blob: cc2a80b9ff7d9a4dcb3b0c94523450512758822a [file] [log] [blame]
//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This header defines various interfaces for pass management in LLVM. There
/// is no "pass" interface in LLVM per se. Instead, an instance of any class
/// which supports a method to 'run' it over a unit of IR can be used as
/// a pass. A pass manager is generally a tool to collect a sequence of passes
/// which run over a particular IR construct, and run each of them in sequence
/// over each such construct in the containing IR construct. As there is no
/// containing IR construct for a Module, a manager for passes over modules
/// forms the base case which runs its managed passes in sequence over the
/// single module provided.
///
/// The core IR library provides managers for running passes over
/// modules and functions.
///
/// * FunctionPassManager can run over a Module, runs each pass over
/// a Function.
/// * ModulePassManager must be directly run, runs each pass over the Module.
///
/// Note that the implementations of the pass managers use concept-based
/// polymorphism as outlined in the "Value Semantics and Concept-based
/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
/// Class of Evil") by Sean Parent:
/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
/// * http://www.youtube.com/watch?v=_BpMYeUFXv8
/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_PASS_MANAGER_H
#define LLVM_IR_PASS_MANAGER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/type_traits.h"
#include <list>
#include <memory>
#include <vector>
namespace llvm {
class Module;
class Function;
/// \brief An abstract set of preserved analyses following a transformation pass
/// run.
///
/// When a transformation pass is run, it can return a set of analyses whose
/// results were preserved by that transformation. The default set is "none",
/// and preserving analyses must be done explicitly.
///
/// There is also an explicit all state which can be used (for example) when
/// the IR is not mutated at all.
class PreservedAnalyses {
public:
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
PreservedAnalyses() {}
PreservedAnalyses(const PreservedAnalyses &Arg)
: PreservedPassIDs(Arg.PreservedPassIDs) {}
PreservedAnalyses(PreservedAnalyses &&Arg)
: PreservedPassIDs(std::move(Arg.PreservedPassIDs)) {}
friend void swap(PreservedAnalyses &LHS, PreservedAnalyses &RHS) {
using std::swap;
swap(LHS.PreservedPassIDs, RHS.PreservedPassIDs);
}
PreservedAnalyses &operator=(PreservedAnalyses RHS) {
swap(*this, RHS);
return *this;
}
/// \brief Convenience factory function for the empty preserved set.
static PreservedAnalyses none() { return PreservedAnalyses(); }
/// \brief Construct a special preserved set that preserves all passes.
static PreservedAnalyses all() {
PreservedAnalyses PA;
PA.PreservedPassIDs.insert((void *)AllPassesID);
return PA;
}
/// \brief Mark a particular pass as preserved, adding it to the set.
template <typename PassT> void preserve() {
if (!areAllPreserved())
PreservedPassIDs.insert(PassT::ID());
}
/// \brief Intersect this set with another in place.
///
/// This is a mutating operation on this preserved set, removing all
/// preserved passes which are not also preserved in the argument.
void intersect(const PreservedAnalyses &Arg) {
if (Arg.areAllPreserved())
return;
if (areAllPreserved()) {
PreservedPassIDs = Arg.PreservedPassIDs;
return;
}
for (SmallPtrSet<void *, 2>::const_iterator I = PreservedPassIDs.begin(),
E = PreservedPassIDs.end();
I != E; ++I)
if (!Arg.PreservedPassIDs.count(*I))
PreservedPassIDs.erase(*I);
}
/// \brief Intersect this set with a temporary other set in place.
///
/// This is a mutating operation on this preserved set, removing all
/// preserved passes which are not also preserved in the argument.
void intersect(PreservedAnalyses &&Arg) {
if (Arg.areAllPreserved())
return;
if (areAllPreserved()) {
PreservedPassIDs = std::move(Arg.PreservedPassIDs);
return;
}
for (SmallPtrSet<void *, 2>::const_iterator I = PreservedPassIDs.begin(),
E = PreservedPassIDs.end();
I != E; ++I)
if (!Arg.PreservedPassIDs.count(*I))
PreservedPassIDs.erase(*I);
}
/// \brief Query whether a pass is marked as preserved by this set.
template <typename PassT> bool preserved() const {
return preserved(PassT::ID());
}
/// \brief Query whether an abstract pass ID is marked as preserved by this
/// set.
bool preserved(void *PassID) const {
return PreservedPassIDs.count((void *)AllPassesID) ||
PreservedPassIDs.count(PassID);
}
private:
// Note that this must not be -1 or -2 as those are already used by the
// SmallPtrSet.
