blob: 001aad99e6964ef19c8225b0b122ff681e331448 [file] [log] [blame]
/*
* Copyright 2024, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apf_interpreter.h"
#include <string.h> /* For memcmp, memcpy, memset */
#if __GNUC__ >= 7 || __clang__
#define FALLTHROUGH __attribute__((fallthrough))
#else
#define FALLTHROUGH
#endif
typedef enum { False, True } Boolean;
/* Begin include of apf_defs.h */
typedef int8_t s8;
typedef int16_t s16;
typedef int32_t s32;
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef enum {
error_program = -2,
error_packet = -1,
nomatch = False,
match = True
} match_result_type;
#define ETH_P_IP 0x0800
#define ETH_P_IPV6 0x86DD
#define ETH_HLEN 14
#define IPV4_HLEN 20
#define IPV6_HLEN 40
#define TCP_HLEN 20
#define UDP_HLEN 8
#define FUNC(x) x; x
/* End include of apf_defs.h */
/* Begin include of apf.h */
/*
* Copyright 2024, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_APF_APF_H
#define ANDROID_APF_APF_H
/* A brief overview of APF:
*
* APF machine is composed of:
* 1. A read-only program consisting of bytecodes as described below.
* 2. Two 32-bit registers, called R0 and R1.
* 3. Sixteen 32-bit temporary memory slots (cleared between packets).
* 4. A read-only packet.
* 5. An optional read-write transmit buffer.
* The program is executed by the interpreter below and parses the packet
* to determine if the application processor (AP) should be woken up to
* handle the packet or if it can be dropped. The program may also choose
* to allocate/transmit/deallocate the transmit buffer.
*
* APF bytecode description:
*
* The APF interpreter uses big-endian byte order for loads from the packet
* and for storing immediates in instructions.
*
* Each instruction starts with a byte composed of:
* Top 5 bits form "opcode" field, see *_OPCODE defines below.
* Next 2 bits form "size field", which indicates the length of an immediate
* value which follows the first byte. Values in this field:
* 0 => immediate value is 0 and no bytes follow.
* 1 => immediate value is 1 byte big.
* 2 => immediate value is 2 bytes big.
* 3 => immediate value is 4 bytes big.
* Bottom bit forms "register" field, which (usually) indicates which register
* this instruction operates on.
*
* There are four main categories of instructions:
* Load instructions
* These instructions load byte(s) of the packet into a register.
* They load either 1, 2 or 4 bytes, as determined by the "opcode" field.
* They load into the register specified by the "register" field.
* The immediate value that follows the first byte of the instruction is
* the byte offset from the beginning of the packet to load from.
* There are "indexing" loads which add the value in R1 to the byte offset
* to load from. The "opcode" field determines which loads are "indexing".
* Arithmetic instructions
* These instructions perform simple operations, like addition, on register
* values. The result of these instructions is always written into R0. One
* argument of the arithmetic operation is R0's value. The other argument
* of the arithmetic operation is determined by the "register" field:
* If the "register" field is 0 then the immediate value following
* the first byte of the instruction is used as the other argument
* to the arithmetic operation.
* If the "register" field is 1 then R1's value is used as the other
* argument to the arithmetic operation.
* Conditional jump instructions
* These instructions compare register R0's value with another value, and if
* the comparison succeeds, jump (i.e. adjust the program counter). The
* immediate value that follows the first byte of the instruction
* represents the jump target offset, i.e. the value added to the program
* counter if the comparison succeeds. The other value compared is
* determined by the "register" field:
* If the "register" field is 0 then another immediate value
* follows the jump target offset. This immediate value is of the
* same size as the jump target offset, and represents the value
* to compare against.
* If the "register" field is 1 then register R1's value is
* compared against.
* The type of comparison (e.g. equal to, greater than etc) is determined
* by the "opcode" field. The comparison interprets both values being
* compared as unsigned values.
* Miscellaneous instructions
* Instructions for:
* - allocating/transmitting/deallocating transmit buffer
* - building the transmit packet (copying bytes into it)
* - read/writing data section
*
* Miscellaneous details:
*
* Pre-filled temporary memory slot values
* When the APF program begins execution, six of the sixteen memory slots
* are pre-filled by the interpreter with values that may be useful for
* programs:
* #0 to #7 are zero initialized.
* Slot #8 is initialized with apf version (on APF >4).
* Slot #9 this is slot #15 with greater resolution (1/16384ths of a second)
* Slot #10 starts at zero, implicitly used as tx buffer output pointer.
* Slot #11 contains the size (in bytes) of the APF program.
* Slot #12 contains the total size of the APF program + data.
* Slot #13 is filled with the IPv4 header length. This value is calculated
* by loading the first byte of the IPv4 header and taking the
* bottom 4 bits and multiplying their value by 4. This value is
* set to zero if the first 4 bits after the link layer header are
* not 4, indicating not IPv4.
* Slot #14 is filled with size of the packet in bytes, including the
* ethernet link-layer header.
* Slot #15 is filled with the filter age in seconds. This is the number of
* seconds since the host installed the program. This may
* be used by filters that should have a particular lifetime. For
* example, it can be used to rate-limit particular packets to one
* every N seconds.
* Special jump targets:
* When an APF program executes a jump to the byte immediately after the last
* byte of the progam (i.e., one byte past the end of the program), this
* signals the program has completed and determined the packet should be
* passed to the AP.
* When an APF program executes a jump two bytes past the end of the program,
* this signals the program has completed and determined the packet should
* be dropped.
* Jump if byte sequence doesn't match:
* This is a special instruction to facilitate matching long sequences of
* bytes in the packet. Initially it is encoded like a conditional jump
* instruction with two exceptions:
* The first byte of the instruction is always followed by two immediate
* fields: The first immediate field is the jump target offset like other
* conditional jump instructions. The second immediate field specifies the
* number of bytes to compare.
* These two immediate fields are followed by a sequence of bytes. These
* bytes are compared with the bytes in the packet starting from the
* position specified by the value of the register specified by the
* "register" field of the instruction.
*/
/* Number of temporary memory slots, see ldm/stm instructions. */
#define MEMORY_ITEMS 16
/* Upon program execution, some temporary memory slots are prefilled: */
typedef union {
struct {
u32 pad[8]; /* 0..7 */
u32 apf_version; /* 8: Initialized with apf_version() */
u32 filter_age_16384ths; /* 9: Age since filter installed in 1/16384 seconds. */
u32 tx_buf_offset; /* 10: Offset in tx_buf where next byte will be written */
u32 program_size; /* 11: Size of program (in bytes) */
u32 ram_len; /* 12: Total size of program + data, ie. ram_len */
u32 ipv4_header_size; /* 13: 4*([APF_FRAME_HEADER_SIZE]&15) */
u32 packet_size; /* 14: Size of packet in bytes. */
u32 filter_age; /* 15: Age since filter installed in seconds. */
} named;
u32 slot[MEMORY_ITEMS];
} memory_type;
/* ---------------------------------------------------------------------------------------------- */
/* Standard opcodes. */
/* Unconditionally pass (if R=0) or drop (if R=1) packet and optionally increment counter.
