blob: c7a2d09953b5de3404a43b88736330cfcf7a3fac [file] [log] [blame]
/*
* Copyright (C) 2009 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RegexCompiler.h"
#include "RegexInterpreter.h"
#include "RegexPattern.h"
#include <wtf/Vector.h>
#if ENABLE(YARR)
using namespace WTF;
namespace JSC { namespace Yarr {
class CharacterClassConstructor {
public:
CharacterClassConstructor(bool isCaseInsensitive = false)
: m_isCaseInsensitive(isCaseInsensitive)
{
}
void reset()
{
m_matches.clear();
m_ranges.clear();
m_matchesUnicode.clear();
m_rangesUnicode.clear();
}
void append(const CharacterClass* other)
{
for (size_t i = 0; i < other->m_matches.size(); ++i)
addSorted(m_matches, other->m_matches[i]);
for (size_t i = 0; i < other->m_ranges.size(); ++i)
addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end);
for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i)
addSorted(m_matchesUnicode, other->m_matchesUnicode[i]);
for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i)
addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end);
}
void putChar(UChar ch)
{
if (ch <= 0x7f) {
if (m_isCaseInsensitive && isASCIIAlpha(ch)) {
addSorted(m_matches, toASCIIUpper(ch));
addSorted(m_matches, toASCIILower(ch));
} else
addSorted(m_matches, ch);
} else {
UChar upper, lower;
if (m_isCaseInsensitive && ((upper = Unicode::toUpper(ch)) != (lower = Unicode::toLower(ch)))) {
addSorted(m_matchesUnicode, upper);
addSorted(m_matchesUnicode, lower);
} else
addSorted(m_matchesUnicode, ch);
}
}
// returns true if this character has another case, and 'ch' is the upper case form.
static inline bool isUnicodeUpper(UChar ch)
{
return ch != Unicode::toLower(ch);
}
// returns true if this character has another case, and 'ch' is the lower case form.
static inline bool isUnicodeLower(UChar ch)
{
return ch != Unicode::toUpper(ch);
}
void putRange(UChar lo, UChar hi)
{
if (lo <= 0x7f) {
char asciiLo = lo;
char asciiHi = std::min(hi, (UChar)0x7f);
addSortedRange(m_ranges, lo, asciiHi);
if (m_isCaseInsensitive) {
if ((asciiLo <= 'Z') && (asciiHi >= 'A'))
addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A'));
if ((asciiLo <= 'z') && (asciiHi >= 'a'))
addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a'));
}
}
if (hi >= 0x80) {
uint32_t unicodeCurr = std::max(lo, (UChar)0x80);
addSortedRange(m_rangesUnicode, unicodeCurr, hi);
if (m_isCaseInsensitive) {
while (unicodeCurr <= hi) {
// If the upper bound of the range (hi) is 0xffff, the increments to
// unicodeCurr in this loop may take it to 0x10000. This is fine
// (if so we won't re-enter the loop, since the loop condition above
// will definitely fail) - but this does mean we cannot use a UChar
// to represent unicodeCurr, we must use a 32-bit value instead.
ASSERT(unicodeCurr <= 0xffff);
if (isUnicodeUpper(unicodeCurr)) {
UChar lowerCaseRangeBegin = Unicode::toLower(unicodeCurr);
UChar lowerCaseRangeEnd = lowerCaseRangeBegin;
while ((++unicodeCurr <= hi) && isUnicodeUpper(unicodeCurr) && (Unicode::toLower(unicodeCurr) == (lowerCaseRangeEnd + 1)))
lowerCaseRangeEnd++;
addSortedRange(m_rangesUnicode, lowerCaseRangeBegin, lowerCaseRangeEnd);
} else if (isUnicodeLower(unicodeCurr)) {
UChar upperCaseRangeBegin = Unicode::toUpper(unicodeCurr);
UChar upperCaseRangeEnd = upperCaseRangeBegin;
while ((++unicodeCurr <= hi) && isUnicodeLower(unicodeCurr) && (Unicode::toUpper(unicodeCurr) == (upperCaseRangeEnd + 1)))
upperCaseRangeEnd++;
addSortedRange(m_rangesUnicode, upperCaseRangeBegin, upperCaseRangeEnd);
} else
++unicodeCurr;
}
}
}
}
CharacterClass* charClass()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_matches.append(m_matches);
characterClass->m_ranges.append(m_ranges);
characterClass->m_matchesUnicode.append(m_matchesUnicode);
characterClass->m_rangesUnicode.append(m_rangesUnicode);
reset();
return characterClass;
}
private:
void addSorted(Vector<UChar>& matches, UChar ch)
{
unsigned pos = 0;
unsigned range = matches.size();
// binary chop, find position to insert char.
