blob: 2aa51f0b3861aa02d0815fd419e174f19c0ce9fa [file] [log] [blame]
/*
* Copyright © 2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include "main/core.h" /* for Elements */
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "glsl_types.h"
#include "builtin_types.h"
extern "C" {
#include "program/hash_table.h"
}
hash_table *glsl_type::array_types = NULL;
hash_table *glsl_type::record_types = NULL;
void *glsl_type::mem_ctx = NULL;
void
glsl_type::init_ralloc_type_ctx(void)
{
if (glsl_type::mem_ctx == NULL) {
glsl_type::mem_ctx = ralloc_autofree_context();
assert(glsl_type::mem_ctx != NULL);
}
}
glsl_type::glsl_type(GLenum gl_type,
glsl_base_type base_type, unsigned vector_elements,
unsigned matrix_columns, const char *name) :
gl_type(gl_type),
base_type(base_type),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampler_type(0),
vector_elements(vector_elements), matrix_columns(matrix_columns),
length(0)
{
init_ralloc_type_ctx();
this->name = ralloc_strdup(this->mem_ctx, name);
/* Neither dimension is zero or both dimensions are zero.
*/
assert((vector_elements == 0) == (matrix_columns == 0));
memset(& fields, 0, sizeof(fields));
}
glsl_type::glsl_type(GLenum gl_type,
enum glsl_sampler_dim dim, bool shadow, bool array,
unsigned type, const char *name) :
gl_type(gl_type),
base_type(GLSL_TYPE_SAMPLER),
sampler_dimensionality(dim), sampler_shadow(shadow),
sampler_array(array), sampler_type(type),
vector_elements(0), matrix_columns(0),
length(0)
{
init_ralloc_type_ctx();
this->name = ralloc_strdup(this->mem_ctx, name);
memset(& fields, 0, sizeof(fields));
}
glsl_type::glsl_type(const glsl_struct_field *fields, unsigned num_fields,
const char *name) :
base_type(GLSL_TYPE_STRUCT),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampler_type(0),
vector_elements(0), matrix_columns(0),
length(num_fields)
{
unsigned int i;
init_ralloc_type_ctx();
this->name = ralloc_strdup(this->mem_ctx, name);
this->fields.structure = ralloc_array(this->mem_ctx,
glsl_struct_field, length);
for (i = 0; i < length; i++) {
this->fields.structure[i].type = fields[i].type;
this->fields.structure[i].name = ralloc_strdup(this->fields.structure,
fields[i].name);
}
}
static void
add_types_to_symbol_table(glsl_symbol_table *symtab,
const struct glsl_type *types,
unsigned num_types, bool warn)
{
(void) warn;
for (unsigned i = 0; i < num_types; i++) {
symtab->add_type(types[i].name, & types[i]);
}
}
bool
glsl_type::contains_sampler() const
{
if (this->is_array()) {
return this->fields.array->contains_sampler();
} else if (this->is_record()) {
for (unsigned int i = 0; i < this->length; i++) {
if (this->fields.structure[i].type->contains_sampler())
return true;
}
return false;
} else {
return this->is_sampler();
}
}
gl_texture_index
glsl_type::sampler_index() const
{
const glsl_type *const t = (this->is_array()) ? this->fields.array : this;
assert(t->is_sampler());
switch (t->sampler_dimensionality) {
case GLSL_SAMPLER_DIM_1D:
return (t->sampler_array) ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
case GLSL_SAMPLER_DIM_2D:
return (t->sampler_array) ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
case GLSL_SAMPLER_DIM_3D:
return TEXTURE_3D_INDEX;
case GLSL_SAMPLER_DIM_CUBE:
return TEXTURE_CUBE_INDEX;
case GLSL_SAMPLER_DIM_RECT:
return TEXTURE_RECT_INDEX;
case GLSL_SAMPLER_DIM_BUF:
return TEXTURE_BUFFER_INDEX;
case GLSL_SAMPLER_DIM_EXTERNAL:
return TEXTURE_EXTERNAL_INDEX;
default:
assert(!"Should not get here.");
return TEXTURE_BUFFER_INDEX;
}
}
void
glsl_type::generate_100ES_types(glsl_symbol_table *symtab)
{