* An optional non-zero unsigned immediate value can be provided to encode the counter number.
* The counter is located (-4 * counter number) bytes from the end of the data region.
* It is a U32 big-endian value and is always incremented by 1.
* This is more or less equivalent to: lddw R0, -4*N; add R0, 1; stdw R0, -4*N; {pass,drop}
* e.g. "pass", "pass 1", "drop", "drop 1"
*/
#define PASSDROP_OPCODE 0
#define LDB_OPCODE 1 /* Load 1 byte from immediate offset, e.g. "ldb R0, [5]" */
#define LDH_OPCODE 2 /* Load 2 bytes from immediate offset, e.g. "ldh R0, [5]" */
#define LDW_OPCODE 3 /* Load 4 bytes from immediate offset, e.g. "ldw R0, [5]" */
#define LDBX_OPCODE 4 /* Load 1 byte from immediate offset plus register, e.g. "ldbx R0, [5+R0]" */
#define LDHX_OPCODE 5 /* Load 2 bytes from immediate offset plus register, e.g. "ldhx R0, [5+R0]" */
#define LDWX_OPCODE 6 /* Load 4 bytes from immediate offset plus register, e.g. "ldwx R0, [5+R0]" */
#define ADD_OPCODE 7 /* Add, e.g. "add R0,5" */
#define MUL_OPCODE 8 /* Multiply, e.g. "mul R0,5" */
#define DIV_OPCODE 9 /* Divide, e.g. "div R0,5" */
#define AND_OPCODE 10 /* And, e.g. "and R0,5" */
#define OR_OPCODE 11 /* Or, e.g. "or R0,5" */
#define SH_OPCODE 12 /* Left shift, e.g. "sh R0, 5" or "sh R0, -5" (shifts right) */
#define LI_OPCODE 13 /* Load signed immediate, e.g. "li R0,5" */
#define JMP_OPCODE 14 /* Unconditional jump, e.g. "jmp label" */
#define JEQ_OPCODE 15 /* Compare equal and branch, e.g. "jeq R0,5,label" */
#define JNE_OPCODE 16 /* Compare not equal and branch, e.g. "jne R0,5,label" */
#define JGT_OPCODE 17 /* Compare greater than and branch, e.g. "jgt R0,5,label" */
#define JLT_OPCODE 18 /* Compare less than and branch, e.g. "jlt R0,5,label" */
#define JSET_OPCODE 19 /* Compare any bits set and branch, e.g. "jset R0,5,label" */
#define JBSMATCH_OPCODE 20 /* Compare byte sequence [R=0 not] equal, e.g. "jbsne R0,2,label,0x1122" */
/* NOTE: Only APFv6+ implements R=1 'jbseq' version and multi match */
/* imm1 is jmp target, imm2 is (cnt - 1) * 2048 + compare_len, */
/* which is followed by cnt * compare_len bytes to compare against. */
/* Warning: do not specify the same byte sequence multiple times. */
#define EXT_OPCODE 21 /* Immediate value is one of *_EXT_OPCODE */
#define LDDW_OPCODE 22 /* Load 4 bytes from data address (register + signed imm): "lddw R0, [5+R1]" */
/* LDDW/STDW in APFv6+ *mode* load/store from counter specified in imm. */
#define STDW_OPCODE 23 /* Store 4 bytes to data address (register + signed imm): "stdw R0, [5+R1]" */
/* Write 1, 2 or 4 byte immediate to the output buffer and auto-increment the output buffer pointer.
* Immediate length field specifies size of write. R must be 0. imm_len != 0.
* e.g. "write 5"
*/
#define WRITE_OPCODE 24
/* Copy bytes from input packet/APF program/data region to output buffer and
* auto-increment the output buffer pointer.
* Register bit is used to specify the source of data copy.
* R=0 means copy from packet.
* R=1 means copy from APF program/data region.
* The source offset is stored in imm1, copy length is stored in u8 imm2.
* e.g. "pktcopy 0, 16" or "datacopy 0, 16"
*/
#define PKTDATACOPY_OPCODE 25
/* ---------------------------------------------------------------------------------------------- */
/* Extended opcodes. */
/* These all have an opcode of EXT_OPCODE and specify the actual opcode in the immediate field. */
#define LDM_EXT_OPCODE 0 /* Load from temporary memory, e.g. "ldm R0,5" */
/* Values 0-15 represent loading the different temporary memory slots. */
#define STM_EXT_OPCODE 16 /* Store to temporary memory, e.g. "stm R0,5" */
/* Values 16-31 represent storing to the different temporary memory slots. */
#define NOT_EXT_OPCODE 32 /* Not, e.g. "not R0" */
#define NEG_EXT_OPCODE 33 /* Negate, e.g. "neg R0" */
#define SWAP_EXT_OPCODE 34 /* Swap, e.g. "swap R0,R1" */
#define MOV_EXT_OPCODE 35 /* Move, e.g. "move R0,R1" */
/* Allocate writable output buffer.
* R=0: register R0 specifies the length
* R=1: length provided in u16 imm2
* e.g. "allocate R0" or "allocate 123"
* On failure automatically executes 'pass 3'
*/
#define ALLOCATE_EXT_OPCODE 36
/* Transmit and deallocate the buffer (transmission can be delayed until the program
* terminates). Length of buffer is the output buffer pointer (0 means discard).
* R=1 iff udp style L4 checksum
* u8 imm2 - ip header offset from start of buffer (255 for non-ip packets)
* u8 imm3 - offset from start of buffer to store L4 checksum (255 for no L4 checksum)
* u8 imm4 - offset from start of buffer to begin L4 checksum calculation (present iff imm3 != 255)
* u16 imm5 - partial checksum value to include in L4 checksum (present iff imm3 != 255)
* "e.g. transmit"
*/
#define TRANSMIT_EXT_OPCODE 37
/* Write 1, 2 or 4 byte value from register to the output buffer and auto-increment the
* output buffer pointer.
