blob: e17e11f90e4c6f1554f5070a5e710e3c6c20f213 [file] [log] [blame]
/**********************************************************************
* File: elst2.c (Formerly elist2.c)
* Description: Doubly linked embedded list code not in the include file.
* Author: Phil Cheatle
* Created: Wed Jan 23 11:04:47 GMT 1991
*
* (C) Copyright 1991, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "mfcpch.h" //precompiled headers
#include <stdlib.h>
#include "host.h"
#include "elst2.h"
/***********************************************************************
* MEMBER FUNCTIONS OF CLASS: ELIST2
* =================================
**********************************************************************/
/***********************************************************************
* ELIST2::internal_clear
*
* Used by the destructor and the "clear" member function of derived list
* classes to destroy all the elements on the list.
* The calling function passes a "zapper" function which can be called to
* delete each element of the list, regardless of its derived type. This
* technique permits a generic clear function to destroy elements of
* different derived types correctly, without requiring virtual functions and
* the consequential memory overhead.
**********************************************************************/
void
ELIST2::internal_clear ( //destroy all links
void (*zapper) (ELIST2_LINK *)) {
//ptr to zapper functn
ELIST2_LINK *ptr;
ELIST2_LINK *next;
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2::internal_clear", ABORT, NULL);
#endif
if (!empty ()) {
ptr = last->next; //set to first
last->next = NULL; //break circle
last = NULL; //set list empty
while (ptr) {
next = ptr->next;
zapper(ptr);
ptr = next;
}
}
}
/***********************************************************************
* ELIST2::assign_to_sublist
*
* The list is set to a sublist of another list. "This" list must be empty
* before this function is invoked. The two iterators passed must refer to
* the same list, different from "this" one. The sublist removed is the
* inclusive list from start_it's current position to end_it's current
* position. If this range passes over the end of the source list then the
* source list has its end set to the previous element of start_it. The
* extracted sublist is unaffected by the end point of the source list, its
* end point is always the end_it position.
**********************************************************************/
void ELIST2::assign_to_sublist( //to this list
ELIST2_ITERATOR *start_it, //from list start
ELIST2_ITERATOR *end_it) { //from list end
const ERRCODE LIST_NOT_EMPTY =
"Destination list must be empty before extracting a sublist";
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2::assign_to_sublist", ABORT, NULL);
#endif
if (!empty ())
LIST_NOT_EMPTY.error ("ELIST2.assign_to_sublist", ABORT, NULL);
last = start_it->extract_sublist (end_it);
}
/***********************************************************************
* ELIST2::length
*
* Return count of elements on list
**********************************************************************/
inT32 ELIST2::length() { //count elements
ELIST2_ITERATOR it(this);
inT32 count = 0;
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2::length", ABORT, NULL);
#endif
for (it.mark_cycle_pt (); !it.cycled_list (); it.forward ())
count++;
return count;
}
/***********************************************************************
* ELIST2::sort
*
* Sort elements on list
* NB If you dont like the const declarations in the comparator, coerce yours:
* ( int (*)(const void *, const void *)
**********************************************************************/
void
ELIST2::sort ( //sort elements
int comparator ( //comparison routine
const void *, const void *)) {
ELIST2_ITERATOR it(this);
inT32 count;
ELIST2_LINK **base; //ptr array to sort
ELIST2_LINK **current;
inT32 i;
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2::sort", ABORT, NULL);
#endif
/* Allocate an array of pointers, one per list element */
count = length ();
base = (ELIST2_LINK **) malloc (count * sizeof (ELIST2_LINK *));
/* Extract all elements, putting the pointers in the array */
current = base;
for (it.mark_cycle_pt (); !it.cycled_list (); it.forward ()) {
*current = it.extract ();
current++;
}
/* Sort the pointer array */
qsort ((char *) base, count, sizeof (*base), comparator);
/* Rebuild the list from the sorted pointers */
current = base;
for (i = 0; i < count; i++) {
it.add_to_end (*current);
current++;
}
free(base);
}
// Assuming list has been sorted already, insert new_link to
// keep the list sorted according to the same comparison function.
// Comparision function is the same as used by sort, i.e. uses double
// indirection. Time is O(1) to add to beginning or end.