static const uintptr_t AllPassesID = (intptr_t)(-3);
bool areAllPreserved() const {
return PreservedPassIDs.count((void *)AllPassesID);
}
SmallPtrSet<void *, 2> PreservedPassIDs;
};
/// \brief Implementation details of the pass manager interfaces.
namespace detail {
/// \brief Template for the abstract base class used to dispatch
/// polymorphically over pass objects.
template <typename IRUnitT, typename AnalysisManagerT> struct PassConcept {
// Boiler plate necessary for the container of derived classes.
virtual ~PassConcept() {}
/// \brief The polymorphic API which runs the pass over a given IR entity.
///
/// Note that actual pass object can omit the analysis manager argument if
/// desired. Also that the analysis manager may be null if there is no
/// analysis manager in the pass pipeline.
virtual PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) = 0;
/// \brief Polymorphic method to access the name of a pass.
virtual StringRef name() = 0;
};
/// \brief SFINAE metafunction for computing whether \c PassT has a run method
/// accepting an \c AnalysisManagerT.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT,
typename ResultT>
class PassRunAcceptsAnalysisManager {
typedef char SmallType;
struct BigType {
char a, b;
};
template <typename T, ResultT (T::*)(IRUnitT, AnalysisManagerT *)>
struct Checker;
template <typename T> static SmallType f(Checker<T, &T::run> *);
template <typename T> static BigType f(...);
public:
enum { Value = sizeof(f<PassT>(nullptr)) == sizeof(SmallType) };
};
/// \brief A template wrapper used to implement the polymorphic API.
///
/// Can be instantiated for any object which provides a \c run method accepting
/// an \c IRUnitT. It requires the pass to be a copyable object. When the
/// \c run method also accepts an \c AnalysisManagerT*, we pass it along.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT,
bool AcceptsAnalysisManager = PassRunAcceptsAnalysisManager<
IRUnitT, AnalysisManagerT, PassT, PreservedAnalyses>::Value>
struct PassModel;
/// \brief Specialization of \c PassModel for passes that accept an analyis
/// manager.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
struct PassModel<IRUnitT, AnalysisManagerT, PassT, true>
: PassConcept<IRUnitT, AnalysisManagerT> {
explicit PassModel(PassT Pass) : Pass(std::move(Pass)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
PassModel(const PassModel &Arg) : Pass(Arg.Pass) {}
PassModel(PassModel &&Arg) : Pass(std::move(Arg.Pass)) {}
friend void swap(PassModel &LHS, PassModel &RHS) {
using std::swap;
swap(LHS.Pass, RHS.Pass);
}
PassModel &operator=(PassModel RHS) {
swap(*this, RHS);
return *this;
}
PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) override {
return Pass.run(IR, AM);
}
StringRef name() override { return PassT::name(); }
PassT Pass;
};
/// \brief Specialization of \c PassModel for passes that accept an analyis
/// manager.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
struct PassModel<IRUnitT, AnalysisManagerT, PassT, false>
: PassConcept<IRUnitT, AnalysisManagerT> {
explicit PassModel(PassT Pass) : Pass(std::move(Pass)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
PassModel(const PassModel &Arg) : Pass(Arg.Pass) {}
PassModel(PassModel &&Arg) : Pass(std::move(Arg.Pass)) {}
friend void swap(PassModel &LHS, PassModel &RHS) {
using std::swap;
swap(LHS.Pass, RHS.Pass);
}
PassModel &operator=(PassModel RHS) {
swap(*this, RHS);
return *this;
}
PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) override {
return Pass.run(IR);
}
StringRef name() override { return PassT::name(); }
PassT Pass;
};
/// \brief Abstract concept of an analysis result.
///
/// This concept is parameterized over the IR unit that this result pertains
/// to.
template <typename IRUnitT> struct AnalysisResultConcept {
virtual ~AnalysisResultConcept() {}
/// \brief Method to try and mark a result as invalid.
///
/// When the outer analysis manager detects a change in some underlying
/// unit of the IR, it will call this method on all of the results cached.
///
/// This method also receives a set of preserved analyses which can be used
/// to avoid invalidation because the pass which changed the underlying IR
/// took care to update or preserve the analysis result in some way.