* e.g. "ewrite1 r0" or "ewrite2 r1"
*/
#define EWRITE1_EXT_OPCODE 38
#define EWRITE2_EXT_OPCODE 39
#define EWRITE4_EXT_OPCODE 40
/* Copy bytes from input packet/APF program/data region to output buffer and
* auto-increment the output buffer pointer.
* Register bit is used to specify the source of data copy.
* R=0 means copy from packet.
* R=1 means copy from APF program/data region.
* The source offset is stored in R0, copy length is stored in u8 imm2 or R1.
* e.g. "epktcopy r0, 16", "edatacopy r0, 16", "epktcopy r0, r1", "edatacopy r0, r1"
*/
#define EPKTDATACOPYIMM_EXT_OPCODE 41
#define EPKTDATACOPYR1_EXT_OPCODE 42
/* Jumps if the UDP payload content (starting at R0) does [not] match one
* of the specified QNAMEs in question records, applying case insensitivity.
* SAFE version PASSES corrupt packets, while the other one DROPS.
* R=0/1 meaning 'does not match'/'matches'
* R0: Offset to UDP payload content
* imm1: Extended opcode
* imm2: Jump label offset
* imm3(u8): Question type (PTR/SRV/TXT/A/AAAA)
* imm4(bytes): null terminated list of null terminated LV-encoded QNAMEs
* e.g.: "jdnsqeq R0,label,0xc,\002aa\005local\0\0", "jdnsqne R0,label,0xc,\002aa\005local\0\0"
*/
#define JDNSQMATCH_EXT_OPCODE 43
#define JDNSQMATCHSAFE_EXT_OPCODE 45
/* Jumps if the UDP payload content (starting at R0) does [not] match one
* of the specified NAMEs in answers/authority/additional records, applying
* case insensitivity.
* SAFE version PASSES corrupt packets, while the other one DROPS.
* R=0/1 meaning 'does not match'/'matches'
* R0: Offset to UDP payload content
* imm1: Extended opcode
* imm2: Jump label offset
* imm3(bytes): null terminated list of null terminated LV-encoded NAMEs
* e.g.: "jdnsaeq R0,label,0xc,\002aa\005local\0\0", "jdnsane R0,label,0xc,\002aa\005local\0\0"
*/
#define JDNSAMATCH_EXT_OPCODE 44
#define JDNSAMATCHSAFE_EXT_OPCODE 46
/* Jump if register is [not] one of the list of values
* R bit - specifies the register (R0/R1) to test
* imm1: Extended opcode
* imm2: Jump label offset
* imm3(u8): top 5 bits - number 'n' of following u8/be16/be32 values - 2
* middle 2 bits - 1..4 length of immediates - 1
* bottom 1 bit - =0 jmp if in set, =1 if not in set
* imm4(n * 1/2/3/4 bytes): the *UNIQUE* values to compare against
*/
#define JONEOF_EXT_OPCODE 47
/* Specify length of exception buffer, which is populated on abnormal program termination.
* imm1: Extended opcode
* imm2(u16): Length of exception buffer (located *immediately* after the program itself)
*/
#define EXCEPTIONBUFFER_EXT_OPCODE 48
/* This extended opcode is used to implement PKTDATACOPY_OPCODE */
#define PKTDATACOPYIMM_EXT_OPCODE 65536
#define EXTRACT_OPCODE(i) (((i) >> 3) & 31)
#define EXTRACT_REGISTER(i) ((i) & 1)
#define EXTRACT_IMM_LENGTH(i) (((i) >> 1) & 3)
#endif /* ANDROID_APF_APF_H */
/* End include of apf.h */
/* Begin include of apf_utils.h */
static u32 read_be16(const u8* buf) {
return buf[0] * 256u + buf[1];
}
static void store_be16(u8* const buf, const u16 v) {
buf[0] = (u8)(v >> 8);
buf[1] = (u8)v;
}
static u8 uppercase(u8 c) {
return (c >= 'a') && (c <= 'z') ? c - ('a' - 'A') : c;
}
/* End include of apf_utils.h */
/* Begin include of apf_dns.h */
/**
* Compares a (Q)NAME starting at udp[*ofs] with the target name.
*
* @param needle - non-NULL - pointer to DNS encoded target name to match against.
* example: [11]_googlecast[4]_tcp[5]local[0] (where [11] is a byte with value 11)
* @param needle_bound - non-NULL - points at first invalid byte past needle.
* @param udp - non-NULL - pointer to the start of the UDP payload (DNS header).
* @param udp_len - length of the UDP payload.
* @param ofs - non-NULL - pointer to the offset of the beginning of the (Q)NAME.
* On non-error return will be updated to point to the first unread offset,
* ie. the next position after the (Q)NAME.
*
* @return 1 if matched, 0 if not matched, -1 if error in packet, -2 if error in program.
*/
FUNC(match_result_type apf_internal_match_single_name(const u8* needle,
const u8* const needle_bound,
const u8* const udp,
const u32 udp_len,
u32* const ofs)) {
u32 first_unread_offset = *ofs;
Boolean is_qname_match = True;
int lvl;
/* DNS names are <= 255 characters including terminating 0, since >= 1 char + '.' per level => max. 127 levels */
for (lvl = 1; lvl <= 127; ++lvl) {
u8 v;
if (*ofs >= udp_len) return error_packet;
v = udp[(*ofs)++];
if (v >= 0xC0) { /* RFC 1035 4.1.4 - handle message compression */
u8 w;
u32 new_ofs;
if (*ofs >= udp_len) return error_packet;
w = udp[(*ofs)++];
if (*ofs > first_unread_offset) first_unread_offset = *ofs;
new_ofs = (v - 0xC0) * 256u + w;
if (new_ofs >= *ofs) return error_packet; /* RFC 1035 4.1.4 allows only backward pointers */
*ofs = new_ofs;
} else if (v > 63) {
return error_packet; /* RFC 1035 2.3.4 - label size is 1..63. */
} else if (v) {
u8 label_size = v;
if (*ofs + label_size > udp_len) return error_packet;
if (needle >= needle_bound) return error_program;
if (is_qname_match) {
u8 len = *needle++;
if (len == label_size) {
if (needle + label_size > needle_bound) return error_program;
while (label_size--) {
u8 w = udp[(*ofs)++];
is_qname_match &= (uppercase(w) == *needle++);
}
} else {
if (len != 0xFF) is_qname_match = False;
*ofs += label_size;
}
} else {
is_qname_match = False;
*ofs += label_size;
}
} else { /* reached the end of the name */
if (first_unread_offset > *ofs) *ofs = first_unread_offset;
return (is_qname_match && *needle == 0) ? match : nomatch;
}
}
return error_packet; /* too many dns domain name levels */
}
/**
* Check if DNS packet contains any of the target names with the provided
* question_type.
