blob: 0f5c77052af6ccff2b7c8f1b47629867f2e0189a [file] [log] [blame]
/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* Copyright 2010 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* \brief Quad depth / stencil testing
*/
#include "pipe/p_defines.h"
#include "util/u_format.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "tgsi/tgsi_scan.h"
#include "sp_context.h"
#include "sp_quad.h"
#include "sp_quad_pipe.h"
#include "sp_tile_cache.h"
#include "sp_state.h" /* for sp_fragment_shader */
struct depth_data {
struct pipe_surface *ps;
enum pipe_format format;
unsigned bzzzz[TGSI_QUAD_SIZE]; /**< Z values fetched from depth buffer */
unsigned qzzzz[TGSI_QUAD_SIZE]; /**< Z values from the quad */
ubyte stencilVals[TGSI_QUAD_SIZE];
boolean use_shader_stencil_refs;
ubyte shader_stencil_refs[TGSI_QUAD_SIZE];
struct softpipe_cached_tile *tile;
};
static void
get_depth_stencil_values( struct depth_data *data,
const struct quad_header *quad )
{
unsigned j;
const struct softpipe_cached_tile *tile = data->tile;
switch (data->format) {
case PIPE_FORMAT_Z16_UNORM:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
data->bzzzz[j] = tile->data.depth16[y][x];
}
break;
case PIPE_FORMAT_Z32_UNORM:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
data->bzzzz[j] = tile->data.depth32[y][x];
}
break;
case PIPE_FORMAT_Z24X8_UNORM:
case PIPE_FORMAT_Z24_UNORM_S8_UINT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
data->bzzzz[j] = tile->data.depth32[y][x] & 0xffffff;
data->stencilVals[j] = tile->data.depth32[y][x] >> 24;
}
break;
case PIPE_FORMAT_X8Z24_UNORM:
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
data->bzzzz[j] = tile->data.depth32[y][x] >> 8;
data->stencilVals[j] = tile->data.depth32[y][x] & 0xff;
}
break;
case PIPE_FORMAT_S8_UINT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
data->bzzzz[j] = 0;
data->stencilVals[j] = tile->data.stencil8[y][x];
}
break;
case PIPE_FORMAT_Z32_FLOAT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
data->bzzzz[j] = tile->data.depth32[y][x];
}
break;
case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
data->bzzzz[j] = tile->data.depth64[y][x] & 0xffffffff;
data->stencilVals[j] = (tile->data.depth64[y][x] >> 32) & 0xff;
}
break;
default:
assert(0);
}
}
/**
* If the shader has not been run, interpolate the depth values
* ourselves.
*/
static void
interpolate_quad_depth( struct quad_header *quad )
{
const float fx = (float) quad->input.x0;
const float fy = (float) quad->input.y0;
const float dzdx = quad->posCoef->dadx[2];
const float dzdy = quad->posCoef->dady[2];
const float z0 = quad->posCoef->a0[2] + dzdx * fx + dzdy * fy;
quad->output.depth[0] = z0;
quad->output.depth[1] = z0 + dzdx;
quad->output.depth[2] = z0 + dzdy;
quad->output.depth[3] = z0 + dzdx + dzdy;
}
/**
* Compute the depth_data::qzzzz[] values from the float fragment Z values.
*/
static void
convert_quad_depth( struct depth_data *data,
const struct quad_header *quad )
{
unsigned j;
/* Convert quad's float depth values to int depth values (qzzzz).
* If the Z buffer stores integer values, we _have_ to do the depth
* compares with integers (not floats). Otherwise, the float->int->float
* conversion of Z values (which isn't an identity function) will cause
* Z-fighting errors.