///
/// \returns true if the result is indeed invalid (the default).
virtual bool invalidate(IRUnitT IR, const PreservedAnalyses &PA) = 0;
};
/// \brief SFINAE metafunction for computing whether \c ResultT provides an
/// \c invalidate member function.
template <typename IRUnitT, typename ResultT> class ResultHasInvalidateMethod {
typedef char SmallType;
struct BigType {
char a, b;
};
template <typename T, bool (T::*)(IRUnitT, const PreservedAnalyses &)>
struct Checker;
template <typename T> static SmallType f(Checker<T, &T::invalidate> *);
template <typename T> static BigType f(...);
public:
enum { Value = sizeof(f<ResultT>(nullptr)) == sizeof(SmallType) };
};
/// \brief Wrapper to model the analysis result concept.
///
/// By default, this will implement the invalidate method with a trivial
/// implementation so that the actual analysis result doesn't need to provide
/// an invalidation handler. It is only selected when the invalidation handler
/// is not part of the ResultT's interface.
template <typename IRUnitT, typename PassT, typename ResultT,
bool HasInvalidateHandler =
ResultHasInvalidateMethod<IRUnitT, ResultT>::Value>
struct AnalysisResultModel;
/// \brief Specialization of \c AnalysisResultModel which provides the default
/// invalidate functionality.
template <typename IRUnitT, typename PassT, typename ResultT>
struct AnalysisResultModel<IRUnitT, PassT, ResultT, false>
: AnalysisResultConcept<IRUnitT> {
explicit AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisResultModel(const AnalysisResultModel &Arg) : Result(Arg.Result) {}
AnalysisResultModel(AnalysisResultModel &&Arg)
: Result(std::move(Arg.Result)) {}
friend void swap(AnalysisResultModel &LHS, AnalysisResultModel &RHS) {
using std::swap;
swap(LHS.Result, RHS.Result);
}
AnalysisResultModel &operator=(AnalysisResultModel RHS) {
swap(*this, RHS);
return *this;
}
/// \brief The model bases invalidation solely on being in the preserved set.
//
// FIXME: We should actually use two different concepts for analysis results
// rather than two different models, and avoid the indirect function call for
// ones that use the trivial behavior.
bool invalidate(IRUnitT, const PreservedAnalyses &PA) override {
return !PA.preserved(PassT::ID());
}
ResultT Result;
};
/// \brief Specialization of \c AnalysisResultModel which delegates invalidate
/// handling to \c ResultT.
template <typename IRUnitT, typename PassT, typename ResultT>
struct AnalysisResultModel<IRUnitT, PassT, ResultT, true>
: AnalysisResultConcept<IRUnitT> {
explicit AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisResultModel(const AnalysisResultModel &Arg) : Result(Arg.Result) {}
AnalysisResultModel(AnalysisResultModel &&Arg)
: Result(std::move(Arg.Result)) {}
friend void swap(AnalysisResultModel &LHS, AnalysisResultModel &RHS) {
using std::swap;
swap(LHS.Result, RHS.Result);
}
AnalysisResultModel &operator=(AnalysisResultModel RHS) {
swap(*this, RHS);
return *this;
}
/// \brief The model delegates to the \c ResultT method.
bool invalidate(IRUnitT IR, const PreservedAnalyses &PA) override {
return Result.invalidate(IR, PA);
}
ResultT Result;
};
/// \brief Abstract concept of an analysis pass.
///
/// This concept is parameterized over the IR unit that it can run over and
/// produce an analysis result.
template <typename IRUnitT, typename AnalysisManagerT>
struct AnalysisPassConcept {
virtual ~AnalysisPassConcept() {}
/// \brief Method to run this analysis over a unit of IR.
/// \returns A unique_ptr to the analysis result object to be queried by
/// users.
virtual std::unique_ptr<AnalysisResultConcept<IRUnitT>>
run(IRUnitT IR, AnalysisManagerT *AM) = 0;
};
/// \brief Wrapper to model the analysis pass concept.
///
/// Can wrap any type which implements a suitable \c run method. The method
/// must accept the IRUnitT as an argument and produce an object which can be
/// wrapped in a \c AnalysisResultModel.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT,
bool AcceptsAnalysisManager = PassRunAcceptsAnalysisManager<
IRUnitT, AnalysisManagerT, PassT, typename PassT::Result>::Value>
struct AnalysisPassModel;
/// \brief Specialization of \c AnalysisPassModel which passes an
/// \c AnalysisManager to PassT's run method.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
struct AnalysisPassModel<IRUnitT, AnalysisManagerT, PassT, true>
: AnalysisPassConcept<IRUnitT, AnalysisManagerT> {
explicit AnalysisPassModel(PassT Pass) : Pass(std::move(Pass)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisPassModel(const AnalysisPassModel &Arg) : Pass(Arg.Pass) {}
AnalysisPassModel(AnalysisPassModel &&Arg) : Pass(std::move(Arg.Pass)) {}
friend void swap(AnalysisPassModel &LHS, AnalysisPassModel &RHS) {
using std::swap;
swap(LHS.Pass, RHS.Pass);
}
AnalysisPassModel &operator=(AnalysisPassModel RHS) {
swap(*this, RHS);
return *this;
}
// FIXME: Replace PassT::Result with type traits when we use C++11.
typedef AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
ResultModelT;
/// \brief The model delegates to the \c PassT::run method.