add_types_to_symbol_table(symtab, builtin_core_types,
Elements(builtin_core_types),
false);
add_types_to_symbol_table(symtab, builtin_structure_types,
Elements(builtin_structure_types),
false);
add_types_to_symbol_table(symtab, void_type, 1, false);
}
void
glsl_type::generate_110_types(glsl_symbol_table *symtab, bool add_deprecated)
{
generate_100ES_types(symtab);
add_types_to_symbol_table(symtab, builtin_110_types,
Elements(builtin_110_types),
false);
add_types_to_symbol_table(symtab, &_sampler3D_type, 1, false);
if (add_deprecated) {
add_types_to_symbol_table(symtab, builtin_110_deprecated_structure_types,
Elements(builtin_110_deprecated_structure_types),
false);
}
}
void
glsl_type::generate_120_types(glsl_symbol_table *symtab, bool add_deprecated)
{
generate_110_types(symtab, add_deprecated);
add_types_to_symbol_table(symtab, builtin_120_types,
Elements(builtin_120_types), false);
}
void
glsl_type::generate_130_types(glsl_symbol_table *symtab, bool add_deprecated)
{
generate_120_types(symtab, add_deprecated);
add_types_to_symbol_table(symtab, builtin_130_types,
Elements(builtin_130_types), false);
generate_EXT_texture_array_types(symtab, false);
}
void
glsl_type::generate_140_types(glsl_symbol_table *symtab)
{
generate_130_types(symtab, false);
add_types_to_symbol_table(symtab, builtin_140_types,
Elements(builtin_140_types), false);
add_types_to_symbol_table(symtab, builtin_EXT_texture_buffer_object_types,
Elements(builtin_EXT_texture_buffer_object_types),
false);
}
void
glsl_type::generate_ARB_texture_rectangle_types(glsl_symbol_table *symtab,
bool warn)
{
add_types_to_symbol_table(symtab, builtin_ARB_texture_rectangle_types,
Elements(builtin_ARB_texture_rectangle_types),
warn);
}
void
glsl_type::generate_EXT_texture_array_types(glsl_symbol_table *symtab,
bool warn)
{
add_types_to_symbol_table(symtab, builtin_EXT_texture_array_types,
Elements(builtin_EXT_texture_array_types),
warn);
}
void
glsl_type::generate_OES_texture_3D_types(glsl_symbol_table *symtab, bool warn)
{
add_types_to_symbol_table(symtab, &_sampler3D_type, 1, warn);
}
void
glsl_type::generate_OES_EGL_image_external_types(glsl_symbol_table *symtab,
bool warn)
{
add_types_to_symbol_table(symtab, builtin_OES_EGL_image_external_types,
Elements(builtin_OES_EGL_image_external_types),
warn);
}
void
_mesa_glsl_initialize_types(struct _mesa_glsl_parse_state *state)
{
switch (state->language_version) {
case 100:
assert(state->es_shader);
glsl_type::generate_100ES_types(state->symbols);
break;
case 110:
glsl_type::generate_110_types(state->symbols, true);
break;
case 120:
glsl_type::generate_120_types(state->symbols, true);
break;
case 130:
glsl_type::generate_130_types(state->symbols, true);
break;
case 140:
glsl_type::generate_140_types(state->symbols);
break;
default:
/* error */
break;
}
if (state->ARB_texture_rectangle_enable ||
state->language_version >= 140) {
glsl_type::generate_ARB_texture_rectangle_types(state->symbols,
state->ARB_texture_rectangle_warn);
}
if (state->OES_texture_3D_enable && state->language_version == 100) {
glsl_type::generate_OES_texture_3D_types(state->symbols,
state->OES_texture_3D_warn);
}
if (state->EXT_texture_array_enable && state->language_version < 130) {
// These are already included in 130; don't create twice.
glsl_type::generate_EXT_texture_array_types(state->symbols,
state->EXT_texture_array_warn);
}
/* We cannot check for language_version == 100 here because we need the
* types to support fixed-function program generation. But this is fine
* since the extension is never enabled for OpenGL contexts.