*/
switch (data->format) {
case PIPE_FORMAT_Z16_UNORM:
{
float scale = 65535.0;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
data->qzzzz[j] = (unsigned) (quad->output.depth[j] * scale);
}
}
break;
case PIPE_FORMAT_Z32_UNORM:
{
double scale = (double) (uint) ~0UL;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
data->qzzzz[j] = (unsigned) (quad->output.depth[j] * scale);
}
}
break;
case PIPE_FORMAT_Z24X8_UNORM:
case PIPE_FORMAT_Z24_UNORM_S8_UINT:
{
float scale = (float) ((1 << 24) - 1);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
data->qzzzz[j] = (unsigned) (quad->output.depth[j] * scale);
}
}
break;
case PIPE_FORMAT_X8Z24_UNORM:
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
{
float scale = (float) ((1 << 24) - 1);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
data->qzzzz[j] = (unsigned) (quad->output.depth[j] * scale);
}
}
break;
case PIPE_FORMAT_Z32_FLOAT:
case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
{
union fi fui;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
fui.f = quad->output.depth[j];
data->qzzzz[j] = fui.ui;
}
}
break;
default:
assert(0);
}
}
/**
* Compute the depth_data::shader_stencil_refs[] values from the float
* fragment stencil values.
*/
static void
convert_quad_stencil( struct depth_data *data,
const struct quad_header *quad )
{
unsigned j;
data->use_shader_stencil_refs = TRUE;
/* Copy quads stencil values
*/
switch (data->format) {
case PIPE_FORMAT_Z24X8_UNORM:
case PIPE_FORMAT_Z24_UNORM_S8_UINT:
case PIPE_FORMAT_X8Z24_UNORM:
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
case PIPE_FORMAT_S8_UINT:
case PIPE_FORMAT_Z32_FLOAT:
case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
data->shader_stencil_refs[j] = ((unsigned)(quad->output.stencil[j]));
}
break;
default:
assert(0);
}
}
/**
* Write data->bzzzz[] values and data->stencilVals into the Z/stencil buffer.
*/
static void
write_depth_stencil_values( struct depth_data *data,
struct quad_header *quad )
{
struct softpipe_cached_tile *tile = data->tile;
unsigned j;
/* put updated Z values back into cached tile */
switch (data->format) {
case PIPE_FORMAT_Z16_UNORM:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
tile->data.depth16[y][x] = (ushort) data->bzzzz[j];
}
break;
case PIPE_FORMAT_Z24X8_UNORM:
case PIPE_FORMAT_Z32_UNORM:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
tile->data.depth32[y][x] = data->bzzzz[j];
}
break;
case PIPE_FORMAT_Z24_UNORM_S8_UINT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
tile->data.depth32[y][x] = (data->stencilVals[j] << 24) | data->bzzzz[j];
}
break;
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
tile->data.depth32[y][x] = (data->bzzzz[j] << 8) | data->stencilVals[j];
}
break;
case PIPE_FORMAT_X8Z24_UNORM:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
tile->data.depth32[y][x] = data->bzzzz[j] << 8;
}
break;
case PIPE_FORMAT_S8_UINT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
tile->data.stencil8[y][x] = data->stencilVals[j];
}
break;
case PIPE_FORMAT_Z32_FLOAT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
tile->data.depth32[y][x] = data->bzzzz[j];
}
break;
case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = quad->input.x0 % TILE_SIZE + (j & 1);
int y = quad->input.y0 % TILE_SIZE + (j >> 1);
tile->data.depth64[y][x] = (uint64_t)data->bzzzz[j] | ((uint64_t)data->stencilVals[j] << 32);
}
break;
default:
assert(0);
}
}
/** Only 8-bit stencil supported */
#define STENCIL_MAX 0xff
/**
* Do the basic stencil test (compare stencil buffer values against the
* reference value.
*
* \param data->stencilVals the stencil values from the stencil buffer
* \param func the stencil func (PIPE_FUNC_x)
* \param ref the stencil reference value
* \param valMask the stencil value mask indicating which bits of the stencil
* values and ref value are to be used.