///
/// The return is wrapped in an \c AnalysisResultModel.
std::unique_ptr<AnalysisResultConcept<IRUnitT>>
run(IRUnitT IR, AnalysisManagerT *AM) override {
return make_unique<ResultModelT>(Pass.run(IR, AM));
}
PassT Pass;
};
/// \brief Specialization of \c AnalysisPassModel which does not pass an
/// \c AnalysisManager to PassT's run method.
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
struct AnalysisPassModel<IRUnitT, AnalysisManagerT, PassT, false>
: AnalysisPassConcept<IRUnitT, AnalysisManagerT> {
explicit AnalysisPassModel(PassT Pass) : Pass(std::move(Pass)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisPassModel(const AnalysisPassModel &Arg) : Pass(Arg.Pass) {}
AnalysisPassModel(AnalysisPassModel &&Arg) : Pass(std::move(Arg.Pass)) {}
friend void swap(AnalysisPassModel &LHS, AnalysisPassModel &RHS) {
using std::swap;
swap(LHS.Pass, RHS.Pass);
}
AnalysisPassModel &operator=(AnalysisPassModel RHS) {
swap(*this, RHS);
return *this;
}
// FIXME: Replace PassT::Result with type traits when we use C++11.
typedef AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
ResultModelT;
/// \brief The model delegates to the \c PassT::run method.
///
/// The return is wrapped in an \c AnalysisResultModel.
std::unique_ptr<AnalysisResultConcept<IRUnitT>>
run(IRUnitT IR, AnalysisManagerT *) override {
return make_unique<ResultModelT>(Pass.run(IR));
}
PassT Pass;
};
} // End namespace detail
class ModuleAnalysisManager;
class ModulePassManager {
public:
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
ModulePassManager() {}
ModulePassManager(ModulePassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
ModulePassManager &operator=(ModulePassManager &&RHS) {
Passes = std::move(RHS.Passes);
return *this;
}
/// \brief Run all of the module passes in this module pass manager over
/// a module.
///
/// This method should only be called for a single module as there is the
/// expectation that the lifetime of a pass is bounded to that of a module.
PreservedAnalyses run(Module *M, ModuleAnalysisManager *AM = nullptr);
template <typename ModulePassT> void addPass(ModulePassT Pass) {
Passes.emplace_back(new ModulePassModel<ModulePassT>(std::move(Pass)));
}
static StringRef name() { return "ModulePassManager"; }
private:
// Pull in the concept type and model template specialized for modules.
typedef detail::PassConcept<Module *, ModuleAnalysisManager>
ModulePassConcept;
template <typename PassT>
struct ModulePassModel
: detail::PassModel<Module *, ModuleAnalysisManager, PassT> {
ModulePassModel(PassT Pass)
: detail::PassModel<Module *, ModuleAnalysisManager, PassT>(
std::move(Pass)) {}
};
ModulePassManager(const ModulePassManager &) LLVM_DELETED_FUNCTION;
ModulePassManager &operator=(const ModulePassManager &) LLVM_DELETED_FUNCTION;
std::vector<std::unique_ptr<ModulePassConcept>> Passes;
};
class FunctionAnalysisManager;
class FunctionPassManager {
public:
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
FunctionPassManager() {}
FunctionPassManager(FunctionPassManager &&Arg)
: Passes(std::move(Arg.Passes)) {}
FunctionPassManager &operator=(FunctionPassManager &&RHS) {
Passes = std::move(RHS.Passes);
return *this;
}
template <typename FunctionPassT> void addPass(FunctionPassT Pass) {
Passes.emplace_back(new FunctionPassModel<FunctionPassT>(std::move(Pass)));
}
PreservedAnalyses run(Function *F, FunctionAnalysisManager *AM = nullptr);
static StringRef name() { return "FunctionPassManager"; }
private:
// Pull in the concept type and model template specialized for functions.