// Time is linear to add pre-sorted items to an empty list.
void ELIST2::add_sorted(int comparator(const void*, const void*),
ELIST2_LINK* new_link) {
// Check for adding at the end.
if (last == NULL || comparator(&last, &new_link) < 0) {
if (last == NULL) {
new_link->next = new_link;
new_link->prev = new_link;
} else {
new_link->next = last->next;
new_link->prev = last;
last->next = new_link;
new_link->next->prev = new_link;
}
last = new_link;
} else {
// Need to use an iterator.
ELIST2_ITERATOR it(this);
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
ELIST2_LINK* link = it.data();
if (comparator(&link, &new_link) > 0)
break;
}
if (it.cycled_list())
it.add_to_end(new_link);
else
it.add_before_then_move(new_link);
}
}
/***********************************************************************
* ELIST2::prep_serialise
*
* Replace the last member with a count of elements for serialisation.
* This is used on list objects which are members of objects being
* serialised. The containing object has been shallow copied and this member
* function is invoked on the COPY.
**********************************************************************/
void ELIST2::prep_serialise() {
ELIST2_ITERATOR this_it(this);
inT32 count = 0;
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2::prep_serialise", ABORT, NULL);
#endif
count = 0;
if (!empty ())
for (this_it.mark_cycle_pt ();
!this_it.cycled_list (); this_it.forward ())
count++;
last = (ELIST2_LINK *) count;
}
/***********************************************************************
* ELIST2::internal_dump
*
* Cause each element on the list to be serialised by walking the list and
* calling the element_serialiser function for each element. The
* element_serialiser simply does the appropriate coercion of the element to
* its real type and then invokes the elements serialise function
**********************************************************************/
void
ELIST2::internal_dump (FILE * f,
void element_serialiser (FILE *, ELIST2_LINK *)) {
ELIST2_ITERATOR this_it(this);
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2::internal_dump", ABORT, NULL);
#endif
if (!empty ())
for (this_it.mark_cycle_pt ();
!this_it.cycled_list (); this_it.forward ())
element_serialiser (f, this_it.data ());
}
/***********************************************************************
* ELIST2::internal_de_dump
*
* Cause each element on the list to be de_serialised by extracting the count
* of elements on the list, (held in the last member of the dumped version of
* the list object), and then de-serialising that number of list elements,
* adding each to the end of the reconstructed list.
**********************************************************************/
void
ELIST2::internal_de_dump (FILE * f,
ELIST2_LINK * element_de_serialiser (FILE *)) {
inT32 count = (ptrdiff_t) last;
ELIST2_ITERATOR this_it;
ELIST2_LINK *de_serialised_element;
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2::internal_de_dump", ABORT, NULL);
#endif
last = NULL;
this_it.set_to_list (this);
for (; count > 0; count--) {
de_serialised_element = element_de_serialiser (f);
//ignore old ptr
de_serialised_element->next = NULL;
//ignore old ptr
de_serialised_element->prev = NULL;
this_it.add_to_end (de_serialised_element);
}
}
/***********************************************************************
* MEMBER FUNCTIONS OF CLASS: ELIST2_ITERATOR
* ==========================================
**********************************************************************/
/***********************************************************************
* ELIST2_ITERATOR::forward
*
* Move the iterator to the next element of the list.
* REMEMBER: ALL LISTS ARE CIRCULAR.
**********************************************************************/
ELIST2_LINK *ELIST2_ITERATOR::forward() {
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2_ITERATOR::forward", ABORT, NULL);
if (!list)
NO_LIST.error ("ELIST2_ITERATOR::forward", ABORT, NULL);
#endif
if (list->empty ())
return NULL;
if (current) { //not removed so
//set previous
prev = current;
started_cycling = TRUE;
// In case next is deleted by another iterator, get it from the current.
current = current->next;
}
else {
if (ex_current_was_cycle_pt)
cycle_pt = next;
current = next;
}
next = current->next;
#ifndef NDEBUG
if (!current)
NULL_DATA.error ("ELIST2_ITERATOR::forward", ABORT, NULL);
if (!next)
NULL_NEXT.error ("ELIST2_ITERATOR::forward", ABORT,
"This is: %p Current is: %p", this, current);
#endif
return current;
}
/***********************************************************************
* ELIST2_ITERATOR::backward
*
* Move the iterator to the previous element of the list.