* \return mask indicating which pixels passed the stencil test
*/
static unsigned
do_stencil_test(struct depth_data *data,
unsigned func,
unsigned ref, unsigned valMask)
{
unsigned passMask = 0x0;
unsigned j;
ubyte refs[TGSI_QUAD_SIZE];
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (data->use_shader_stencil_refs)
refs[j] = data->shader_stencil_refs[j] & valMask;
else
refs[j] = ref & valMask;
}
switch (func) {
case PIPE_FUNC_NEVER:
/* passMask = 0x0 */
break;
case PIPE_FUNC_LESS:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (refs[j] < (data->stencilVals[j] & valMask)) {
passMask |= (1 << j);
}
}
break;
case PIPE_FUNC_EQUAL:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (refs[j] == (data->stencilVals[j] & valMask)) {
passMask |= (1 << j);
}
}
break;
case PIPE_FUNC_LEQUAL:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (refs[j] <= (data->stencilVals[j] & valMask)) {
passMask |= (1 << j);
}
}
break;
case PIPE_FUNC_GREATER:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (refs[j] > (data->stencilVals[j] & valMask)) {
passMask |= (1 << j);
}
}
break;
case PIPE_FUNC_NOTEQUAL:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (refs[j] != (data->stencilVals[j] & valMask)) {
passMask |= (1 << j);
}
}
break;
case PIPE_FUNC_GEQUAL:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (refs[j] >= (data->stencilVals[j] & valMask)) {
passMask |= (1 << j);
}
}
break;
case PIPE_FUNC_ALWAYS:
passMask = MASK_ALL;
break;
default:
assert(0);
}
return passMask;
}
/**
* Apply the stencil operator to stencil values.
*
* \param data->stencilVals the stencil buffer values (read and written)
* \param mask indicates which pixels to update
* \param op the stencil operator (PIPE_STENCIL_OP_x)
* \param ref the stencil reference value
* \param wrtMask writemask controlling which bits are changed in the
* stencil values
*/
static void
apply_stencil_op(struct depth_data *data,
unsigned mask, unsigned op, ubyte ref, ubyte wrtMask)
{
unsigned j;
ubyte newstencil[TGSI_QUAD_SIZE];
ubyte refs[TGSI_QUAD_SIZE];
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
newstencil[j] = data->stencilVals[j];
if (data->use_shader_stencil_refs)
refs[j] = data->shader_stencil_refs[j];
else
refs[j] = ref;
}
switch (op) {
case PIPE_STENCIL_OP_KEEP:
/* no-op */
break;
case PIPE_STENCIL_OP_ZERO:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (mask & (1 << j)) {
newstencil[j] = 0;
}
}
break;
case PIPE_STENCIL_OP_REPLACE:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (mask & (1 << j)) {
newstencil[j] = refs[j];
}
}
break;
case PIPE_STENCIL_OP_INCR:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (mask & (1 << j)) {
if (data->stencilVals[j] < STENCIL_MAX) {
newstencil[j] = data->stencilVals[j] + 1;
}
}
}
break;
case PIPE_STENCIL_OP_DECR:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (mask & (1 << j)) {
if (data->stencilVals[j] > 0) {
newstencil[j] = data->stencilVals[j] - 1;
}
}
}
break;
case PIPE_STENCIL_OP_INCR_WRAP:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (mask & (1 << j)) {
newstencil[j] = data->stencilVals[j] + 1;
}
}
break;
case PIPE_STENCIL_OP_DECR_WRAP:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (mask & (1 << j)) {
newstencil[j] = data->stencilVals[j] - 1;
}
}
break;
case PIPE_STENCIL_OP_INVERT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (mask & (1 << j)) {
newstencil[j] = ~data->stencilVals[j];
}
}
break;
default:
assert(0);
}
/*
* update the stencil values
*/
if (wrtMask != STENCIL_MAX) {
/* apply bit-wise stencil buffer writemask */
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
data->stencilVals[j] = (wrtMask & newstencil[j]) | (~wrtMask & data->stencilVals[j]);
}
}
else {
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
data->stencilVals[j] = newstencil[j];
}
}
}
/**
* To increase efficiency, we should probably have multiple versions
* of this function that are specifically for Z16, Z32 and FP Z buffers.