while (range) {
unsigned index = range >> 1;
int val = matches[pos+index] - ch;
if (!val)
return;
else if (val > 0)
range = index;
else {
pos += (index+1);
range -= (index+1);
}
}
if (pos == matches.size())
matches.append(ch);
else
matches.insert(pos, ch);
}
void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi)
{
unsigned end = ranges.size();
// Simple linear scan - I doubt there are that many ranges anyway...
// feel free to fix this with something faster (eg binary chop).
for (unsigned i = 0; i < end; ++i) {
// does the new range fall before the current position in the array
if (hi < ranges[i].begin) {
// optional optimization: concatenate appending ranges? - may not be worthwhile.
if (hi == (ranges[i].begin - 1)) {
ranges[i].begin = lo;
return;
}
ranges.insert(i, CharacterRange(lo, hi));
return;
}
// Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining
// If the new range start at or before the end of the last range, then the overlap (if it starts one after the
// end of the last range they concatenate, which is just as good.
if (lo <= (ranges[i].end + 1)) {
// found an intersect! we'll replace this entry in the array.
ranges[i].begin = std::min(ranges[i].begin, lo);
ranges[i].end = std::max(ranges[i].end, hi);
// now check if the new range can subsume any subsequent ranges.
unsigned next = i+1;
// each iteration of the loop we will either remove something from the list, or break the loop.
while (next < ranges.size()) {
if (ranges[next].begin <= (ranges[i].end + 1)) {
// the next entry now overlaps / concatenates this one.
ranges[i].end = std::max(ranges[i].end, ranges[next].end);
ranges.remove(next);
} else
break;
}
return;
}
}
// CharacterRange comes after all existing ranges.
ranges.append(CharacterRange(lo, hi));
}
bool m_isCaseInsensitive;
Vector<UChar> m_matches;
Vector<CharacterRange> m_ranges;
Vector<UChar> m_matchesUnicode;
Vector<CharacterRange> m_rangesUnicode;
};
CharacterClass* newlineCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_matches.append('\n');
characterClass->m_matches.append('\r');
characterClass->m_matchesUnicode.append(0x2028);
characterClass->m_matchesUnicode.append(0x2029);
return characterClass;
}
CharacterClass* digitsCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_ranges.append(CharacterRange('0', '9'));
return characterClass;
}
CharacterClass* spacesCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_matches.append(' ');
characterClass->m_ranges.append(CharacterRange('\t', '\r'));
characterClass->m_matchesUnicode.append(0x00a0);
characterClass->m_matchesUnicode.append(0x1680);
characterClass->m_matchesUnicode.append(0x180e);
characterClass->m_matchesUnicode.append(0x2028);
characterClass->m_matchesUnicode.append(0x2029);
characterClass->m_matchesUnicode.append(0x202f);
characterClass->m_matchesUnicode.append(0x205f);
characterClass->m_matchesUnicode.append(0x3000);
characterClass->m_rangesUnicode.append(CharacterRange(0x2000, 0x200a));
return characterClass;
}
CharacterClass* wordcharCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_matches.append('_');
characterClass->m_ranges.append(CharacterRange('0', '9'));
characterClass->m_ranges.append(CharacterRange('A', 'Z'));
characterClass->m_ranges.append(CharacterRange('a', 'z'));
return characterClass;
}
CharacterClass* nondigitsCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_ranges.append(CharacterRange(0, '0' - 1));
characterClass->m_ranges.append(CharacterRange('9' + 1, 0x7f));
characterClass->m_rangesUnicode.append(CharacterRange(0x80, 0xffff));
return characterClass;
}
CharacterClass* nonspacesCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_ranges.append(CharacterRange(0, '\t' - 1));
characterClass->m_ranges.append(CharacterRange('\r' + 1, ' ' - 1));
characterClass->m_ranges.append(CharacterRange(' ' + 1, 0x7f));
characterClass->m_rangesUnicode.append(CharacterRange(0x0080, 0x009f));
characterClass->m_rangesUnicode.append(CharacterRange(0x00a1, 0x167f));
characterClass->m_rangesUnicode.append(CharacterRange(0x1681, 0x180d));
characterClass->m_rangesUnicode.append(CharacterRange(0x180f, 0x1fff));
characterClass->m_rangesUnicode.append(CharacterRange(0x200b, 0x2027));
characterClass->m_rangesUnicode.append(CharacterRange(0x202a, 0x202e));
characterClass->m_rangesUnicode.append(CharacterRange(0x2030, 0x205e));
characterClass->m_rangesUnicode.append(CharacterRange(0x2060, 0x2fff));
