), nExtReloc, true
case objabi.R_POWER_TOC: // S + A - .TOC.
return ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s), nExtReloc, true
case objabi.R_ADDRPOWER_PCREL: // S + A - P
t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
ha, l := unpackInstPair(target, val)
l |= computeLO(int32(t))
ha |= computeHA(int32(t))
return packInstPair(target, ha, l), nExtReloc, true
case objabi.R_POWER_TLS:
const OP_ADD = 31<<26 | 266<<1
const MASK_OP_ADD = 0x3F<<26 | 0x1FF<<1
if val&MASK_OP_ADD != OP_ADD {
ldr.Errorf(s, "R_POWER_TLS reloc only supports XO form ADD, not %08X", val)
}
// Verify RB is R13 in ADD RA,RB,RT.
if (val>>11)&0x1F != 13 {
// If external linking is made to support this, it may expect the linker to rewrite RB.
ldr.Errorf(s, "R_POWER_TLS reloc requires R13 in RB (%08X).", uint32(val))
}
return val, nExtReloc, true
case objabi.R_POWER_TLS_IE:
// Convert TLS_IE relocation to TLS_LE if supported.
if !(target.IsPIE() && target.IsElf()) {
log.Fatalf("cannot handle R_POWER_TLS_IE (sym %s) when linking non-PIE, non-ELF binaries internally", ldr.SymName(s))
}
// We are an ELF binary, we can safely convert to TLS_LE from:
// addis to, r2, x@got@tprel@ha
// ld to, to, x@got@tprel@l(to)
//
// to TLS_LE by converting to:
// addis to, r0, x@tprel@ha
// addi to, to, x@tprel@l(to)
const OP_ADDI = 14 << 26
const OP_MASK = 0x3F << 26
const OP_RA_MASK = 0x1F << 16
// convert r2 to r0, and ld to addi
mask := packInstPair(target, OP_RA_MASK, OP_MASK)
addi_op := packInstPair(target, 0, OP_ADDI)
val &^= mask
val |= addi_op
fallthrough
case objabi.R_POWER_TLS_LE:
v := computeTLSLEReloc(target, ldr, rs, s)
o1, o2 := unpackInstPair(target, val)
o1 |= computeHA(int32(v))
o2 |= computeLO(int32(v))
return packInstPair(target, o1, o2), nExtReloc, true
case objabi.R_POWER_TLS_IE_PCREL34:
// Convert TLS_IE relocation to TLS_LE if supported.
if !(target.IsPIE() && target.IsElf()) {
log.Fatalf("cannot handle R_POWER_TLS_IE (sym %s) when linking non-PIE, non-ELF binaries internally", ldr.SymName(s))
}
// We are an ELF binary, we can safely convert to TLS_LE_TPREL34 from:
// pld rX, x@got@tprel@pcrel
//
// to TLS_LE_TPREL32 by converting to:
// pla rX, x@tprel
const OP_MASK_PFX = 0xFFFFFFFF // Discard prefix word
const OP_MASK = (0x3F << 26) | 0xFFFF // Preserve RT, RA
const OP_PFX = 1<<26 | 2<<24
const OP_PLA = 14 << 26
mask := packInstPair(target, OP_MASK_PFX, OP_MASK)
pla_op := packInstPair(target, OP_PFX, OP_PLA)
val &^= mask
val |= pla_op
fallthrough
case objabi.R_POWER_TLS_LE_TPREL34:
v := computeTLSLEReloc(target, ldr, rs, s)
o1, o2 := unpackInstPair(target, val)
o1 |= computePrefix34HI(v)
o2 |= computeLO(int32(v))
return packInstPair(target, o1, o2), nExtReloc, true
}
return val, nExtReloc, false
}
func archrelocvariant(target *ld.Target, ldr *loader.Loader, r loader.Reloc, rv sym.RelocVariant, s loader.Sym, t int64, p []byte) (relocatedOffset int64) {
rs := r.Sym()
switch rv & sym.RV_TYPE_MASK {
default:
ldr.Errorf(s, "unexpected relocation variant %d", rv)
fallthrough
case sym.RV_NONE:
return t
case sym.RV_POWER_LO:
if rv&sym.RV_CHECK_OVERFLOW != 0 {
// Whether to check for signed or unsigned
// overflow depends on the instruction
var o1 uint32
if target.IsBigEndian() {
o1 = binary.BigEndian.Uint32(p[r.Off()-2:])
} else {
o1 = binary.LittleEndian.Uint32(p[r.Off():])
}
switch o1 >> 26 {
case 24, // ori
26, // xori
28: // andi
if t>>16 != 0 {
goto overflow
}
default:
if int64(int16(t)) != t {
goto overflow
}
}
}
return int64(int16(t))
case sym.RV_POWER_HA:
t += 0x8000
fallthrough
// Fallthrough
case sym.RV_POWER_HI:
t >>= 16
if rv&sym.RV_CHECK_OVERFLOW != 0 {
// Whether to check for signed or unsigned
// overflow depends on the instruction
var o1 uint32
if target.IsBigEndian() {
o1 = binary.BigEndian.Uint32(p[r.Off()-2:])
} else {
o1 = binary.LittleEndian.Uint32(p[r.Off():])
}
switch o1 >> 26 {
case 25, // oris
27, // xoris
29: // andis
if t>>16 != 0 {
goto overflow
}
default:
if int64(int16(t)) != t {
goto overflow
}
}
}
return int64(int16(t))
case sym.RV_POWER_DS:
var o1 uint32
if target.IsBigEndian() {
o1 = uint32(binary.BigEndian.Uint16(p[r.Off():]))
} else {
o1 = uint32(binary.LittleEndian.Uint16(p[r.Off():]))
}
if t&3 != 0 {
ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t)
}
if (rv&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t {
goto overflow
}
return int64(o1)&0x3 | int64(int16(t))
}
overflow:
ldr.Errorf(s, "relocation for %s+%d is too big: %d", ldr.SymName(rs), r.Off(), t)