*
* @param needles - non-NULL - pointer to DNS encoded target nameS to match against.
* example: [3]foo[3]com[0][3]bar[3]net[0][0] -- note ends with an extra NULL byte.
* @param needle_bound - non-NULL - points at first invalid byte past needles.
* @param udp - non-NULL - pointer to the start of the UDP payload (DNS header).
* @param udp_len - length of the UDP payload.
* @param question_type - question type to match against or -1 to match answers.
*
* @return 1 if matched, 0 if not matched, -1 if error in packet, -2 if error in program.
*/
FUNC(match_result_type apf_internal_match_names(const u8* needles,
const u8* const needle_bound,
const u8* const udp,
const u32 udp_len,
const int question_type)) {
u32 num_questions, num_answers;
if (udp_len < 12) return error_packet; /* lack of dns header */
/* dns header: be16 tid, flags, num_{questions,answers,authority,additional} */
num_questions = read_be16(udp + 4);
num_answers = read_be16(udp + 6) + read_be16(udp + 8) + read_be16(udp + 10);
/* loop until we hit final needle, which is a null byte */
while (True) {
u32 i, ofs = 12; /* dns header is 12 bytes */
if (needles >= needle_bound) return error_program;
if (!*needles) return nomatch; /* we've run out of needles without finding a match */
/* match questions */
for (i = 0; i < num_questions; ++i) {
match_result_type m = apf_internal_match_single_name(needles, needle_bound, udp, udp_len, &ofs);
int qtype;
if (m < nomatch) return m;
if (ofs + 2 > udp_len) return error_packet;
qtype = (int)read_be16(udp + ofs);
ofs += 4; /* skip be16 qtype & qclass */
if (question_type == -1) continue;
if (m == nomatch) continue;
if (qtype == 0xFF /* QTYPE_ANY */ || qtype == question_type) return match;
}
/* match answers */
if (question_type == -1) for (i = 0; i < num_answers; ++i) {
match_result_type m = apf_internal_match_single_name(needles, needle_bound, udp, udp_len, &ofs);
if (m < nomatch) return m;
ofs += 8; /* skip be16 type, class & be32 ttl */
if (ofs + 2 > udp_len) return error_packet;
ofs += 2 + read_be16(udp + ofs); /* skip be16 rdata length field, plus length bytes */
if (m == match) return match;
}
/* move needles pointer to the next needle. */
do {
u8 len = *needles++;
if (len == 0xFF) continue;
if (len > 63) return error_program;
needles += len;
if (needles >= needle_bound) return error_program;
} while (*needles);
needles++; /* skip the NULL byte at the end of *a* DNS name */
}
}
/* End include of apf_dns.h */
/* Begin include of apf_checksum.h */
/**
* Calculate big endian 16-bit sum of a buffer (max 128kB),
* then fold and negate it, producing a 16-bit result in [0..FFFE].
*/
FUNC(u16 apf_internal_calc_csum(u32 sum, const u8* const buf, const s32 len)) {
u16 csum;
s32 i;
for (i = 0; i < len; ++i) sum += buf[i] * ((i & 1) ? 1u : 256u);
sum = (sum & 0xFFFF) + (sum >> 16); /* max after this is 1FFFE */
csum = sum + (sum >> 16);
return ~csum; /* assuming sum > 0 on input, this is in [0..FFFE] */
}
static u16 fix_udp_csum(u16 csum) {
return csum ? csum : 0xFFFF;
}
/**
* Calculate and store packet checksums and return dscp.
*
* @param pkt - pointer to the very start of the to-be-transmitted packet,
* ie. the start of the ethernet header (if one is present)
* WARNING: at minimum 266 bytes of buffer pointed to by 'pkt' pointer
* *MUST* be writable.
* (IPv4 header checksum is a 2 byte value, 10 bytes after ip_ofs,
* which has a maximum value of 254. Thus 254[ip_ofs] + 10 + 2[u16] = 266)
*
* @param len - length of the packet (this may be < 266).
* @param ip_ofs - offset from beginning of pkt to IPv4 or IPv6 header:
* IP version detected based on top nibble of this byte,
* for IPv4 we will calculate and store IP header checksum,
* but only for the first 20 bytes of the header,
* prior to calling this the IPv4 header checksum field
* must be initialized to the partial checksum of the IPv4
* options (0 if none)
* 255 means there is no IP header (for example ARP)
* DSCP will be retrieved from this IP header (0 if none).
* @param partial_csum - additional value to include in L4 checksum
* @param csum_start - offset from beginning of pkt to begin L4 checksum
* calculation (until end of pkt specified by len)
* @param csum_ofs - offset from beginning of pkt to store L4 checksum
* 255 means do not calculate/store L4 checksum
* @param udp - True iff we should generate a UDP style L4 checksum (0 -> 0xFFFF)
*
* @return 6-bit DSCP value [0..63], garbage on parse error.