characterClass->m_rangesUnicode.append(CharacterRange(0x3001, 0xffff));
return characterClass;
}
CharacterClass* nonwordcharCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_matches.append('`');
characterClass->m_ranges.append(CharacterRange(0, '0' - 1));
characterClass->m_ranges.append(CharacterRange('9' + 1, 'A' - 1));
characterClass->m_ranges.append(CharacterRange('Z' + 1, '_' - 1));
characterClass->m_ranges.append(CharacterRange('z' + 1, 0x7f));
characterClass->m_rangesUnicode.append(CharacterRange(0x80, 0xffff));
return characterClass;
}
class RegexPatternConstructor {
public:
RegexPatternConstructor(RegexPattern& pattern)
: m_pattern(pattern)
, m_characterClassConstructor(pattern.m_ignoreCase)
{
}
~RegexPatternConstructor()
{
}
void reset()
{
m_pattern.reset();
m_characterClassConstructor.reset();
}
void assertionBOL()
{
m_alternative->m_terms.append(PatternTerm::BOL());
}
void assertionEOL()
{
m_alternative->m_terms.append(PatternTerm::EOL());
}
void assertionWordBoundary(bool invert)
{
m_alternative->m_terms.append(PatternTerm::WordBoundary(invert));
}
void atomPatternCharacter(UChar ch)
{
// We handle case-insensitive checking of unicode characters which do have both
// cases by handling them as if they were defined using a CharacterClass.
if (m_pattern.m_ignoreCase && !isASCII(ch) && (Unicode::toUpper(ch) != Unicode::toLower(ch))) {
atomCharacterClassBegin();
atomCharacterClassAtom(ch);
atomCharacterClassEnd();
} else
m_alternative->m_terms.append(PatternTerm(ch));
}
void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert)
{
switch (classID) {
case DigitClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert));
break;
case SpaceClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert));
break;
case WordClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert));
break;
case NewlineClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert));
break;
}
}
void atomCharacterClassBegin(bool invert = false)
{
m_invertCharacterClass = invert;
}
void atomCharacterClassAtom(UChar ch)
{
m_characterClassConstructor.putChar(ch);
}
void atomCharacterClassRange(UChar begin, UChar end)
{
m_characterClassConstructor.putRange(begin, end);
}
void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert)
{
ASSERT(classID != NewlineClassID);
switch (classID) {
case DigitClassID:
m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass());
break;
case SpaceClassID:
m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass());
break;
case WordClassID:
m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass());
break;
default:
ASSERT_NOT_REACHED();
}
}
void atomCharacterClassEnd()
{
CharacterClass* newCharacterClass = m_characterClassConstructor.charClass();
m_pattern.m_userCharacterClasses.append(newCharacterClass);
m_alternative->m_terms.append(PatternTerm(newCharacterClass, m_invertCharacterClass));
}
void atomParenthesesSubpatternBegin(bool capture = true)
{
unsigned subpatternId = m_pattern.m_numSubpatterns + 1;
if (capture)
m_pattern.m_numSubpatterns++;
PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative);
m_pattern.m_disjunctions.append(parenthesesDisjunction);
m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction, capture));
m_alternative = parenthesesDisjunction->addNewAlternative();
}
void atomParentheticalAssertionBegin(bool invert = false)
{
PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative);
m_pattern.m_disjunctions.append(parenthesesDisjunction);
m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction, invert));
m_alternative = parenthesesDisjunction->addNewAlternative();
}
void atomParenthesesEnd()
{
ASSERT(m_alternative->m_parent);
ASSERT(m_alternative->m_parent->m_parent);
m_alternative = m_alternative->m_parent->m_parent;
m_alternative->lastTerm().parentheses.lastSubpatternId = m_pattern.m_numSubpatterns;
}
void atomBackReference(unsigned subpatternId)
{
ASSERT(subpatternId);
m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId);
if (subpatternId > m_pattern.m_numSubpatterns) {
m_alternative->m_terms.append(PatternTerm::ForwardReference());
return;
}
PatternAlternative* currentAlternative = m_alternative;
ASSERT(currentAlternative);
// Note to self: if we waited until the AST was baked, we could also remove forwards refs
while ((currentAlternative = currentAlternative->m_parent->m_parent)) {
