blob: f9c6677b19bbc6a6882117ccf3c585e48d979861 [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 7.1
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file prog_statevars.c
* Program state variable management.
* \author Brian Paul
*/
#include "main/glheader.h"
#include "main/context.h"
#include "main/imports.h"
#include "main/macros.h"
#include "main/mtypes.h"
#include "main/fbobject.h"
#include "prog_statevars.h"
#include "prog_parameter.h"
#include "main/samplerobj.h"
/**
* Use the list of tokens in the state[] array to find global GL state
* and return it in <value>. Usually, four values are returned in <value>
* but matrix queries may return as many as 16 values.
* This function is used for ARB vertex/fragment programs.
* The program parser will produce the state[] values.
*/
static void
_mesa_fetch_state(struct gl_context *ctx, const gl_state_index state[],
GLfloat *value)
{
switch (state[0]) {
case STATE_MATERIAL:
{
/* state[1] is either 0=front or 1=back side */
const GLuint face = (GLuint) state[1];
const struct gl_material *mat = &ctx->Light.Material;
ASSERT(face == 0 || face == 1);
/* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
/* XXX we could get rid of this switch entirely with a little
* work in arbprogparse.c's parse_state_single_item().
*/
/* state[2] is the material attribute */
switch (state[2]) {
case STATE_AMBIENT:
COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
return;
case STATE_DIFFUSE:
COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
return;
case STATE_SPECULAR:
COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
return;
case STATE_EMISSION:
COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
return;
case STATE_SHININESS:
value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
value[1] = 0.0F;
value[2] = 0.0F;
value[3] = 1.0F;
return;
default:
_mesa_problem(ctx, "Invalid material state in fetch_state");
return;
}
}
case STATE_LIGHT:
{
/* state[1] is the light number */
const GLuint ln = (GLuint) state[1];
/* state[2] is the light attribute */
switch (state[2]) {
case STATE_AMBIENT:
COPY_4V(value, ctx->Light.Light[ln].Ambient);
return;
case STATE_DIFFUSE:
COPY_4V(value, ctx->Light.Light[ln].Diffuse);
return;
case STATE_SPECULAR:
COPY_4V(value, ctx->Light.Light[ln].Specular);
return;
case STATE_POSITION:
COPY_4V(value, ctx->Light.Light[ln].EyePosition);
return;
case STATE_ATTENUATION:
value[0] = ctx->Light.Light[ln].ConstantAttenuation;
value[1] = ctx->Light.Light[ln].LinearAttenuation;
value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
value[3] = ctx->Light.Light[ln].SpotExponent;
return;
case STATE_SPOT_DIRECTION:
COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
value[3] = ctx->Light.Light[ln]._CosCutoff;
return;
case STATE_SPOT_CUTOFF:
value[0] = ctx->Light.Light[ln].SpotCutoff;
return;
case STATE_HALF_VECTOR:
{
static const GLfloat eye_z[] = {0, 0, 1};
GLfloat p[3];
/* Compute infinite half angle vector:
* halfVector = normalize(normalize(lightPos) + (0, 0, 1))
* light.EyePosition.w should be 0 for infinite lights.