*/
FUNC(int apf_internal_csum_and_return_dscp(u8* const pkt, const s32 len, const u8 ip_ofs,
const u16 partial_csum, const u8 csum_start, const u8 csum_ofs, const Boolean udp)) {
if (csum_ofs < 255) {
/* note that apf_internal_calc_csum() treats negative lengths as zero */
u32 csum = apf_internal_calc_csum(partial_csum, pkt + csum_start, len - csum_start);
if (udp) csum = fix_udp_csum(csum);
store_be16(pkt + csum_ofs, csum);
}
if (ip_ofs < 255) {
u8 ip = pkt[ip_ofs] >> 4;
if (ip == 4) {
store_be16(pkt + ip_ofs + 10, apf_internal_calc_csum(0, pkt + ip_ofs, IPV4_HLEN));
return pkt[ip_ofs + 1] >> 2; /* DSCP */
} else if (ip == 6) {
return (read_be16(pkt + ip_ofs) >> 6) & 0x3F; /* DSCP */
}
}
return 0;
}
/* End include of apf_checksum.h */
/* User hook for interpreter debug tracing. */
#ifdef APF_TRACE_HOOK
extern void APF_TRACE_HOOK(u32 pc, const u32* regs, const u8* program,
u32 program_len, const u8 *packet, u32 packet_len,
const u32* memory, u32 ram_len);
#else
#define APF_TRACE_HOOK(pc, regs, program, program_len, packet, packet_len, memory, memory_len) \
do { /* nop*/ \
} while (0)
#endif
/* Return code indicating "packet" should accepted. */
#define PASS 1
/* Return code indicating "packet" should be accepted (and something unexpected happened). */
#define EXCEPTION 2
/* Return code indicating "packet" should be dropped. */
#define DROP 0
/* Verify an internal condition and accept packet if it fails. */
#define ASSERT_RETURN(c) if (!(c)) return EXCEPTION
/* If "c" is of an unsigned type, generate a compile warning that gets promoted to an error. */
/* This makes bounds checking simpler because ">= 0" can be avoided. Otherwise adding */
/* superfluous ">= 0" with unsigned expressions generates compile warnings. */
#define ENFORCE_UNSIGNED(c) ((c)==(u32)(c))
u32 apf_version(void) {
return 20240401;
}
typedef struct {
/* Note: the following 4 fields take up exactly 8 bytes. */
u16 except_buf_sz; /* Length of the exception buffer (at program_len offset) */
u8 ptr_size; /* sizeof(void*) */
u8 v6; /* Set to 1 by first jmpdata (APFv6+) instruction */
u32 pc; /* Program counter. */
/* All the pointers should be next to each other for better struct packing. */
/* We are at offset 8, so even 64-bit pointers will not need extra padding. */
void *caller_ctx; /* Passed in to interpreter, passed through to alloc/transmit. */
u8* tx_buf; /* The output buffer pointer */
u8* program; /* Pointer to program/data buffer */
const u8* packet; /* Pointer to input packet buffer */
/* Order fields in order of decreasing size */
u32 tx_buf_len; /* The length of the output buffer */
u32 program_len; /* Length of the program */
u32 ram_len; /* Length of the entire apf program/data region */
u32 packet_len; /* Length of the input packet buffer */
u32 R[2]; /* Register values. */
memory_type mem; /* Memory slot values. (array of u32s) */
/* Note: any extra u16s go here, then u8s */
} apf_context;
FUNC(int apf_internal_do_transmit_buffer(apf_context* ctx, u32 pkt_len, u8 dscp)) {
int ret = apf_transmit_buffer(ctx->caller_ctx, ctx->tx_buf, pkt_len, dscp);
ctx->tx_buf = NULL;
ctx->tx_buf_len = 0;
return ret;
}
static int do_discard_buffer(apf_context* ctx) {
return apf_internal_do_transmit_buffer(ctx, 0 /* pkt_len */, 0 /* dscp */);
}
/* Decode an immediate, lengths [0..4] all work, does not do range checking. */
/* But note that program is at least 20 bytes shorter than ram, so first few */
/* immediates can always be safely decoded without exceeding ram buffer. */
static u32 decode_imm(apf_context* ctx, u32 length) {
u32 i, v = 0;
for (i = 0; i < length; ++i) v = (v << 8) | ctx->program[ctx->pc++];
return v;
}
#define DECODE_U8() (ctx->program[ctx->pc++])
static u16 decode_be16(apf_context* ctx) {
u16 v = ctx->program[ctx->pc++];
v <<= 8;
v |= ctx->program[ctx->pc++];
return v;
}
static int do_apf_run(apf_context* ctx) {
/* Is offset within ram bounds? */
#define IN_RAM_BOUNDS(p) (ENFORCE_UNSIGNED(p) && (p) < ctx->ram_len)
/* Is offset within packet bounds? */
#define IN_PACKET_BOUNDS(p) (ENFORCE_UNSIGNED(p) && (p) < ctx->packet_len)
/* Is access to offset |p| length |size| within data bounds? */
#define IN_DATA_BOUNDS(p, size) (ENFORCE_UNSIGNED(p) && \
ENFORCE_UNSIGNED(size) && \
(p) + (size) <= ctx->ram_len && \
(p) + (size) >= (p)) /* catch wraparounds */
/* Accept packet if not within ram bounds */
#define ASSERT_IN_RAM_BOUNDS(p) ASSERT_RETURN(IN_RAM_BOUNDS(p))
/* Accept packet if not within packet bounds */
#define ASSERT_IN_PACKET_BOUNDS(p) ASSERT_RETURN(IN_PACKET_BOUNDS(p))
/* Accept packet if not within data bounds */
#define ASSERT_IN_DATA_BOUNDS(p, size) ASSERT_RETURN(IN_DATA_BOUNDS(p, size))
/* Counters start at end of RAM and count *backwards* so this array takes negative integers. */
u32 *counter = (u32*)(ctx->program + ctx->ram_len);
/* Count of instructions remaining to execute. This is done to ensure an */
/* upper bound on execution time. It should never be hit and is only for */
/* safety. Initialize to the number of bytes in the program which is an */
/* upper bound on the number of instructions in the program. */
u32 instructions_remaining = ctx->program_len;