typedef detail::PassConcept<Function *, FunctionAnalysisManager>
FunctionPassConcept;
template <typename PassT>
struct FunctionPassModel
: detail::PassModel<Function *, FunctionAnalysisManager, PassT> {
FunctionPassModel(PassT Pass)
: detail::PassModel<Function *, FunctionAnalysisManager, PassT>(
std::move(Pass)) {}
};
FunctionPassManager(const FunctionPassManager &) LLVM_DELETED_FUNCTION;
FunctionPassManager &
operator=(const FunctionPassManager &) LLVM_DELETED_FUNCTION;
std::vector<std::unique_ptr<FunctionPassConcept>> Passes;
};
namespace detail {
/// \brief A CRTP base used to implement analysis managers.
///
/// This class template serves as the boiler plate of an analysis manager. Any
/// analysis manager can be implemented on top of this base class. Any
/// implementation will be required to provide specific hooks:
///
/// - getResultImpl
/// - getCachedResultImpl
/// - invalidateImpl
///
/// The details of the call pattern are within.
template <typename DerivedT, typename IRUnitT> class AnalysisManagerBase {
DerivedT *derived_this() { return static_cast<DerivedT *>(this); }
const DerivedT *derived_this() const {
return static_cast<const DerivedT *>(this);
}
AnalysisManagerBase(const AnalysisManagerBase &) LLVM_DELETED_FUNCTION;
AnalysisManagerBase &
operator=(const AnalysisManagerBase &) LLVM_DELETED_FUNCTION;
protected:
typedef detail::AnalysisResultConcept<IRUnitT> ResultConceptT;
typedef detail::AnalysisPassConcept<IRUnitT, DerivedT> PassConceptT;
// FIXME: Provide template aliases for the models when we're using C++11 in
// a mode supporting them.
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisManagerBase() {}
AnalysisManagerBase(AnalysisManagerBase &&Arg)
: AnalysisPasses(std::move(Arg.AnalysisPasses)) {}
AnalysisManagerBase &operator=(AnalysisManagerBase &&RHS) {
AnalysisPasses = std::move(RHS.AnalysisPasses);
return *this;
}
public:
/// \brief Get the result of an analysis pass for this module.
///
/// If there is not a valid cached result in the manager already, this will
/// re-run the analysis to produce a valid result.
template <typename PassT> typename PassT::Result &getResult(IRUnitT IR) {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being queried");
ResultConceptT &ResultConcept =
derived_this()->getResultImpl(PassT::ID(), IR);
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
ResultModelT;
return static_cast<ResultModelT &>(ResultConcept).Result;
}
/// \brief Get the cached result of an analysis pass for this module.
///
/// This method never runs the analysis.
///
/// \returns null if there is no cached result.
template <typename PassT>
typename PassT::Result *getCachedResult(IRUnitT IR) const {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being queried");
ResultConceptT *ResultConcept =
derived_this()->getCachedResultImpl(PassT::ID(), IR);
if (!ResultConcept)
return nullptr;
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
ResultModelT;
return &static_cast<ResultModelT *>(ResultConcept)->Result;
}
/// \brief Register an analysis pass with the manager.
///
/// This provides an initialized and set-up analysis pass to the analysis
/// manager. Whomever is setting up analysis passes must use this to populate
/// the manager with all of the analysis passes available.
template <typename PassT> void registerPass(PassT Pass) {
assert(!AnalysisPasses.count(PassT::ID()) &&
"Registered the same analysis pass twice!");
typedef detail::AnalysisPassModel<IRUnitT, DerivedT, PassT> PassModelT;
AnalysisPasses[PassT::ID()].reset(new PassModelT(std::move(Pass)));
}
/// \brief Invalidate a specific analysis pass for an IR module.
///
/// Note that the analysis result can disregard invalidation.
template <typename PassT> void invalidate(Module *M) {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being invalidated");
derived_this()->invalidateImpl(PassT::ID(), M);
}
/// \brief Invalidate analyses cached for an IR unit.
///
/// Walk through all of the analyses pertaining to this unit of IR and
/// invalidate them unless they are preserved by the PreservedAnalyses set.
void invalidate(IRUnitT IR, const PreservedAnalyses &PA) {
derived_this()->invalidateImpl(IR, PA);
}
protected:
/// \brief Lookup a registered analysis pass.