*/
COPY_3V(p, ctx->Light.Light[ln].EyePosition);
NORMALIZE_3FV(p);
ADD_3V(value, p, eye_z);
NORMALIZE_3FV(value);
value[3] = 1.0;
}
return;
default:
_mesa_problem(ctx, "Invalid light state in fetch_state");
return;
}
}
case STATE_LIGHTMODEL_AMBIENT:
COPY_4V(value, ctx->Light.Model.Ambient);
return;
case STATE_LIGHTMODEL_SCENECOLOR:
if (state[1] == 0) {
/* front */
GLint i;
for (i = 0; i < 3; i++) {
value[i] = ctx->Light.Model.Ambient[i]
* ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
+ ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
}
value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
}
else {
/* back */
GLint i;
for (i = 0; i < 3; i++) {
value[i] = ctx->Light.Model.Ambient[i]
* ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
+ ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
}
value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
}
return;
case STATE_LIGHTPROD:
{
const GLuint ln = (GLuint) state[1];
const GLuint face = (GLuint) state[2];
GLint i;
ASSERT(face == 0 || face == 1);
switch (state[3]) {
case STATE_AMBIENT:
for (i = 0; i < 3; i++) {
value[i] = ctx->Light.Light[ln].Ambient[i] *
ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
}
/* [3] = material alpha */
value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
return;
case STATE_DIFFUSE:
for (i = 0; i < 3; i++) {
value[i] = ctx->Light.Light[ln].Diffuse[i] *
ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
}
/* [3] = material alpha */
value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
return;
case STATE_SPECULAR:
for (i = 0; i < 3; i++) {
value[i] = ctx->Light.Light[ln].Specular[i] *
ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
}
/* [3] = material alpha */
value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
return;
default:
_mesa_problem(ctx, "Invalid lightprod state in fetch_state");
return;
}
}
case STATE_TEXGEN:
{
/* state[1] is the texture unit */
const GLuint unit = (GLuint) state[1];
/* state[2] is the texgen attribute */
switch (state[2]) {
case STATE_TEXGEN_EYE_S:
COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
return;
case STATE_TEXGEN_EYE_T:
COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
return;
case STATE_TEXGEN_EYE_R:
COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
return;
case STATE_TEXGEN_EYE_Q:
COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
return;
case STATE_TEXGEN_OBJECT_S:
COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
return;
case STATE_TEXGEN_OBJECT_T:
COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
return;
case STATE_TEXGEN_OBJECT_R:
COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
return;
case STATE_TEXGEN_OBJECT_Q:
COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
return;
default:
_mesa_problem(ctx, "Invalid texgen state in fetch_state");
return;
}
}
case STATE_TEXENV_COLOR:
{
/* state[1] is the texture unit */
const GLuint unit = (GLuint) state[1];
if(ctx->Color._ClampFragmentColor)
COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
else
COPY_4V(value, ctx->Texture.Unit[unit].EnvColorUnclamped);
}
return;
case STATE_FOG_COLOR:
if(ctx->Color._ClampFragmentColor)
COPY_4V(value, ctx->Fog.Color);
else
COPY_4V(value, ctx->Fog.ColorUnclamped);
return;
case STATE_FOG_PARAMS:
value[0] = ctx->Fog.Density;
value[1] = ctx->Fog.Start;
value[2] = ctx->Fog.End;
value[3] = (ctx->Fog.End == ctx->Fog.Start)
? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
return;
case STATE_CLIPPLANE:
{
const GLuint plane = (GLuint) state[1];
COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
}
return;
case STATE_POINT_SIZE:
value[0] = ctx->Point.Size;
value[1] = ctx->Point.MinSize;
value[2] = ctx->Point.MaxSize;
value[3] = ctx->Point.Threshold;
return;
case STATE_POINT_ATTENUATION:
value[0] = ctx->Point.Params[0];
value[1] = ctx->Point.Params[1];
value[2] = ctx->Point.Params[2];
value[3] = 1.0F;
return;
case STATE_MODELVIEW_MATRIX:
case STATE_PROJECTION_MATRIX:
case STATE_MVP_MATRIX:
case STATE_TEXTURE_MATRIX:
case STATE_PROGRAM_MATRIX:
{
/* state[0] = modelview, projection, texture, etc. */
/* state[1] = which texture matrix or program matrix */
/* state[2] = first row to fetch */
/* state[3] = last row to fetch */
/* state[4] = transpose, inverse or invtrans */
const GLmatrix *matrix;
const gl_state_index mat = state[0];
const GLuint index = (GLuint) state[1];
const GLuint firstRow = (GLuint) state[2];
const GLuint lastRow = (GLuint) state[3];
const gl_state_index modifier = state[4];
const GLfloat *m;
GLuint row, i;
ASSERT(firstRow >= 0);
ASSERT(firstRow < 4);
ASSERT(lastRow >= 0);
ASSERT(lastRow < 4);
if (mat == STATE_MODELVIEW_MATRIX) {
matrix = ctx->ModelviewMatrixStack.Top;
}
else if (mat == STATE_PROJECTION_MATRIX) {
matrix = ctx->ProjectionMatrixStack.Top;
}
else if (mat == STATE_MVP_MATRIX) {
matrix = &ctx->_ModelProjectMatrix;
}
else if (mat == STATE_TEXTURE_MATRIX) {
ASSERT(index < Elements(ctx->TextureMatrixStack));
matrix = ctx->TextureMatrixStack[index].Top;
}
else if (mat == STATE_PROGRAM_MATRIX) {
ASSERT(index < Elements(ctx->ProgramMatrixStack));
matrix = ctx->ProgramMatrixStack[index].Top;
}
else {
_mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
return;
}
if (modifier == STATE_MATRIX_INVERSE ||
modifier == STATE_MATRIX_INVTRANS) {
/* Be sure inverse is up to date:
*/
_math_matrix_analyse( (GLmatrix*) matrix );
m = matrix->inv;
}
else {
m = matrix->m;
}
if (modifier == STATE_MATRIX_TRANSPOSE ||
modifier == STATE_MATRIX_INVTRANS) {
for (i = 0, row = firstRow; row <= lastRow; row++) {
value[i++] = m[row * 4 + 0];
value[i++] = m[row * 4 + 1];
value[i++] = m[row * 4 + 2];
value[i++] = m[row * 4 + 3];
}
}
else {
for (i = 0, row = firstRow; row <= lastRow; row++) {
value[i++] = m[row + 0];
value[i++] = m[row + 4];
value[i++] = m[row + 8];
value[i++] = m[row + 12];
}
}
}
return;
case STATE_DEPTH_RANGE:
value[0] = ctx->Viewport.Near; /* near */
value[1] = ctx->Viewport.Far; /* far */
value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
value[3] = 1.0;
return;
case STATE_FRAGMENT_PROGRAM:
{
/* state[1] = {STATE_ENV, STATE_LOCAL} */
/* state[2] = parameter index */
const int idx = (int) state[2];
switch (state[1]) {
case STATE_ENV:
COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
return;
case STATE_LOCAL:
COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
return;
default:
_mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
return;
}
}
return;
case STATE_VERTEX_PROGRAM:
{
/* state[1] = {STATE_ENV, STATE_LOCAL} */
/* state[2] = parameter index */
const int idx = (int) state[2];
switch (state[1]) {
case STATE_ENV:
COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
return;
case STATE_LOCAL:
COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
return;
default:
_mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
return;
}
}
return;
case STATE_NORMAL_SCALE:
ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
return;
case STATE_INTERNAL:
switch (state[1]) {
case STATE_CURRENT_ATTRIB:
{
const GLuint idx = (GLuint) state[2];
COPY_4V(value, ctx->Current.Attrib[idx]);
}
return;
case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
{
const GLuint idx = (GLuint) state[2];
if(ctx->Light._ClampVertexColor &&
(idx == VERT_ATTRIB_COLOR0 ||
idx == VERT_ATTRIB_COLOR1)) {
value[0] = CLAMP(ctx->Current.Attrib[idx][0], 0.0f, 1.0f);
value[1] = CLAMP(ctx->Current.Attrib[idx][1], 0.0f, 1.0f);
value[2] = CLAMP(ctx->Current.Attrib[idx][2], 0.0f, 1.0f);
value[3] = CLAMP(ctx->Current.Attrib[idx][3], 0.0f, 1.0f);
}
else
COPY_4V(value, ctx->Current.Attrib[idx]);
}
return;
case STATE_NORMAL_SCALE:
ASSIGN_4V(value,
ctx->_ModelViewInvScale,
ctx->_ModelViewInvScale,
ctx->_ModelViewInvScale,
1);
return;
case STATE_TEXRECT_SCALE:
/* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
* Used to convert unnormalized texcoords to normalized texcoords.