*/
if (state->OES_EGL_image_external_enable) {
glsl_type::generate_OES_EGL_image_external_types(state->symbols,
state->OES_EGL_image_external_warn);
}
}
const glsl_type *glsl_type::get_base_type() const
{
switch (base_type) {
case GLSL_TYPE_UINT:
return uint_type;
case GLSL_TYPE_INT:
return int_type;
case GLSL_TYPE_FLOAT:
return float_type;
case GLSL_TYPE_BOOL:
return bool_type;
default:
return error_type;
}
}
const glsl_type *glsl_type::get_scalar_type() const
{
const glsl_type *type = this;
/* Handle arrays */
while (type->base_type == GLSL_TYPE_ARRAY)
type = type->fields.array;
/* Handle vectors and matrices */
switch (type->base_type) {
case GLSL_TYPE_UINT:
return uint_type;
case GLSL_TYPE_INT:
return int_type;
case GLSL_TYPE_FLOAT:
return float_type;
default:
/* Handle everything else */
return type;
}
}
void
_mesa_glsl_release_types(void)
{
if (glsl_type::array_types != NULL) {
hash_table_dtor(glsl_type::array_types);
glsl_type::array_types = NULL;
}
if (glsl_type::record_types != NULL) {
hash_table_dtor(glsl_type::record_types);
glsl_type::record_types = NULL;
}
}
glsl_type::glsl_type(const glsl_type *array, unsigned length) :
base_type(GLSL_TYPE_ARRAY),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampler_type(0),
vector_elements(0), matrix_columns(0),
name(NULL), length(length)
{
this->fields.array = array;
/* Inherit the gl type of the base. The GL type is used for
* uniform/statevar handling in Mesa and the arrayness of the type
* is represented by the size rather than the type.
*/
this->gl_type = array->gl_type;
/* Allow a maximum of 10 characters for the array size. This is enough
* for 32-bits of ~0. The extra 3 are for the '[', ']', and terminating
* NUL.
*/
const unsigned name_length = strlen(array->name) + 10 + 3;
char *const n = (char *) ralloc_size(this->mem_ctx, name_length);
if (length == 0)
snprintf(n, name_length, "%s[]", array->name);
else
snprintf(n, name_length, "%s[%u]", array->name, length);
this->name = n;
}
const glsl_type *
glsl_type::get_instance(unsigned base_type, unsigned rows, unsigned columns)
{
if (base_type == GLSL_TYPE_VOID)
return void_type;
if ((rows < 1) || (rows > 4) || (columns < 1) || (columns > 4))
return error_type;
/* Treat GLSL vectors as Nx1 matrices.