/* APFv6 requires at least 5 u32 counters at the end of ram, this makes counter[-5]++ valid */
/* This cannot wrap due to previous check, that enforced program_len & ram_len < 2GiB. */
if (ctx->program_len + 20 > ctx->ram_len) return EXCEPTION;
/* Only populate if packet long enough, and IP version is IPv4. */
/* Note: this doesn't actually check the ethertype... */
if ((ctx->packet_len >= ETH_HLEN + IPV4_HLEN) && ((ctx->packet[ETH_HLEN] & 0xf0) == 0x40)) {
ctx->mem.named.ipv4_header_size = (ctx->packet[ETH_HLEN] & 15) * 4;
}
/* Is access to offset |p| length |size| within output buffer bounds? */
#define IN_OUTPUT_BOUNDS(p, size) (ENFORCE_UNSIGNED(p) && \
ENFORCE_UNSIGNED(size) && \
(p) + (size) <= ctx->tx_buf_len && \
(p) + (size) >= (p))
/* Accept packet if not write within allocated output buffer */
#define ASSERT_IN_OUTPUT_BOUNDS(p, size) ASSERT_RETURN(IN_OUTPUT_BOUNDS(p, size))
do {
APF_TRACE_HOOK(ctx->pc, ctx->R, ctx->program, ctx->program_len,
ctx->packet, ctx->packet_len, ctx->mem.slot, ctx->ram_len);
if (ctx->pc == ctx->program_len + 1) return DROP;
if (ctx->pc == ctx->program_len) return PASS;
if (ctx->pc > ctx->program_len) return EXCEPTION;
{ /* half indent to avoid needless line length... */
const u8 bytecode = ctx->program[ctx->pc++];
const u8 opcode = EXTRACT_OPCODE(bytecode);
const u8 reg_num = EXTRACT_REGISTER(bytecode);
#define REG (ctx->R[reg_num])
#define OTHER_REG (ctx->R[reg_num ^ 1])
/* All instructions have immediate fields, so load them now. */
const u8 len_field = EXTRACT_IMM_LENGTH(bytecode);
const u8 imm_len = ((len_field + 1u) >> 2) + len_field; /* 0,1,2,3 -> 0,1,2,4 */
u32 pktcopy_src_offset = 0; /* used for various pktdatacopy opcodes */
u32 imm = 0;
s32 signed_imm = 0;
u32 arith_imm;
s32 arith_signed_imm;
if (len_field != 0) {
imm = decode_imm(ctx, imm_len); /* 1st imm, at worst bytes 1-4 past opcode/program_len */
/* Sign extend imm into signed_imm. */
signed_imm = (s32)(imm << ((4 - imm_len) * 8));
signed_imm >>= (4 - imm_len) * 8;
}
/* See comment at ADD_OPCODE for the reason for ARITH_REG/arith_imm/arith_signed_imm. */
#define ARITH_REG (ctx->R[reg_num & ctx->v6])
arith_imm = (ctx->v6) ? (len_field ? imm : OTHER_REG) : (reg_num ? ctx->R[1] : imm);
arith_signed_imm = (ctx->v6) ? (len_field ? signed_imm : (s32)OTHER_REG) : (reg_num ? (s32)ctx->R[1] : signed_imm);
switch (opcode) {
case PASSDROP_OPCODE: { /* APFv6+ */
if (len_field > 2) return EXCEPTION; /* max 64K counters (ie. imm < 64K) */
if (imm) {
if (4 * imm > ctx->ram_len) return EXCEPTION;
counter[-(s32)imm]++;
}
return reg_num ? DROP : PASS;
}
case LDB_OPCODE:
case LDH_OPCODE:
case LDW_OPCODE:
case LDBX_OPCODE:
case LDHX_OPCODE:
case LDWX_OPCODE: {
u32 load_size = 0;
u32 offs = imm;
/* Note: this can overflow and actually decrease offs. */
if (opcode >= LDBX_OPCODE) offs += ctx->R[1];
ASSERT_IN_PACKET_BOUNDS(offs);
switch (opcode) {
case LDB_OPCODE:
case LDBX_OPCODE:
load_size = 1;
break;
case LDH_OPCODE:
case LDHX_OPCODE:
load_size = 2;
break;
case LDW_OPCODE:
case LDWX_OPCODE:
load_size = 4;
break;
/* Immediately enclosing switch statement guarantees */
/* opcode cannot be any other value. */
}
{
const u32 end_offs = offs + (load_size - 1);
u32 val = 0;
/* Catch overflow/wrap-around. */
ASSERT_RETURN(end_offs >= offs);
ASSERT_IN_PACKET_BOUNDS(end_offs);
while (load_size--) val = (val << 8) | ctx->packet[offs++];
REG = val;
}
break;
}
case JMP_OPCODE:
if (reg_num && !ctx->v6) { /* APFv6+ */
/* First invocation of APFv6 jmpdata instruction */
counter[-1] = 0x12345678; /* endianness marker */
counter[-2]++; /* total packets ++ */
ctx->v6 = (u8)True;
}
/* This can jump backwards. Infinite looping prevented by instructions_remaining. */
ctx->pc += imm;
break;
case JEQ_OPCODE:
case JNE_OPCODE:
case JGT_OPCODE:
case JLT_OPCODE:
case JSET_OPCODE: {
u32 cmp_imm = 0;
/* Load second immediate field. */
if (reg_num == 1) {
cmp_imm = ctx->R[1];
} else {
cmp_imm = decode_imm(ctx, imm_len); /* 2nd imm, at worst 8 bytes past prog_len */
}
switch (opcode) {
case JEQ_OPCODE: if (ctx->R[0] == cmp_imm) ctx->pc += imm; break;
case JNE_OPCODE: if (ctx->R[0] != cmp_imm) ctx->pc += imm; break;
case JGT_OPCODE: if (ctx->R[0] > cmp_imm) ctx->pc += imm; break;
case JLT_OPCODE: if (ctx->R[0] < cmp_imm) ctx->pc += imm; break;
case JSET_OPCODE: if (ctx->R[0] & cmp_imm) ctx->pc += imm; break;
}
break;
}
case JBSMATCH_OPCODE: {
/* Load second immediate field. */
u32 cmp_imm = decode_imm(ctx, imm_len); /* 2nd imm, at worst 8 bytes past prog_len */
u32 cnt = (cmp_imm >> 11) + 1; /* 1+, up to 32 fits in u16 */
u32 len = cmp_imm & 2047; /* 0..2047 */
u32 bytes = cnt * len;
const u32 last_packet_offs = ctx->R[0] + len - 1;
Boolean matched = False;
/* bytes = cnt * len is size in bytes of data to compare. */
/* pc is offset of program bytes to compare. */
/* imm is jump target offset. */
/* R0 is offset of packet bytes to compare. */
if (bytes > 0xFFFF) return EXCEPTION;
/* pc < program_len < ram_len < 2GiB, thus pc + bytes cannot wrap */
if (!IN_RAM_BOUNDS(ctx->pc + bytes - 1)) return EXCEPTION;
ASSERT_IN_PACKET_BOUNDS(ctx->R[0]);
/* Note: this will return EXCEPTION (due to wrap) if imm_len (ie. len) is 0 */