* REMEMBER: ALL LISTS ARE CIRCULAR.
**********************************************************************/
ELIST2_LINK *ELIST2_ITERATOR::backward() {
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2_ITERATOR::backward", ABORT, NULL);
if (!list)
NO_LIST.error ("ELIST2_ITERATOR::backward", ABORT, NULL);
#endif
if (list->empty ())
return NULL;
if (current) { //not removed so
//set previous
next = current;
started_cycling = TRUE;
// In case prev is deleted by another iterator, get it from current.
current = current->prev;
} else {
if (ex_current_was_cycle_pt)
cycle_pt = prev;
current = prev;
}
prev = current->prev;
#ifndef NDEBUG
if (!current)
NULL_DATA.error ("ELIST2_ITERATOR::backward", ABORT, NULL);
if (!prev)
NULL_PREV.error ("ELIST2_ITERATOR::backward", ABORT,
"This is: %p Current is: %p", this, current);
#endif
return current;
}
/***********************************************************************
* ELIST2_ITERATOR::data_relative
*
* Return the data pointer to the element "offset" elements from current.
* (This function can't be INLINEd because it contains a loop)
**********************************************************************/
ELIST2_LINK *ELIST2_ITERATOR::data_relative( //get data + or - ..
inT8 offset) { //offset from current
ELIST2_LINK *ptr;
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2_ITERATOR::data_relative", ABORT, NULL);
if (!list)
NO_LIST.error ("ELIST2_ITERATOR::data_relative", ABORT, NULL);
if (list->empty ())
EMPTY_LIST.error ("ELIST2_ITERATOR::data_relative", ABORT, NULL);
#endif
if (offset < 0)
for (ptr = current ? current : next; offset++ < 0; ptr = ptr->prev);
else
for (ptr = current ? current : prev; offset-- > 0; ptr = ptr->next);
#ifndef NDEBUG
if (!ptr)
NULL_DATA.error ("ELIST2_ITERATOR::data_relative", ABORT, NULL);
#endif
return ptr;
}
/***********************************************************************
* ELIST2_ITERATOR::exchange()
*
* Given another iterator, whose current element is a different element on
* the same list list OR an element of another list, exchange the two current
* elements. On return, each iterator points to the element which was the
* other iterators current on entry.
* (This function hasn't been in-lined because its a bit big!)
**********************************************************************/
void ELIST2_ITERATOR::exchange( //positions of 2 links
ELIST2_ITERATOR *other_it) { //other iterator
const ERRCODE DONT_EXCHANGE_DELETED =
"Can't exchange deleted elements of lists";
ELIST2_LINK *old_current;
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2_ITERATOR::exchange", ABORT, NULL);
if (!list)
NO_LIST.error ("ELIST2_ITERATOR::exchange", ABORT, NULL);
if (!other_it)
BAD_PARAMETER.error ("ELIST2_ITERATOR::exchange", ABORT, "other_it NULL");
if (!(other_it->list))
NO_LIST.error ("ELIST2_ITERATOR::exchange", ABORT, "other_it");
#endif
/* Do nothing if either list is empty or if both iterators reference the same
link */
if ((list->empty ()) ||
(other_it->list->empty ()) || (current == other_it->current))
return;
/* Error if either current element is deleted */
if (!current || !other_it->current)
DONT_EXCHANGE_DELETED.error ("ELIST2_ITERATOR.exchange", ABORT, NULL);
/* Now handle the 4 cases: doubleton list; non-doubleton adjacent elements
(other before this); non-doubleton adjacent elements (this before other);
non-adjacent elements. */
//adjacent links
if ((next == other_it->current) ||
(other_it->next == current)) {
//doubleton list
if ((next == other_it->current) &&
(other_it->next == current)) {
prev = next = current;
other_it->prev = other_it->next = other_it->current;
}
else { //non-doubleton with
//adjacent links
//other before this
if (other_it->next == current) {
other_it->prev->next = current;
other_it->current->next = next;
other_it->current->prev = current;
current->next = other_it->current;
current->prev = other_it->prev;
next->prev = other_it->current;
other_it->next = other_it->current;
prev = current;
}
else { //this before other
prev->next = other_it->current;
current->next = other_it->next;
current->prev = other_it->current;
other_it->current->next = current;
other_it->current->prev = prev;
other_it->next->prev = current;
next = current;
other_it->prev = other_it->current;
}
}
}
else { //no overlap
prev->next = other_it->current;
current->next = other_it->next;
current->prev = other_it->prev;
next->prev = other_it->current;
other_it->prev->next = current;
other_it->current->next = next;
other_it->current->prev = prev;
other_it->next->prev = current;
}
/* update end of list pointer when necessary (remember that the 2 iterators
may iterate over different lists!) */
if (list->last == current)
list->last = other_it->current;
if (other_it->list->last == other_it->current)
other_it->list->last = current;
if (current == cycle_pt)
cycle_pt = other_it->cycle_pt;
if (other_it->current == other_it->cycle_pt)
other_it->cycle_pt = cycle_pt;
/* The actual exchange - in all cases*/
old_current = current;
current = other_it->current;
other_it->current = old_current;
}
/***********************************************************************
* ELIST2_ITERATOR::extract_sublist()
*
* This is a private member, used only by ELIST2::assign_to_sublist.