*/
{
const int unit = (int) state[2];
const struct gl_texture_object *texObj
= ctx->Texture.Unit[unit]._Current;
if (texObj) {
struct gl_texture_image *texImage = texObj->Image[0][0];
ASSIGN_4V(value,
(GLfloat) (1.0 / texImage->Width),
(GLfloat) (1.0 / texImage->Height),
0.0f, 1.0f);
}
}
return;
case STATE_FOG_PARAMS_OPTIMIZED:
/* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
* might be more expensive than EX2 on some hw, plus it needs
* another constant (e) anyway. Linear fog can now be done with a
* single MAD.
* linear: fogcoord * -1/(end-start) + end/(end-start)
* exp: 2^-(density/ln(2) * fogcoord)
* exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
*/
value[0] = (ctx->Fog.End == ctx->Fog.Start)
? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
value[1] = ctx->Fog.End * -value[0];
value[2] = (GLfloat)(ctx->Fog.Density * M_LOG2E); /* M_LOG2E == 1/ln(2) */
value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
return;
case STATE_POINT_SIZE_CLAMPED:
{
/* this includes implementation dependent limits, to avoid
* another potentially necessary clamp.
* Note: for sprites, point smooth (point AA) is ignored
* and we'll clamp to MinPointSizeAA and MaxPointSize, because we
* expect drivers will want to say their minimum for AA size is 0.0
* but for non-AA it's 1.0 (because normal points with size below 1.0
* need to get rounded up to 1.0, hence never disappear). GL does
* not specify max clamp size for sprites, other than it needs to be
* at least as large as max AA size, hence use non-AA size there.
*/
GLfloat minImplSize;
GLfloat maxImplSize;
if (ctx->Point.PointSprite) {
minImplSize = ctx->Const.MinPointSizeAA;
maxImplSize = ctx->Const.MaxPointSize;
}
else if (ctx->Point.SmoothFlag || ctx->Multisample._Enabled) {
minImplSize = ctx->Const.MinPointSizeAA;
maxImplSize = ctx->Const.MaxPointSizeAA;
}
else {
minImplSize = ctx->Const.MinPointSize;
maxImplSize = ctx->Const.MaxPointSize;
}
value[0] = ctx->Point.Size;
value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
value[3] = ctx->Point.Threshold;
}
return;
case STATE_LIGHT_SPOT_DIR_NORMALIZED:
{
/* here, state[2] is the light number */
/* pre-normalize spot dir */
const GLuint ln = (GLuint) state[2];
COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
value[3] = ctx->Light.Light[ln]._CosCutoff;
}
return;
case STATE_LIGHT_POSITION:
{
const GLuint ln = (GLuint) state[2];
COPY_4V(value, ctx->Light.Light[ln]._Position);
}
return;
case STATE_LIGHT_POSITION_NORMALIZED:
{
const GLuint ln = (GLuint) state[2];
COPY_4V(value, ctx->Light.Light[ln]._Position);
NORMALIZE_3FV( value );
}
return;
case STATE_LIGHT_HALF_VECTOR:
{
const GLuint ln = (GLuint) state[2];
GLfloat p[3];
/* Compute infinite half angle vector:
* halfVector = normalize(normalize(lightPos) + (0, 0, 1))
* light.EyePosition.w should be 0 for infinite lights.