PatternTerm& term = currentAlternative->lastTerm();
ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion));
if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.invertOrCapture && (subpatternId == term.subpatternId)) {
m_alternative->m_terms.append(PatternTerm::ForwardReference());
return;
}
}
m_alternative->m_terms.append(PatternTerm(subpatternId));
}
PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction)
{
PatternDisjunction* newDisjunction = new PatternDisjunction();
newDisjunction->m_parent = disjunction->m_parent;
for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
PatternAlternative* alternative = disjunction->m_alternatives[alt];
PatternAlternative* newAlternative = newDisjunction->addNewAlternative();
for (unsigned i = 0; i < alternative->m_terms.size(); ++i)
newAlternative->m_terms.append(copyTerm(alternative->m_terms[i]));
}
m_pattern.m_disjunctions.append(newDisjunction);
return newDisjunction;
}
PatternTerm copyTerm(PatternTerm& term)
{
if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion))
return PatternTerm(term);
PatternTerm termCopy = term;
termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction);
return termCopy;
}
void quantifyAtom(unsigned min, unsigned max, bool greedy)
{
ASSERT(min <= max);
ASSERT(m_alternative->m_terms.size());
if (!max) {
m_alternative->removeLastTerm();
return;
}
PatternTerm& term = m_alternative->lastTerm();
ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary);
ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount));
// For any assertion with a zero minimum, not matching is valid and has no effect,
// remove it. Otherwise, we need to match as least once, but there is no point
// matching more than once, so remove the quantifier. It is not entirely clear
// from the spec whether or not this behavior is correct, but I believe this
// matches Firefox. :-/
if (term.type == PatternTerm::TypeParentheticalAssertion) {
if (!min)
m_alternative->removeLastTerm();
return;
}
if (min == 0)
term.quantify(max, greedy ? QuantifierGreedy : QuantifierNonGreedy);
else if (min == max)
term.quantify(min, QuantifierFixedCount);
else {
term.quantify(min, QuantifierFixedCount);
m_alternative->m_terms.append(copyTerm(term));
// NOTE: this term is interesting from an analysis perspective, in that it can be ignored.....
m_alternative->lastTerm().quantify((max == UINT_MAX) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy);
if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern)
m_alternative->lastTerm().parentheses.isCopy = true;
}
}
void disjunction()
{
m_alternative = m_alternative->m_parent->addNewAlternative();
}
void regexBegin()
{
m_pattern.m_body = new PatternDisjunction();
m_alternative = m_pattern.m_body->addNewAlternative();
m_pattern.m_disjunctions.append(m_pattern.m_body);
}
void regexEnd()
{
}
void regexError()
{
}
unsigned setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition)
{
alternative->m_hasFixedSize = true;
unsigned currentInputPosition = initialInputPosition;
for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
PatternTerm& term = alternative->m_terms[i];
switch (term.type) {
case PatternTerm::TypeAssertionBOL:
case PatternTerm::TypeAssertionEOL:
case PatternTerm::TypeAssertionWordBoundary:
term.inputPosition = currentInputPosition;
break;
case PatternTerm::TypeBackReference:
term.inputPosition = currentInputPosition;
term.frameLocation = currentCallFrameSize;
currentCallFrameSize += RegexStackSpaceForBackTrackInfoBackReference;
alternative->m_hasFixedSize = false;
break;
case PatternTerm::TypeForwardReference:
break;
case PatternTerm::TypePatternCharacter:
term.inputPosition = currentInputPosition;
if (term.quantityType != QuantifierFixedCount) {
term.frameLocation = currentCallFrameSize;
currentCallFrameSize += RegexStackSpaceForBackTrackInfoPatternCharacter;
alternative->m_hasFixedSize = false;
} else
currentInputPosition += term.quantityCount;
break;
case PatternTerm::TypeCharacterClass:
term.inputPosition = currentInputPosition;
if (term.quantityType != QuantifierFixedCount) {
term.frameLocation = currentCallFrameSize;
currentCallFrameSize += RegexStackSpaceForBackTrackInfoCharacterClass;
alternative->m_hasFixedSize = false;
} else
currentInputPosition += term.quantityCount;
break;
case PatternTerm::TypeParenthesesSubpattern:
// Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own.