*/
if (columns == 1) {
switch (base_type) {
case GLSL_TYPE_UINT:
return uint_type + (rows - 1);
case GLSL_TYPE_INT:
return int_type + (rows - 1);
case GLSL_TYPE_FLOAT:
return float_type + (rows - 1);
case GLSL_TYPE_BOOL:
return bool_type + (rows - 1);
default:
return error_type;
}
} else {
if ((base_type != GLSL_TYPE_FLOAT) || (rows == 1))
return error_type;
/* GLSL matrix types are named mat{COLUMNS}x{ROWS}. Only the following
* combinations are valid:
*
* 1 2 3 4
* 1
* 2 x x x
* 3 x x x
* 4 x x x
*/
#define IDX(c,r) (((c-1)*3) + (r-1))
switch (IDX(columns, rows)) {
case IDX(2,2): return mat2_type;
case IDX(2,3): return mat2x3_type;
case IDX(2,4): return mat2x4_type;
case IDX(3,2): return mat3x2_type;
case IDX(3,3): return mat3_type;
case IDX(3,4): return mat3x4_type;
case IDX(4,2): return mat4x2_type;
case IDX(4,3): return mat4x3_type;
case IDX(4,4): return mat4_type;
default: return error_type;
}
}
assert(!"Should not get here.");
return error_type;
}
const glsl_type *
glsl_type::get_array_instance(const glsl_type *base, unsigned array_size)
{
if (array_types == NULL) {
array_types = hash_table_ctor(64, hash_table_string_hash,
hash_table_string_compare);
}
/* Generate a name using the base type pointer in the key. This is
* done because the name of the base type may not be unique across
* shaders. For example, two shaders may have different record types
* named 'foo'.
*/
char key[128];
snprintf(key, sizeof(key), "%p[%u]", (void *) base, array_size);
const glsl_type *t = (glsl_type *) hash_table_find(array_types, key);
if (t == NULL) {
t = new glsl_type(base, array_size);
hash_table_insert(array_types, (void *) t, ralloc_strdup(mem_ctx, key));
}
assert(t->base_type == GLSL_TYPE_ARRAY);
assert(t->length == array_size);
assert(t->fields.array == base);
return t;
}
int
glsl_type::record_key_compare(const void *a, const void *b)
{
const glsl_type *const key1 = (glsl_type *) a;
const glsl_type *const key2 = (glsl_type *) b;
/* Return zero is the types match (there is zero difference) or non-zero
* otherwise.
*/
if (strcmp(key1->name, key2->name) != 0)
return 1;
if (key1->length != key2->length)
return 1;
for (unsigned i = 0; i < key1->length; i++) {
if (key1->fields.structure[i].type != key2->fields.structure[i].type)
return 1;
if (strcmp(key1->fields.structure[i].name,
key2->fields.structure[i].name) != 0)
return 1;
}
return 0;
}
unsigned
glsl_type::record_key_hash(const void *a)
{
const glsl_type *const key = (glsl_type *) a;
char hash_key[128];
unsigned size = 0;
size = snprintf(hash_key, sizeof(hash_key), "%08x", key->length);
for (unsigned i = 0; i < key->length; i++) {
if (size >= sizeof(hash_key))
break;
size += snprintf(& hash_key[size], sizeof(hash_key) - size,
"%p", (void *) key->fields.structure[i].type);
}
return hash_table_string_hash(& hash_key);
}
const glsl_type *
glsl_type::get_record_instance(const glsl_struct_field *fields,
unsigned num_fields,
const char *name)
{
const glsl_type key(fields, num_fields, name);
if (record_types == NULL) {
record_types = hash_table_ctor(64, record_key_hash, record_key_compare);
}
const glsl_type *t = (glsl_type *) hash_table_find(record_types, & key);
if (t == NULL) {
t = new glsl_type(fields, num_fields, name);
hash_table_insert(record_types, (void *) t, t);
}
assert(t->base_type == GLSL_TYPE_STRUCT);
assert(t->length == num_fields);
assert(strcmp(t->name, name) == 0);
return t;
}
const glsl_type *
glsl_type::field_type(const char *name) const
{
if (this->base_type != GLSL_TYPE_STRUCT)
return error_type;
for (unsigned i = 0; i < this->length; i++) {
if (strcmp(name, this->fields.structure[i].name) == 0)
return this->fields.structure[i].type;
}
return error_type;
}
int
glsl_type::field_index(const char *name) const
{
if (this->base_type != GLSL_TYPE_STRUCT)
return -1;
for (unsigned i = 0; i < this->length; i++) {
if (strcmp(name, this->fields.structure[i].name) == 0)
return i;
}
return -1;
}
unsigned
glsl_type::component_slots() const
{
switch (this->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
return this->components();
case GLSL_TYPE_STRUCT: {
unsigned size = 0;
for (unsigned i = 0; i < this->length; i++)
size += this->fields.structure[i].type->component_slots();
return size;
}
case GLSL_TYPE_ARRAY:
return this->length * this->fields.array->component_slots();
default:
return 0;
}
}
bool
glsl_type::can_implicitly_convert_to(const glsl_type *desired) const
{
if (this == desired)
return true;
/* There is no conversion among matrix types. */
if (this->matrix_columns > 1 || desired->matrix_columns > 1)
return false;
/* int and uint can be converted to float. */
return desired->is_float()
&& this->is_integer()
&& this->vector_elements == desired->vector_elements;
}
unsigned
glsl_type::std140_base_alignment(bool row_major) const
{
/* (1) If the member is a scalar consuming <N> basic machine units, the
* base alignment is <N>.