*/
COPY_3V(p, ctx->Light.Light[ln]._Position);
NORMALIZE_3FV(p);
ADD_3V(value, p, ctx->_EyeZDir);
NORMALIZE_3FV(value);
value[3] = 1.0;
}
return;
case STATE_PT_SCALE:
value[0] = ctx->Pixel.RedScale;
value[1] = ctx->Pixel.GreenScale;
value[2] = ctx->Pixel.BlueScale;
value[3] = ctx->Pixel.AlphaScale;
return;
case STATE_PT_BIAS:
value[0] = ctx->Pixel.RedBias;
value[1] = ctx->Pixel.GreenBias;
value[2] = ctx->Pixel.BlueBias;
value[3] = ctx->Pixel.AlphaBias;
return;
case STATE_FB_SIZE:
value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
value[2] = 0.0F;
value[3] = 0.0F;
return;
case STATE_FB_WPOS_Y_TRANSFORM:
/* A driver may negate this conditional by using ZW swizzle
* instead of XY (based on e.g. some other state). */
if (_mesa_is_user_fbo(ctx->DrawBuffer)) {
/* Identity (XY) followed by flipping Y upside down (ZW). */
value[0] = 1.0F;
value[1] = 0.0F;
value[2] = -1.0F;
value[3] = (GLfloat) ctx->DrawBuffer->Height;
} else {
/* Flipping Y upside down (XY) followed by identity (ZW). */
value[0] = -1.0F;
value[1] = (GLfloat) ctx->DrawBuffer->Height;
value[2] = 1.0F;
value[3] = 0.0F;
}
return;
case STATE_ROT_MATRIX_0:
{
const int unit = (int) state[2];
GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
value[0] = rotMat22[0];
value[1] = rotMat22[2];
value[2] = 0.0;
value[3] = 0.0;
}
return;
case STATE_ROT_MATRIX_1:
{
const int unit = (int) state[2];
GLfloat *rotMat22 = ctx->Texture.Unit[unit].RotMatrix;
value[0] = rotMat22[1];
value[1] = rotMat22[3];
value[2] = 0.0;
value[3] = 0.0;
}
return;
/* XXX: make sure new tokens added here are also handled in the
* _mesa_program_state_flags() switch, below.
*/
default:
/* Unknown state indexes are silently ignored here.
* Drivers may do something special.
*/
return;
}
return;
default:
_mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
return;
}
}
/**
* Return a bitmask of the Mesa state flags (_NEW_* values) which would
* indicate that the given context state may have changed.
* The bitmask is used during validation to determine if we need to update
* vertex/fragment program parameters (like "state.material.color") when
* some GL state has changed.
*/
GLbitfield
_mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
{
switch (state[0]) {
case STATE_MATERIAL:
case STATE_LIGHTPROD:
case STATE_LIGHTMODEL_SCENECOLOR:
/* these can be effected by glColor when colormaterial mode is used */
return _NEW_LIGHT | _NEW_CURRENT_ATTRIB;
case STATE_LIGHT:
case STATE_LIGHTMODEL_AMBIENT:
return _NEW_LIGHT;
case STATE_TEXGEN:
return _NEW_TEXTURE;
case STATE_TEXENV_COLOR:
return _NEW_TEXTURE | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
case STATE_FOG_COLOR:
return _NEW_FOG | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
case STATE_FOG_PARAMS:
return _NEW_FOG;
case STATE_CLIPPLANE:
return _NEW_TRANSFORM;
case STATE_POINT_SIZE:
case STATE_POINT_ATTENUATION:
return _NEW_POINT;
case STATE_MODELVIEW_MATRIX:
return _NEW_MODELVIEW;
case STATE_PROJECTION_MATRIX:
return _NEW_PROJECTION;
case STATE_MVP_MATRIX:
return _NEW_MODELVIEW | _NEW_PROJECTION;
case STATE_TEXTURE_MATRIX:
return _NEW_TEXTURE_MATRIX;
case STATE_PROGRAM_MATRIX:
return _NEW_TRACK_MATRIX;
case STATE_DEPTH_RANGE:
return _NEW_VIEWPORT;
case STATE_FRAGMENT_PROGRAM:
case STATE_VERTEX_PROGRAM:
return _NEW_PROGRAM;
case STATE_NORMAL_SCALE:
return _NEW_MODELVIEW;
case STATE_INTERNAL:
switch (state[1]) {
case STATE_CURRENT_ATTRIB:
return _NEW_CURRENT_ATTRIB;
case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
return _NEW_CURRENT_ATTRIB | _NEW_LIGHT | _NEW_BUFFERS;
case STATE_NORMAL_SCALE:
return _NEW_MODELVIEW;
case STATE_TEXRECT_SCALE:
case STATE_ROT_MATRIX_0:
case STATE_ROT_MATRIX_1:
return _NEW_TEXTURE;
case STATE_FOG_PARAMS_OPTIMIZED:
return _NEW_FOG;
case STATE_POINT_SIZE_CLAMPED:
return _NEW_POINT | _NEW_MULTISAMPLE;
case STATE_LIGHT_SPOT_DIR_NORMALIZED:
case STATE_LIGHT_POSITION:
case STATE_LIGHT_POSITION_NORMALIZED:
case STATE_LIGHT_HALF_VECTOR:
return _NEW_LIGHT;
case STATE_PT_SCALE:
case STATE_PT_BIAS:
return _NEW_PIXEL;
case STATE_FB_SIZE:
case STATE_FB_WPOS_Y_TRANSFORM:
return _NEW_BUFFERS;
default:
/* unknown state indexes are silently ignored and
* no flag set, since it is handled by the driver.