PassConceptT &lookupPass(void *PassID) {
typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(PassID);
assert(PI != AnalysisPasses.end() &&
"Analysis passes must be registered prior to being queried!");
return *PI->second;
}
/// \brief Lookup a registered analysis pass.
const PassConceptT &lookupPass(void *PassID) const {
typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(PassID);
assert(PI != AnalysisPasses.end() &&
"Analysis passes must be registered prior to being queried!");
return *PI->second;
}
private:
/// \brief Map type from module analysis pass ID to pass concept pointer.
typedef DenseMap<void *, std::unique_ptr<PassConceptT>> AnalysisPassMapT;
/// \brief Collection of module analysis passes, indexed by ID.
AnalysisPassMapT AnalysisPasses;
};
} // End namespace detail
/// \brief A module analysis pass manager with lazy running and caching of
/// results.
class ModuleAnalysisManager
: public detail::AnalysisManagerBase<ModuleAnalysisManager, Module *> {
friend class detail::AnalysisManagerBase<ModuleAnalysisManager, Module *>;
typedef detail::AnalysisManagerBase<ModuleAnalysisManager, Module *> BaseT;
typedef BaseT::ResultConceptT ResultConceptT;
typedef BaseT::PassConceptT PassConceptT;
public:
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
ModuleAnalysisManager() {}
ModuleAnalysisManager(ModuleAnalysisManager &&Arg)
: BaseT(std::move(static_cast<BaseT &>(Arg))),
ModuleAnalysisResults(std::move(Arg.ModuleAnalysisResults)) {}
ModuleAnalysisManager &operator=(ModuleAnalysisManager &&RHS) {
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
ModuleAnalysisResults = std::move(RHS.ModuleAnalysisResults);
return *this;
}
private:
ModuleAnalysisManager(const ModuleAnalysisManager &) LLVM_DELETED_FUNCTION;
ModuleAnalysisManager &
operator=(const ModuleAnalysisManager &) LLVM_DELETED_FUNCTION;
/// \brief Get a module pass result, running the pass if necessary.
ResultConceptT &getResultImpl(void *PassID, Module *M);
/// \brief Get a cached module pass result or return null.
ResultConceptT *getCachedResultImpl(void *PassID, Module *M) const;
/// \brief Invalidate a module pass result.
void invalidateImpl(void *PassID, Module *M);
/// \brief Invalidate results across a module.
void invalidateImpl(Module *M, const PreservedAnalyses &PA);
/// \brief Map type from module analysis pass ID to pass result concept
/// pointer.
typedef DenseMap<void *,
std::unique_ptr<detail::AnalysisResultConcept<Module *>>>
ModuleAnalysisResultMapT;
/// \brief Cache of computed module analysis results for this module.
ModuleAnalysisResultMapT ModuleAnalysisResults;
};
/// \brief A function analysis manager to coordinate and cache analyses run over
/// a module.
class FunctionAnalysisManager
: public detail::AnalysisManagerBase<FunctionAnalysisManager, Function *> {
friend class detail::AnalysisManagerBase<FunctionAnalysisManager, Function *>;
typedef detail::AnalysisManagerBase<FunctionAnalysisManager, Function *>
BaseT;
typedef BaseT::ResultConceptT ResultConceptT;
typedef BaseT::PassConceptT PassConceptT;
public:
// Most public APIs are inherited from the CRTP base class.
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
FunctionAnalysisManager() {}
FunctionAnalysisManager(FunctionAnalysisManager &&Arg)
: BaseT(std::move(static_cast<BaseT &>(Arg))),
FunctionAnalysisResults(std::move(Arg.FunctionAnalysisResults)) {}
FunctionAnalysisManager &operator=(FunctionAnalysisManager &&RHS) {
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
FunctionAnalysisResults = std::move(RHS.FunctionAnalysisResults);
return *this;
}
/// \brief Returns true if the analysis manager has an empty results cache.
bool empty() const;
/// \brief Clear the function analysis result cache.
///
/// This routine allows cleaning up when the set of functions itself has
/// potentially changed, and thus we can't even look up a a result and
/// invalidate it directly. Notably, this does *not* call invalidate
/// functions as there is nothing to be done for them.
void clear();
private:
FunctionAnalysisManager(const FunctionAnalysisManager &)
LLVM_DELETED_FUNCTION;
FunctionAnalysisManager &
operator=(const FunctionAnalysisManager &) LLVM_DELETED_FUNCTION;
/// \brief Get a function pass result, running the pass if necessary.
ResultConceptT &getResultImpl(void *PassID, Function *F);
/// \brief Get a cached function pass result or return null.