return t
}
func extreloc(target *ld.Target, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (loader.ExtReloc, bool) {
switch r.Type() {
case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE, objabi.R_POWER_TLS_IE_PCREL34, objabi.R_POWER_TLS_LE_TPREL34, objabi.R_CALLPOWER:
return ld.ExtrelocSimple(ldr, r), true
case objabi.R_ADDRPOWER,
objabi.R_ADDRPOWER_DS,
objabi.R_ADDRPOWER_TOCREL,
objabi.R_ADDRPOWER_TOCREL_DS,
objabi.R_ADDRPOWER_GOT,
objabi.R_ADDRPOWER_PCREL,
objabi.R_ADDRPOWER_D34,
objabi.R_ADDRPOWER_PCREL34:
return ld.ExtrelocViaOuterSym(ldr, r, s), true
}
return loader.ExtReloc{}, false
}
func addpltsym(ctxt *ld.Link, ldr *loader.Loader, s loader.Sym) {
if ldr.SymPlt(s) >= 0 {
return
}
ld.Adddynsym(ldr, &ctxt.Target, &ctxt.ArchSyms, s)
if ctxt.IsELF {
plt := ldr.MakeSymbolUpdater(ctxt.PLT)
rela := ldr.MakeSymbolUpdater(ctxt.RelaPLT)
if plt.Size() == 0 {
panic("plt is not set up")
}
// Create the glink resolver if necessary
glink := ensureglinkresolver(ctxt, ldr)
// Write symbol resolver stub (just a branch to the
// glink resolver stub)
rel, _ := glink.AddRel(objabi.R_CALLPOWER)
rel.SetOff(int32(glink.Size()))
rel.SetSiz(4)
rel.SetSym(glink.Sym())
glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink
// In the ppc64 ABI, the dynamic linker is responsible
// for writing the entire PLT. We just need to
// reserve 8 bytes for each PLT entry and generate a
// JMP_SLOT dynamic relocation for it.
//
// TODO(austin): ABI v1 is different
ldr.SetPlt(s, int32(plt.Size()))
plt.Grow(plt.Size() + 8)
plt.SetSize(plt.Size() + 8)
rela.AddAddrPlus(ctxt.Arch, plt.Sym(), int64(ldr.SymPlt(s)))
rela.AddUint64(ctxt.Arch, elf.R_INFO(uint32(ldr.SymDynid(s)), uint32(elf.R_PPC64_JMP_SLOT)))
rela.AddUint64(ctxt.Arch, 0)
} else {
ctxt.Errorf(s, "addpltsym: unsupported binary format")
}
}
// Generate the glink resolver stub if necessary and return the .glink section.
func ensureglinkresolver(ctxt *ld.Link, ldr *loader.Loader) *loader.SymbolBuilder {
glink := ldr.CreateSymForUpdate(".glink", 0)
if glink.Size() != 0 {
return glink
}
// This is essentially the resolver from the ppc64 ELFv2 ABI.
// At entry, r12 holds the address of the symbol resolver stub
// for the target routine and the argument registers hold the
// arguments for the target routine.
//
// PC-rel offsets are computed once the final codesize of the
// resolver is known.
//
// This stub is PIC, so first get the PC of label 1 into r11.
glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0
glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f
glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11
glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlr r0
// Compute the .plt array index from the entry point address
// into r0. This is computed relative to label 1 above.
glink.AddUint32(ctxt.Arch, 0x38000000) // li r0,-(res_0-1b)
glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12
glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11
glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2
// Load the PC-rel offset of ".plt - 1b", and add it to 1b.
// This is stored after this stub and before the resolvers.
glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,res_0-1b-8(r11)
glink.AddUint32(ctxt.Arch, 0x7d6b6214) // add r11,r11,r12
// Load r12 = dynamic resolver address and r11 = DSO
// identifier from the first two doublewords of the PLT.
glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11)
glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11)
// Jump to the dynamic resolver
glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr
// Store the PC-rel offset to the PLT
r, _ := glink.AddRel(objabi.R_PCREL)
r.SetSym(ctxt.PLT)
r.SetSiz(8)
r.SetOff(int32(glink.Size()))
r.SetAdd(glink.Size()) // Adjust the offset to be relative to label 1 above.
glink.AddUint64(ctxt.Arch, 0) // The offset to the PLT.
// Resolve PC-rel offsets above now the final size of the stub is known.
res0m1b := glink.Size() - 8 // res_0 - 1b
glink.SetUint32(ctxt.Arch, 16, 0x38000000|uint32(uint16(-res0m1b)))
glink.SetUint32(ctxt.Arch, 32, 0xe98b0000|uint32(uint16(res0m1b-8)))
// The symbol resolvers must immediately follow.
// res_0:
// Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes
// before the first symbol resolver stub.
du := ldr.MakeSymbolUpdater(ctxt.Dynamic)
ld.Elfwritedynentsymplus(ctxt, du, elf.DT_PPC64_GLINK, glink.Sym(), glink.Size()-32)
return glink
}