ASSERT_RETURN(last_packet_offs >= ctx->R[0]);
ASSERT_IN_PACKET_BOUNDS(last_packet_offs);
while (cnt--) {
matched |= !memcmp(ctx->program + ctx->pc, ctx->packet + ctx->R[0], len);
/* skip past comparison bytes */
ctx->pc += len;
}
if (matched ^ !reg_num) ctx->pc += imm;
break;
}
/* There is a difference in APFv4 and APFv6 arithmetic behaviour! */
/* APFv4: R[0] op= Rbit ? R[1] : imm; (and it thus doesn't make sense to have R=1 && len_field>0) */
/* APFv6+: REG op= len_field ? imm : OTHER_REG; (note: this is *DIFFERENT* with R=1 len_field==0) */
/* Furthermore APFv4 uses unsigned imm (except SH), while APFv6 uses signed_imm for ADD/AND/SH. */
case ADD_OPCODE: ARITH_REG += (ctx->v6) ? (u32)arith_signed_imm : arith_imm; break;
case MUL_OPCODE: ARITH_REG *= arith_imm; break;
case AND_OPCODE: ARITH_REG &= (ctx->v6) ? (u32)arith_signed_imm : arith_imm; break;
case OR_OPCODE: ARITH_REG |= arith_imm; break;
case DIV_OPCODE: { /* see above comment! */
const u32 div_operand = arith_imm;
ASSERT_RETURN(div_operand);
ARITH_REG /= div_operand;
break;
}
case SH_OPCODE: { /* see above comment! */
if (arith_signed_imm >= 0)
ARITH_REG <<= arith_signed_imm;
else
ARITH_REG >>= -arith_signed_imm;
break;
}
case LI_OPCODE:
REG = (u32)signed_imm;
break;
case PKTDATACOPY_OPCODE:
pktcopy_src_offset = imm;
imm = PKTDATACOPYIMM_EXT_OPCODE;
FALLTHROUGH;
case EXT_OPCODE:
if (/* imm >= LDM_EXT_OPCODE && -- but note imm is u32 and LDM_EXT_OPCODE is 0 */
imm < (LDM_EXT_OPCODE + MEMORY_ITEMS)) {
REG = ctx->mem.slot[imm - LDM_EXT_OPCODE];
} else if (imm >= STM_EXT_OPCODE && imm < (STM_EXT_OPCODE + MEMORY_ITEMS)) {
ctx->mem.slot[imm - STM_EXT_OPCODE] = REG;
} else switch (imm) {
case NOT_EXT_OPCODE: REG = ~REG; break;
case NEG_EXT_OPCODE: REG = -REG; break;
case MOV_EXT_OPCODE: REG = OTHER_REG; break;
case SWAP_EXT_OPCODE: {
u32 tmp = REG;
REG = OTHER_REG;
OTHER_REG = tmp;
break;
}
case ALLOCATE_EXT_OPCODE:
ASSERT_RETURN(ctx->tx_buf == NULL);
if (reg_num == 0) {
ctx->tx_buf_len = REG;
} else {
ctx->tx_buf_len = decode_be16(ctx); /* 2nd imm, at worst 6 B past prog_len */
}
/* checksumming functions requires minimum 266 byte buffer for correctness */
if (ctx->tx_buf_len < 266) ctx->tx_buf_len = 266;
ctx->tx_buf = apf_allocate_buffer(ctx->caller_ctx, ctx->tx_buf_len);
if (!ctx->tx_buf) { /* allocate failure */
ctx->tx_buf_len = 0;
counter[-3]++;
return EXCEPTION;
}
memset(ctx->tx_buf, 0, ctx->tx_buf_len);
ctx->mem.named.tx_buf_offset = 0;
break;
case TRANSMIT_EXT_OPCODE: {
/* tx_buf_len cannot be large because we'd run out of RAM, */
/* so the above unsigned comparison effectively guarantees casting pkt_len */
/* to a signed value does not result in it going negative. */
u8 ip_ofs = DECODE_U8(); /* 2nd imm, at worst 5 B past prog_len */
u8 csum_ofs = DECODE_U8(); /* 3rd imm, at worst 6 B past prog_len */
u8 csum_start = 0;
u16 partial_csum = 0;
u32 pkt_len = ctx->mem.named.tx_buf_offset;
ASSERT_RETURN(ctx->tx_buf);
/* If pkt_len > allocate_buffer_len, it means sth. wrong */
/* happened and the tx_buf should be deallocated. */
if (pkt_len > ctx->tx_buf_len) {
do_discard_buffer(ctx);
return EXCEPTION;
}
if (csum_ofs < 255) {
csum_start = DECODE_U8(); /* 4th imm, at worst 7 B past prog_len */
partial_csum = decode_be16(ctx); /* 5th imm, at worst 9 B past prog_len */
}
{
int dscp = apf_internal_csum_and_return_dscp(ctx->tx_buf, (s32)pkt_len, ip_ofs,
partial_csum, csum_start, csum_ofs,
(Boolean)reg_num);
int ret = apf_internal_do_transmit_buffer(ctx, pkt_len, dscp);
if (ret) { counter[-4]++; return EXCEPTION; } /* transmit failure */
}
break;
}
case EPKTDATACOPYIMM_EXT_OPCODE: /* 41 */
case EPKTDATACOPYR1_EXT_OPCODE: /* 42 */
pktcopy_src_offset = ctx->R[0];
FALLTHROUGH;
case PKTDATACOPYIMM_EXT_OPCODE: { /* 65536 */
u32 dst_offs = ctx->mem.named.tx_buf_offset;
u32 copy_len = ctx->R[1];
if (imm != EPKTDATACOPYR1_EXT_OPCODE) {
copy_len = DECODE_U8(); /* 2nd imm, at worst 8 bytes past prog_len */
}
ASSERT_RETURN(ctx->tx_buf);
ASSERT_IN_OUTPUT_BOUNDS(dst_offs, copy_len);
if (reg_num == 0) { /* copy from packet */
const u32 last_packet_offs = pktcopy_src_offset + copy_len - 1;
ASSERT_IN_PACKET_BOUNDS(pktcopy_src_offset);
ASSERT_RETURN(last_packet_offs >= pktcopy_src_offset);
ASSERT_IN_PACKET_BOUNDS(last_packet_offs);
memcpy(ctx->tx_buf + dst_offs, ctx->packet + pktcopy_src_offset, copy_len);
} else { /* copy from data */
ASSERT_IN_RAM_BOUNDS(pktcopy_src_offset + copy_len - 1);
memcpy(ctx->tx_buf + dst_offs, ctx->program + pktcopy_src_offset, copy_len);
}
dst_offs += copy_len;
ctx->mem.named.tx_buf_offset = dst_offs;
break;
}
case JDNSQMATCH_EXT_OPCODE: /* 43 */
case JDNSAMATCH_EXT_OPCODE: /* 44 */
case JDNSQMATCHSAFE_EXT_OPCODE: /* 45 */
case JDNSAMATCHSAFE_EXT_OPCODE: { /* 46 */
u32 jump_offs = decode_imm(ctx, imm_len); /* 2nd imm, at worst 8 B past prog_len */
int qtype = -1;
if (imm & 1) { /* JDNSQMATCH & JDNSQMATCHSAFE are *odd* extended opcodes */
qtype = DECODE_U8(); /* 3rd imm, at worst 9 bytes past prog_len */
}
{
u32 udp_payload_offset = ctx->R[0];
match_result_type match_rst = apf_internal_match_names(ctx->program + ctx->pc,
ctx->program + ctx->program_len,
ctx->packet + udp_payload_offset,
ctx->packet_len - udp_payload_offset,