ResultConceptT *getCachedResultImpl(void *PassID, Function *F) const;
/// \brief Invalidate a function pass result.
void invalidateImpl(void *PassID, Function *F);
/// \brief Invalidate the results for a function..
void invalidateImpl(Function *F, const PreservedAnalyses &PA);
/// \brief List of function analysis pass IDs and associated concept pointers.
///
/// Requires iterators to be valid across appending new entries and arbitrary
/// erases. Provides both the pass ID and concept pointer such that it is
/// half of a bijection and provides storage for the actual result concept.
typedef std::list<std::pair<
void *, std::unique_ptr<detail::AnalysisResultConcept<Function *>>>>
FunctionAnalysisResultListT;
/// \brief Map type from function pointer to our custom list type.
typedef DenseMap<Function *, FunctionAnalysisResultListT>
FunctionAnalysisResultListMapT;
/// \brief Map from function to a list of function analysis results.
///
/// Provides linear time removal of all analysis results for a function and
/// the ultimate storage for a particular cached analysis result.
FunctionAnalysisResultListMapT FunctionAnalysisResultLists;
/// \brief Map type from a pair of analysis ID and function pointer to an
/// iterator into a particular result list.
typedef DenseMap<std::pair<void *, Function *>,
FunctionAnalysisResultListT::iterator>
FunctionAnalysisResultMapT;
/// \brief Map from an analysis ID and function to a particular cached
/// analysis result.
FunctionAnalysisResultMapT FunctionAnalysisResults;
};
/// \brief A module analysis which acts as a proxy for a function analysis
/// manager.
///
/// This primarily proxies invalidation information from the module analysis
/// manager and module pass manager to a function analysis manager. You should
/// never use a function analysis manager from within (transitively) a module
/// pass manager unless your parent module pass has received a proxy result
/// object for it.
class FunctionAnalysisManagerModuleProxy {
public:
class Result;
static void *ID() { return (void *)&PassID; }
explicit FunctionAnalysisManagerModuleProxy(FunctionAnalysisManager &FAM)
: FAM(&FAM) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
FunctionAnalysisManagerModuleProxy(
const FunctionAnalysisManagerModuleProxy &Arg)
: FAM(Arg.FAM) {}
FunctionAnalysisManagerModuleProxy(FunctionAnalysisManagerModuleProxy &&Arg)
: FAM(std::move(Arg.FAM)) {}
FunctionAnalysisManagerModuleProxy &
operator=(FunctionAnalysisManagerModuleProxy RHS) {
std::swap(FAM, RHS.FAM);
return *this;
}
/// \brief Run the analysis pass and create our proxy result object.
///
/// This doesn't do any interesting work, it is primarily used to insert our
/// proxy result object into the module analysis cache so that we can proxy
/// invalidation to the function analysis manager.
///
/// In debug builds, it will also assert that the analysis manager is empty
/// as no queries should arrive at the function analysis manager prior to
/// this analysis being requested.
Result run(Module *M);
private:
static char PassID;
FunctionAnalysisManager *FAM;
};
/// \brief The result proxy object for the
/// \c FunctionAnalysisManagerModuleProxy.
///
/// See its documentation for more information.
class FunctionAnalysisManagerModuleProxy::Result {
public:
explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
Result(const Result &Arg) : FAM(Arg.FAM) {}
Result(Result &&Arg) : FAM(std::move(Arg.FAM)) {}
Result &operator=(Result RHS) {
std::swap(FAM, RHS.FAM);
return *this;
}
~Result();
/// \brief Accessor for the \c FunctionAnalysisManager.
FunctionAnalysisManager &getManager() { return *FAM; }
/// \brief Handler for invalidation of the module.
///
/// If this analysis itself is preserved, then we assume that the set of \c
/// Function objects in the \c Module hasn't changed and thus we don't need
/// to invalidate *all* cached data associated with a \c Function* in the \c
/// FunctionAnalysisManager.
///
/// Regardless of whether this analysis is marked as preserved, all of the
/// analyses in the \c FunctionAnalysisManager are potentially invalidated
/// based on the set of preserved analyses.
bool invalidate(Module *M, const PreservedAnalyses &PA);
private:
FunctionAnalysisManager *FAM;
};
/// \brief A function analysis which acts as a proxy for a module analysis
/// manager.
///
/// This primarily provides an accessor to a parent module analysis manager to
/// function passes. Only the const interface of the module analysis manager is
/// provided to indicate that once inside of a function analysis pass you
/// cannot request a module analysis to actually run. Instead, the user must
/// rely on the \c getCachedResult API.