term.frameLocation = currentCallFrameSize;
if ((term.quantityCount == 1) && !term.parentheses.isCopy) {
if (term.quantityType == QuantifierFixedCount) {
currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition);
currentInputPosition += term.parentheses.disjunction->m_minimumSize;
} else {
currentCallFrameSize += RegexStackSpaceForBackTrackInfoParenthesesOnce;
currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition);
}
term.inputPosition = currentInputPosition;
} else {
term.inputPosition = currentInputPosition;
setupDisjunctionOffsets(term.parentheses.disjunction, 0, currentInputPosition);
currentCallFrameSize += RegexStackSpaceForBackTrackInfoParentheses;
}
// Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length.
alternative->m_hasFixedSize = false;
break;
case PatternTerm::TypeParentheticalAssertion:
term.inputPosition = currentInputPosition;
term.frameLocation = currentCallFrameSize;
currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + RegexStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition);
break;
}
}
alternative->m_minimumSize = currentInputPosition - initialInputPosition;
return currentCallFrameSize;
}
unsigned setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition)
{
if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1))
initialCallFrameSize += RegexStackSpaceForBackTrackInfoAlternative;
unsigned minimumInputSize = UINT_MAX;
unsigned maximumCallFrameSize = 0;
bool hasFixedSize = true;
for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
PatternAlternative* alternative = disjunction->m_alternatives[alt];
unsigned currentAlternativeCallFrameSize = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition);
minimumInputSize = min(minimumInputSize, alternative->m_minimumSize);
maximumCallFrameSize = max(maximumCallFrameSize, currentAlternativeCallFrameSize);
hasFixedSize &= alternative->m_hasFixedSize;
}
ASSERT(minimumInputSize != UINT_MAX);
ASSERT(maximumCallFrameSize >= initialCallFrameSize);
disjunction->m_hasFixedSize = hasFixedSize;
disjunction->m_minimumSize = minimumInputSize;
disjunction->m_callFrameSize = maximumCallFrameSize;
return maximumCallFrameSize;
}
void setupOffsets()
{
setupDisjunctionOffsets(m_pattern.m_body, 0, 0);
}
private:
RegexPattern& m_pattern;
PatternAlternative* m_alternative;
CharacterClassConstructor m_characterClassConstructor;
bool m_invertCharacterClass;
};
const char* compileRegex(const UString& patternString, RegexPattern& pattern)
{
RegexPatternConstructor constructor(pattern);
if (const char* error = parse(constructor, patternString))
return error;
// If the pattern contains illegal backreferences reset & reparse.
// Quoting Netscape's "What's new in JavaScript 1.2",
// "Note: if the number of left parentheses is less than the number specified
// in \#, the \# is taken as an octal escape as described in the next row."
if (pattern.containsIllegalBackReference()) {
unsigned numSubpatterns = pattern.m_numSubpatterns;
constructor.reset();
#if !ASSERT_DISABLED
const char* error =
#endif
parse(constructor, patternString, numSubpatterns);
ASSERT(!error);
ASSERT(numSubpatterns == pattern.m_numSubpatterns);
}
constructor.setupOffsets();
return false;
};
} }
#endif