*/
return 0;
}
default:
_mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
return 0;
}
}
static void
append(char *dst, const char *src)
{
while (*dst)
dst++;
while (*src)
*dst++ = *src++;
*dst = 0;
}
/**
* Convert token 'k' to a string, append it onto 'dst' string.
*/
static void
append_token(char *dst, gl_state_index k)
{
switch (k) {
case STATE_MATERIAL:
append(dst, "material");
break;
case STATE_LIGHT:
append(dst, "light");
break;
case STATE_LIGHTMODEL_AMBIENT:
append(dst, "lightmodel.ambient");
break;
case STATE_LIGHTMODEL_SCENECOLOR:
break;
case STATE_LIGHTPROD:
append(dst, "lightprod");
break;
case STATE_TEXGEN:
append(dst, "texgen");
break;
case STATE_FOG_COLOR:
append(dst, "fog.color");
break;
case STATE_FOG_PARAMS:
append(dst, "fog.params");
break;
case STATE_CLIPPLANE:
append(dst, "clip");
break;
case STATE_POINT_SIZE:
append(dst, "point.size");
break;
case STATE_POINT_ATTENUATION:
append(dst, "point.attenuation");
break;
case STATE_MODELVIEW_MATRIX:
append(dst, "matrix.modelview");
break;
case STATE_PROJECTION_MATRIX:
append(dst, "matrix.projection");
break;
case STATE_MVP_MATRIX:
append(dst, "matrix.mvp");
break;
case STATE_TEXTURE_MATRIX:
append(dst, "matrix.texture");
break;
case STATE_PROGRAM_MATRIX:
append(dst, "matrix.program");
break;
case STATE_MATRIX_INVERSE:
append(dst, ".inverse");
break;
case STATE_MATRIX_TRANSPOSE:
append(dst, ".transpose");
break;
case STATE_MATRIX_INVTRANS:
append(dst, ".invtrans");
break;
case STATE_AMBIENT:
append(dst, ".ambient");
break;
case STATE_DIFFUSE:
append(dst, ".diffuse");
break;
case STATE_SPECULAR:
append(dst, ".specular");
break;
case STATE_EMISSION:
append(dst, ".emission");
break;
case STATE_SHININESS:
append(dst, "lshininess");
break;
case STATE_HALF_VECTOR:
append(dst, ".half");
break;
case STATE_POSITION:
append(dst, ".position");
break;
case STATE_ATTENUATION:
append(dst, ".attenuation");
break;
case STATE_SPOT_DIRECTION:
append(dst, ".spot.direction");
break;
case STATE_SPOT_CUTOFF:
append(dst, ".spot.cutoff");
break;
case STATE_TEXGEN_EYE_S:
append(dst, ".eye.s");
break;
case STATE_TEXGEN_EYE_T:
append(dst, ".eye.t");
break;
case STATE_TEXGEN_EYE_R:
append(dst, ".eye.r");
break;
case STATE_TEXGEN_EYE_Q:
append(dst, ".eye.q");
break;
case STATE_TEXGEN_OBJECT_S:
append(dst, ".object.s");
break;
case STATE_TEXGEN_OBJECT_T:
append(dst, ".object.t");
break;
case STATE_TEXGEN_OBJECT_R:
append(dst, ".object.r");
break;
case STATE_TEXGEN_OBJECT_Q:
append(dst, ".object.q");
break;
case STATE_TEXENV_COLOR:
append(dst, "texenv");
break;
case STATE_DEPTH_RANGE:
append(dst, "depth.range");
break;
case STATE_VERTEX_PROGRAM:
case STATE_FRAGMENT_PROGRAM:
break;
case STATE_ENV:
append(dst, "env");
break;
case STATE_LOCAL:
append(dst, "local");
break;
/* BEGIN internal state vars */
case STATE_INTERNAL:
append(dst, ".internal.");
break;
case STATE_CURRENT_ATTRIB:
append(dst, "current");
break;
case STATE_NORMAL_SCALE:
append(dst, "normalScale");
break;
case STATE_TEXRECT_SCALE:
append(dst, "texrectScale");
break;
case STATE_FOG_PARAMS_OPTIMIZED:
append(dst, "fogParamsOptimized");
break;
case STATE_POINT_SIZE_CLAMPED:
append(dst, "pointSizeClamped");
break;
case STATE_LIGHT_SPOT_DIR_NORMALIZED:
append(dst, "lightSpotDirNormalized");
break;
case STATE_LIGHT_POSITION:
append(dst, "lightPosition");
break;
case STATE_LIGHT_POSITION_NORMALIZED:
append(dst, "light.position.normalized");
break;
case STATE_LIGHT_HALF_VECTOR:
append(dst, "lightHalfVector");
break;
case STATE_PT_SCALE:
append(dst, "PTscale");
break;
case STATE_PT_BIAS:
append(dst, "PTbias");
break;
case STATE_FB_SIZE:
append(dst, "FbSize");
break;
case STATE_FB_WPOS_Y_TRANSFORM:
append(dst, "FbWposYTransform");
break;
case STATE_ROT_MATRIX_0:
append(dst, "rotMatrixRow0");
break;
case STATE_ROT_MATRIX_1:
append(dst, "rotMatrixRow1");
break;
default:
/* probably STATE_INTERNAL_DRIVER+i (driver private state) */
append(dst, "driverState");
}
}
static void
append_face(char *dst, GLint face)
{
if (face == 0)
append(dst, "front.");
else
append(dst, "back.");
}
static void
append_index(char *dst, GLint index)
{
char s[20];
sprintf(s, "[%d]", index);
append(dst, s);
}
/**
* Make a string from the given state vector.
* For example, return "state.matrix.texture[2].inverse".
* Use free() to deallocate the string.
*/
char *
_mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
{
char str[1000] = "";
char tmp[30];
append(str, "state.");
append_token(str, state[0]);
switch (state[0]) {
case STATE_MATERIAL:
append_face(str, state[1]);
append_token(str, state[2]);
break;
case STATE_LIGHT:
append_index(str, state[1]); /* light number [i]. */
append_token(str, state[2]); /* coefficients */
break;
case STATE_LIGHTMODEL_AMBIENT:
append(str, "lightmodel.ambient");
break;
case STATE_LIGHTMODEL_SCENECOLOR:
if (state[1] == 0) {
append(str, "lightmodel.front.scenecolor");
}
else {
append(str, "lightmodel.back.scenecolor");
}
break;
case STATE_LIGHTPROD:
append_index(str, state[1]); /* light number [i]. */
append_face(str, state[2]);
append_token(str, state[3]);
break;
case STATE_TEXGEN:
append_index(str, state[1]); /* tex unit [i] */
append_token(str, state[2]); /* plane coef */
break;
case STATE_TEXENV_COLOR:
append_index(str, state[1]); /* tex unit [i] */
append(str, "color");
break;
case STATE_CLIPPLANE:
append_index(str, state[1]); /* plane [i] */
append(str, ".plane");
break;
case STATE_MODELVIEW_MATRIX:
case STATE_PROJECTION_MATRIX:
case STATE_MVP_MATRIX:
case STATE_TEXTURE_MATRIX:
case STATE_PROGRAM_MATRIX:
{
/* state[0] = modelview, projection, texture, etc. */
/* state[1] = which texture matrix or program matrix */
/* state[2] = first row to fetch */
/* state[3] = last row to fetch */
/* state[4] = transpose, inverse or invtrans */
const gl_state_index mat = state[0];
const GLuint index = (GLuint) state[1];
const GLuint firstRow = (GLuint) state[2];
const GLuint lastRow = (GLuint) state[3];
const gl_state_index modifier = state[4];
if (index ||
mat == STATE_TEXTURE_MATRIX ||
mat == STATE_PROGRAM_MATRIX)
append_index(str, index);
if (modifier)
append_token(str, modifier);
if (firstRow == lastRow)
sprintf(tmp, ".row[%d]", firstRow);
else
sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
append(str, tmp);
}
break;
case STATE_POINT_SIZE:
break;
case STATE_POINT_ATTENUATION:
break;
case STATE_FOG_PARAMS:
break;
case STATE_FOG_COLOR:
break;
case STATE_DEPTH_RANGE:
break;
case STATE_FRAGMENT_PROGRAM:
case STATE_VERTEX_PROGRAM:
/* state[1] = {STATE_ENV, STATE_LOCAL} */
/* state[2] = parameter index */
append_token(str, state[1]);
append_index(str, state[2]);
break;