* Given another iterator for the same list, extract the links from THIS to
* OTHER inclusive, link them into a new circular list, and return a
* pointer to the last element.
* (Can't inline this function because it contains a loop)
**********************************************************************/
ELIST2_LINK *ELIST2_ITERATOR::extract_sublist( //from this current
ELIST2_ITERATOR *other_it) { //to other current
#ifndef NDEBUG
const ERRCODE BAD_EXTRACTION_PTS =
"Can't extract sublist from points on different lists";
const ERRCODE DONT_EXTRACT_DELETED =
"Can't extract a sublist marked by deleted points";
#endif
const ERRCODE BAD_SUBLIST = "Can't find sublist end point in original list";
ELIST2_ITERATOR temp_it = *this;
ELIST2_LINK *end_of_new_list;
#ifndef NDEBUG
if (!this)
NULL_OBJECT.error ("ELIST2_ITERATOR::extract_sublist", ABORT, NULL);
if (!other_it)
BAD_PARAMETER.error ("ELIST2_ITERATOR::extract_sublist", ABORT,
"other_it NULL");
if (!list)
NO_LIST.error ("ELIST2_ITERATOR::extract_sublist", ABORT, NULL);
if (list != other_it->list)
BAD_EXTRACTION_PTS.error ("ELIST2_ITERATOR.extract_sublist", ABORT, NULL);
if (list->empty ())
EMPTY_LIST.error ("ELIST2_ITERATOR::extract_sublist", ABORT, NULL);
if (!current || !other_it->current)
DONT_EXTRACT_DELETED.error ("ELIST2_ITERATOR.extract_sublist", ABORT,
NULL);
#endif
ex_current_was_last = other_it->ex_current_was_last = FALSE;
ex_current_was_cycle_pt = FALSE;
other_it->ex_current_was_cycle_pt = FALSE;
temp_it.mark_cycle_pt ();
do { //walk sublist
if (temp_it.cycled_list ()) //cant find end pt
BAD_SUBLIST.error ("ELIST2_ITERATOR.extract_sublist", ABORT, NULL);
if (temp_it.at_last ()) {
list->last = prev;
ex_current_was_last = other_it->ex_current_was_last = TRUE;
}
if (temp_it.current == cycle_pt)
ex_current_was_cycle_pt = TRUE;
if (temp_it.current == other_it->cycle_pt)
other_it->ex_current_was_cycle_pt = TRUE;
temp_it.forward ();
}
//do INCLUSIVE list
while (temp_it.prev != other_it->current);
//circularise sublist
other_it->current->next = current;
//circularise sublist
current->prev = other_it->current;
end_of_new_list = other_it->current;
//sublist = whole list
if (prev == other_it->current) {
list->last = NULL;
prev = current = next = NULL;
other_it->prev = other_it->current = other_it->next = NULL;
}
else {
prev->next = other_it->next;
other_it->next->prev = prev;
current = other_it->current = NULL;
next = other_it->next;
other_it->prev = prev;
}
return end_of_new_list;
}