*
* (2) If the member is a two- or four-component vector with components
* consuming <N> basic machine units, the base alignment is 2<N> or
* 4<N>, respectively.
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (this->is_scalar() || this->is_vector()) {
switch (this->vector_elements) {
case 1:
return 4;
case 2:
return 8;
case 3:
case 4:
return 16;
}
}
/* (4) If the member is an array of scalars or vectors, the base alignment
* and array stride are set to match the base alignment of a single
* array element, according to rules (1), (2), and (3), and rounded up
* to the base alignment of a vec4. The array may have padding at the
* end; the base offset of the member following the array is rounded up
* to the next multiple of the base alignment.
*
* (6) If the member is an array of <S> column-major matrices with <C>
* columns and <R> rows, the matrix is stored identically to a row of
* <S>*<C> column vectors with <R> components each, according to rule
* (4).
*
* (8) If the member is an array of <S> row-major matrices with <C> columns
* and <R> rows, the matrix is stored identically to a row of <S>*<R>
* row vectors with <C> components each, according to rule (4).
*
* (10) If the member is an array of <S> structures, the <S> elements of
* the array are laid out in order, according to rule (9).
*/
if (this->is_array()) {
if (this->fields.array->is_scalar() ||
this->fields.array->is_vector() ||
this->fields.array->is_matrix()) {
return MAX2(this->fields.array->std140_base_alignment(row_major), 16);
} else {
assert(this->fields.array->is_record());
return this->fields.array->std140_base_alignment(row_major);
}
}
/* (5) If the member is a column-major matrix with <C> columns and
* <R> rows, the matrix is stored identically to an array of
* <C> column vectors with <R> components each, according to
* rule (4).
*
* (7) If the member is a row-major matrix with <C> columns and <R>
* rows, the matrix is stored identically to an array of <R>
* row vectors with <C> components each, according to rule (4).
*/
if (this->is_matrix()) {
const struct glsl_type *vec_type, *array_type;
int c = this->matrix_columns;
int r = this->vector_elements;
if (row_major) {
vec_type = get_instance(GLSL_TYPE_FLOAT, c, 1);
array_type = glsl_type::get_array_instance(vec_type, r);
} else {
vec_type = get_instance(GLSL_TYPE_FLOAT, r, 1);
array_type = glsl_type::get_array_instance(vec_type, c);
}
return array_type->std140_base_alignment(false);
}
/* (9) If the member is a structure, the base alignment of the
* structure is <N>, where <N> is the largest base alignment
* value of any of its members, and rounded up to the base
* alignment of a vec4. The individual members of this
* sub-structure are then assigned offsets by applying this set
* of rules recursively, where the base offset of the first
* member of the sub-structure is equal to the aligned offset
* of the structure. The structure may have padding at the end;
* the base offset of the member following the sub-structure is
* rounded up to the next multiple of the base alignment of the
* structure.