qtype);
if (match_rst == error_program) return EXCEPTION;
if (match_rst == error_packet) {
counter[-5]++; /* increment error dns packet counter */
return (imm >= JDNSQMATCHSAFE_EXT_OPCODE) ? PASS : DROP;
}
while (ctx->pc + 1 < ctx->program_len &&
(ctx->program[ctx->pc] || ctx->program[ctx->pc + 1])) {
ctx->pc++;
}
ctx->pc += 2; /* skip the final double 0 needle end */
/* relies on reg_num in {0,1} and match_rst being {False=0, True=1} */
if (!(reg_num ^ (u32)match_rst)) ctx->pc += jump_offs;
}
break;
}
case EWRITE1_EXT_OPCODE:
case EWRITE2_EXT_OPCODE:
case EWRITE4_EXT_OPCODE: {
const u32 write_len = 1 << (imm - EWRITE1_EXT_OPCODE);
u32 i;
ASSERT_RETURN(ctx->tx_buf);
ASSERT_IN_OUTPUT_BOUNDS(ctx->mem.named.tx_buf_offset, write_len);
for (i = 0; i < write_len; ++i) {
ctx->tx_buf[ctx->mem.named.tx_buf_offset++] =
(u8)(REG >> (write_len - 1 - i) * 8);
}
break;
}
case JONEOF_EXT_OPCODE: {
u32 jump_offs = decode_imm(ctx, imm_len); /* 2nd imm, at worst 8 B past prog_len */
u8 imm3 = DECODE_U8(); /* 3rd imm, at worst 9 bytes past prog_len */
Boolean jmp = imm3 & 1; /* =0 jmp on match, =1 jmp on no match */
u8 len = ((imm3 >> 1) & 3) + 1; /* size [1..4] in bytes of an element */
u8 cnt = (imm3 >> 3) + 2; /* number [2..33] of elements in set */
if (ctx->pc + cnt * len > ctx->program_len) return EXCEPTION;
while (cnt--) {
u32 v = 0;
int i;
for (i = 0; i < len; ++i) v = (v << 8) | DECODE_U8();
if (REG == v) jmp ^= True;
}
if (jmp) ctx->pc += jump_offs;
break;
}
case EXCEPTIONBUFFER_EXT_OPCODE: {
ctx->except_buf_sz = decode_be16(ctx);
break;
}
default: /* Unknown extended opcode */
return EXCEPTION; /* Bail out */
}
break;
case LDDW_OPCODE:
case STDW_OPCODE:
if (ctx->v6) {
if (!imm) return EXCEPTION;
if (imm > 0xFFFF) return EXCEPTION;
if (imm * 4 > ctx->ram_len) return EXCEPTION;
if (opcode == LDDW_OPCODE) {
REG = counter[-(s32)imm];
} else {
counter[-(s32)imm] = REG;
}
} else {
u32 size = 4;
u32 offs = OTHER_REG + (u32)signed_imm;
/* Negative offsets wrap around the end of the address space. */
/* This allows us to efficiently access the end of the */
/* address space with one-byte immediates without using %=. */
if (offs & 0x80000000) offs += ctx->ram_len; /* unsigned overflow intended */
ASSERT_IN_DATA_BOUNDS(offs, size);
if (opcode == LDDW_OPCODE) {
u32 val = 0;
while (size--) val = (val << 8) | ctx->program[offs++];
REG = val;
} else {
u32 val = REG;
while (size--) {
ctx->program[offs++] = (val >> 24);
val <<= 8;
}
}
}
break;
case WRITE_OPCODE: {
ASSERT_RETURN(ctx->tx_buf);
ASSERT_RETURN(len_field);
{
const u32 write_len = 1 << (len_field - 1);
u32 i;
ASSERT_IN_OUTPUT_BOUNDS(ctx->mem.named.tx_buf_offset, write_len);
for (i = 0; i < write_len; ++i) {
ctx->tx_buf[ctx->mem.named.tx_buf_offset++] =
(u8)(imm >> (write_len - 1 - i) * 8);
}
}
break;
}
default: /* Unknown opcode */
return EXCEPTION; /* Bail out */
}
}
} while (instructions_remaining--);
return EXCEPTION;
}
static int apf_runner(void* ctx, u32* const program, const u32 program_len,
const u32 ram_len, const u8* const packet,
const u32 packet_len, const u32 filter_age_16384ths) {
/* Due to direct 32-bit read/write access to counters at end of ram */
/* APFv6 interpreter requires program & ram_len to be 4 byte aligned. */
if (3 & (uintptr_t)program) return EXCEPTION;
if (3 & ram_len) return EXCEPTION;
/* We rely on ram_len + 65536 not overflowing, so require ram_len < 2GiB */
/* Similarly LDDW/STDW have special meaning for negative ram offsets. */
/* We also don't want garbage like program_len == 0xFFFFFFFF */
if ((program_len | ram_len) >> 31) return EXCEPTION;
{
apf_context apf_ctx = { 0 };
int ret;
apf_ctx.ptr_size = sizeof(void*);
apf_ctx.caller_ctx = ctx;
apf_ctx.program = (u8*)program;
apf_ctx.program_len = program_len;
apf_ctx.ram_len = ram_len;
apf_ctx.packet = packet;
apf_ctx.packet_len = packet_len;
/* Fill in pre-filled memory slot values. */
apf_ctx.mem.named.program_size = program_len;
apf_ctx.mem.named.ram_len = ram_len;
apf_ctx.mem.named.packet_size = packet_len;
apf_ctx.mem.named.apf_version = apf_version();
apf_ctx.mem.named.filter_age = filter_age_16384ths >> 14;
apf_ctx.mem.named.filter_age_16384ths = filter_age_16384ths;
ret = do_apf_run(&apf_ctx);
if (apf_ctx.tx_buf) do_discard_buffer(&apf_ctx);
/* Convert any exceptions internal to the program to just normal 'PASS' */
if (ret >= EXCEPTION) {
u16 buf_size = apf_ctx.except_buf_sz;
if (buf_size >= sizeof(apf_ctx) && apf_ctx.program_len + buf_size <= apf_ctx.ram_len) {
u8* buf = apf_ctx.program + apf_ctx.program_len;
memcpy(buf, &apf_ctx, sizeof(apf_ctx));
buf_size -= sizeof(apf_ctx);
buf += sizeof(apf_ctx);
if (buf_size > apf_ctx.packet_len) buf_size = apf_ctx.packet_len;
memcpy(buf, apf_ctx.packet, buf_size);
}
ret = PASS;
}
return ret;
}
}
int apf_run(void* ctx, u32* const program, const u32 program_len,
const u32 ram_len, const u8* const packet,
const u32 packet_len, const u32 filter_age_16384ths) {
/* Any valid ethernet packet should be at least ETH_HLEN long... */
if (!packet) return EXCEPTION;
if (packet_len < ETH_HLEN) return EXCEPTION;
return apf_runner(ctx, program, program_len, ram_len, packet, packet_len, filter_age_16384ths);
}