case STATE_NORMAL_SCALE:
break;
case STATE_INTERNAL:
append_token(str, state[1]);
if (state[1] == STATE_CURRENT_ATTRIB)
append_index(str, state[2]);
break;
default:
_mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
break;
}
return _mesa_strdup(str);
}
/**
* Loop over all the parameters in a parameter list. If the parameter
* is a GL state reference, look up the current value of that state
* variable and put it into the parameter's Value[4] array.
* Other parameter types never change or are explicitly set by the user
* with glUniform() or glProgramParameter(), etc.
* This would be called at glBegin time.
*/
void
_mesa_load_state_parameters(struct gl_context *ctx,
struct gl_program_parameter_list *paramList)
{
GLuint i;
if (!paramList)
return;
for (i = 0; i < paramList->NumParameters; i++) {
if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
_mesa_fetch_state(ctx,
paramList->Parameters[i].StateIndexes,
&paramList->ParameterValues[i][0].f);
}
}
}
/**
* Copy the 16 elements of a matrix into four consecutive program
* registers starting at 'pos'.
*/
static void
load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
{
GLuint i;
for (i = 0; i < 4; i++) {
registers[pos + i][0] = mat[0 + i];
registers[pos + i][1] = mat[4 + i];
registers[pos + i][2] = mat[8 + i];
registers[pos + i][3] = mat[12 + i];
}
}
/**
* As above, but transpose the matrix.
*/
static void
load_transpose_matrix(GLfloat registers[][4], GLuint pos,
const GLfloat mat[16])
{
memcpy(registers[pos], mat, 16 * sizeof(GLfloat));
}
/**
* Load current vertex program's parameter registers with tracked
* matrices (if NV program). This only needs to be done per
* glBegin/glEnd, not per-vertex.
*/
void
_mesa_load_tracked_matrices(struct gl_context *ctx)
{
GLuint i;
for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
/* point 'mat' at source matrix */
GLmatrix *mat;
if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
mat = ctx->ModelviewMatrixStack.Top;
}
else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
mat = ctx->ProjectionMatrixStack.Top;
}
else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
GLuint unit = MIN2(ctx->Texture.CurrentUnit,
Elements(ctx->TextureMatrixStack) - 1);
mat = ctx->TextureMatrixStack[unit].Top;
}
else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
/* XXX verify the combined matrix is up to date */
mat = &ctx->_ModelProjectMatrix;
}
else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
ASSERT(n < Elements(ctx->ProgramMatrixStack));
mat = ctx->ProgramMatrixStack[n].Top;
}
else {
/* no matrix is tracked, but we leave the register values as-is */
assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
continue;
}
/* load the matrix values into sequential registers */
if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
}
else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
_math_matrix_analyse(mat); /* update the inverse */
ASSERT(!_math_matrix_is_dirty(mat));
load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
}
else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
}
else {
assert(ctx->VertexProgram.TrackMatrixTransform[i]
== GL_INVERSE_TRANSPOSE_NV);
_math_matrix_analyse(mat); /* update the inverse */
ASSERT(!_math_matrix_is_dirty(mat));
load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
}
}
}