*/
if (this->is_record()) {
unsigned base_alignment = 16;
for (unsigned i = 0; i < this->length; i++) {
const struct glsl_type *field_type = this->fields.structure[i].type;
base_alignment = MAX2(base_alignment,
field_type->std140_base_alignment(row_major));
}
return base_alignment;
}
assert(!"not reached");
return -1;
}
static unsigned
align(unsigned val, unsigned align)
{
return (val + align - 1) / align * align;
}
unsigned
glsl_type::std140_size(bool row_major) const
{
/* (1) If the member is a scalar consuming <N> basic machine units, the
* base alignment is <N>.
*
* (2) If the member is a two- or four-component vector with components
* consuming <N> basic machine units, the base alignment is 2<N> or
* 4<N>, respectively.
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (this->is_scalar() || this->is_vector()) {
return this->vector_elements * 4;
}
/* (5) If the member is a column-major matrix with <C> columns and
* <R> rows, the matrix is stored identically to an array of
* <C> column vectors with <R> components each, according to
* rule (4).
*
* (6) If the member is an array of <S> column-major matrices with <C>
* columns and <R> rows, the matrix is stored identically to a row of
* <S>*<C> column vectors with <R> components each, according to rule
* (4).
*
* (7) If the member is a row-major matrix with <C> columns and <R>
* rows, the matrix is stored identically to an array of <R>
* row vectors with <C> components each, according to rule (4).
*
* (8) If the member is an array of <S> row-major matrices with <C> columns
* and <R> rows, the matrix is stored identically to a row of <S>*<R>
* row vectors with <C> components each, according to rule (4).
*/
if (this->is_matrix() || (this->is_array() &&
this->fields.array->is_matrix())) {
const struct glsl_type *element_type;
const struct glsl_type *vec_type;
unsigned int array_len;
if (this->is_array()) {
element_type = this->fields.array;
array_len = this->length;
} else {
element_type = this;
array_len = 1;
}
if (row_major) {
vec_type = get_instance(GLSL_TYPE_FLOAT,
element_type->matrix_columns, 1);
array_len *= element_type->vector_elements;
} else {
vec_type = get_instance(GLSL_TYPE_FLOAT,
element_type->vector_elements, 1);
array_len *= element_type->matrix_columns;
}
const glsl_type *array_type = glsl_type::get_array_instance(vec_type,
array_len);
return array_type->std140_size(false);
}
/* (4) If the member is an array of scalars or vectors, the base alignment
* and array stride are set to match the base alignment of a single
* array element, according to rules (1), (2), and (3), and rounded up
* to the base alignment of a vec4. The array may have padding at the
* end; the base offset of the member following the array is rounded up
* to the next multiple of the base alignment.
*
* (10) If the member is an array of <S> structures, the <S> elements of
* the array are laid out in order, according to rule (9).
*/
if (this->is_array()) {
if (this->fields.array->is_record()) {
return this->length * this->fields.array->std140_size(row_major);
} else {
unsigned element_base_align =
this->fields.array->std140_base_alignment(row_major);
return this->length * MAX2(element_base_align, 16);
}
}
/* (9) If the member is a structure, the base alignment of the
* structure is <N>, where <N> is the largest base alignment
* value of any of its members, and rounded up to the base
* alignment of a vec4. The individual members of this
* sub-structure are then assigned offsets by applying this set
* of rules recursively, where the base offset of the first
* member of the sub-structure is equal to the aligned offset
* of the structure. The structure may have padding at the end;
* the base offset of the member following the sub-structure is
* rounded up to the next multiple of the base alignment of the
* structure.
*/
if (this->is_record()) {
unsigned size = 0;
for (unsigned i = 0; i < this->length; i++) {
const struct glsl_type *field_type = this->fields.structure[i].type;
unsigned align = field_type->std140_base_alignment(row_major);
size = (size + align - 1) / align * align;
size += field_type->std140_size(row_major);
}
size = align(size,
this->fields.structure[0].type->std140_base_alignment(row_major));
return size;
}
assert(!"not reached");
return -1;
}