///
/// This proxy *doesn't* manage the invalidation in any way. That is handled by
/// the recursive return path of each layer of the pass manager and the
/// returned PreservedAnalysis set.
class ModuleAnalysisManagerFunctionProxy {
public:
/// \brief Result proxy object for \c ModuleAnalysisManagerFunctionProxy.
class Result {
public:
explicit Result(const ModuleAnalysisManager &MAM) : MAM(&MAM) {}
// We have to explicitly define all the special member functions because
// MSVC refuses to generate them.
Result(const Result &Arg) : MAM(Arg.MAM) {}
Result(Result &&Arg) : MAM(std::move(Arg.MAM)) {}
Result &operator=(Result RHS) {
std::swap(MAM, RHS.MAM);
return *this;
}
const ModuleAnalysisManager &getManager() const { return *MAM; }
/// \brief Handle invalidation by ignoring it, this pass is immutable.
bool invalidate(Function *) { return false; }
private:
const ModuleAnalysisManager *MAM;
};
static void *ID() { return (void *)&PassID; }
ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManager &MAM)
: MAM(&MAM) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
ModuleAnalysisManagerFunctionProxy(
const ModuleAnalysisManagerFunctionProxy &Arg)
: MAM(Arg.MAM) {}
ModuleAnalysisManagerFunctionProxy(ModuleAnalysisManagerFunctionProxy &&Arg)
: MAM(std::move(Arg.MAM)) {}
ModuleAnalysisManagerFunctionProxy &
operator=(ModuleAnalysisManagerFunctionProxy RHS) {
std::swap(MAM, RHS.MAM);
return *this;
}
/// \brief Run the analysis pass and create our proxy result object.
/// Nothing to see here, it just forwards the \c MAM reference into the
/// result.
Result run(Function *) { return Result(*MAM); }
private:
static char PassID;
const ModuleAnalysisManager *MAM;
};
/// \brief Trivial adaptor that maps from a module to its functions.
///
/// Designed to allow composition of a FunctionPass(Manager) and
/// a ModulePassManager. Note that if this pass is constructed with a pointer
/// to a \c ModuleAnalysisManager it will run the
/// \c FunctionAnalysisManagerModuleProxy analysis prior to running the function
/// pass over the module to enable a \c FunctionAnalysisManager to be used
/// within this run safely.
template <typename FunctionPassT> class ModuleToFunctionPassAdaptor {
public:
explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
: Pass(std::move(Pass)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
ModuleToFunctionPassAdaptor(const ModuleToFunctionPassAdaptor &Arg)
: Pass(Arg.Pass) {}
ModuleToFunctionPassAdaptor(ModuleToFunctionPassAdaptor &&Arg)
: Pass(std::move(Arg.Pass)) {}
friend void swap(ModuleToFunctionPassAdaptor &LHS, ModuleToFunctionPassAdaptor &RHS) {
using std::swap;
swap(LHS.Pass, RHS.Pass);
}
ModuleToFunctionPassAdaptor &operator=(ModuleToFunctionPassAdaptor RHS) {
swap(*this, RHS);
return *this;
}
/// \brief Runs the function pass across every function in the module.
PreservedAnalyses run(Module *M, ModuleAnalysisManager *AM) {
FunctionAnalysisManager *FAM = nullptr;
if (AM)
// Setup the function analysis manager from its proxy.
FAM = &AM->getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
PreservedAnalyses PA = PreservedAnalyses::all();
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
PreservedAnalyses PassPA = Pass.run(I, FAM);
// We know that the function pass couldn't have invalidated any other
// function's analyses (that's the contract of a function pass), so
// directly handle the function analysis manager's invalidation here.
if (FAM)
FAM->invalidate(I, PassPA);
// Then intersect the preserved set so that invalidation of module
// analyses will eventually occur when the module pass completes.
PA.intersect(std::move(PassPA));
}
// By definition we preserve the proxy. This precludes *any* invalidation
// of function analyses by the proxy, but that's OK because we've taken
// care to invalidate analyses in the function analysis manager
// incrementally above.
PA.preserve<FunctionAnalysisManagerModuleProxy>();
return PA;
}
static StringRef name() { return "ModuleToFunctionPassAdaptor"; }
private:
FunctionPassT Pass;
};
/// \brief A function to deduce a function pass type and wrap it in the
/// templated adaptor.
template <typename FunctionPassT>
ModuleToFunctionPassAdaptor<FunctionPassT>
createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
return std::move(ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass)));
}
}
#endif