* Try to effectively do that with codegen...
*/
static boolean
depth_test_quad(struct quad_stage *qs,
struct depth_data *data,
struct quad_header *quad)
{
struct softpipe_context *softpipe = qs->softpipe;
unsigned zmask = 0;
unsigned j;
switch (softpipe->depth_stencil->depth.func) {
case PIPE_FUNC_NEVER:
/* zmask = 0 */
break;
case PIPE_FUNC_LESS:
/* Note this is pretty much a single sse or cell instruction.
* Like this: quad->mask &= (quad->outputs.depth < zzzz);
*/
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (data->qzzzz[j] < data->bzzzz[j])
zmask |= 1 << j;
}
break;
case PIPE_FUNC_EQUAL:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (data->qzzzz[j] == data->bzzzz[j])
zmask |= 1 << j;
}
break;
case PIPE_FUNC_LEQUAL:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (data->qzzzz[j] <= data->bzzzz[j])
zmask |= (1 << j);
}
break;
case PIPE_FUNC_GREATER:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (data->qzzzz[j] > data->bzzzz[j])
zmask |= (1 << j);
}
break;
case PIPE_FUNC_NOTEQUAL:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (data->qzzzz[j] != data->bzzzz[j])
zmask |= (1 << j);
}
break;
case PIPE_FUNC_GEQUAL:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (data->qzzzz[j] >= data->bzzzz[j])
zmask |= (1 << j);
}
break;
case PIPE_FUNC_ALWAYS:
zmask = MASK_ALL;
break;
default:
assert(0);
}
quad->inout.mask &= zmask;
if (quad->inout.mask == 0)
return FALSE;
/* Update our internal copy only if writemask set. Even if
* depth.writemask is FALSE, may still need to write out buffer
* data due to stencil changes.
*/
if (softpipe->depth_stencil->depth.writemask) {
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (quad->inout.mask & (1 << j)) {
data->bzzzz[j] = data->qzzzz[j];
}
}
}
return TRUE;
}
/**
* Do stencil (and depth) testing. Stenciling depends on the outcome of
* depth testing.
*/
static void
depth_stencil_test_quad(struct quad_stage *qs,
struct depth_data *data,
struct quad_header *quad)
{
struct softpipe_context *softpipe = qs->softpipe;
unsigned func, zFailOp, zPassOp, failOp;
ubyte ref, wrtMask, valMask;
uint face = quad->input.facing;
if (!softpipe->depth_stencil->stencil[1].enabled) {
/* single-sided stencil test, use front (face=0) state */
face = 0;
}
/* 0 = front-face, 1 = back-face */
assert(face == 0 || face == 1);
/* choose front or back face function, operator, etc */
/* XXX we could do these initializations once per primitive */
func = softpipe->depth_stencil->stencil[face].func;
failOp = softpipe->depth_stencil->stencil[face].fail_op;
zFailOp = softpipe->depth_stencil->stencil[face].zfail_op;
zPassOp = softpipe->depth_stencil->stencil[face].zpass_op;
ref = softpipe->stencil_ref.ref_value[face];
wrtMask = softpipe->depth_stencil->stencil[face].writemask;
valMask = softpipe->depth_stencil->stencil[face].valuemask;
/* do the stencil test first */
{
unsigned passMask, failMask;
passMask = do_stencil_test(data, func, ref, valMask);
failMask = quad->inout.mask & ~passMask;
quad->inout.mask &= passMask;
if (failOp != PIPE_STENCIL_OP_KEEP) {
apply_stencil_op(data, failMask, failOp, ref, wrtMask);
}
}
if (quad->inout.mask) {
/* now the pixels that passed the stencil test are depth tested */
if (softpipe->depth_stencil->depth.enabled) {
const unsigned origMask = quad->inout.mask;
depth_test_quad(qs, data, quad); /* quad->mask is updated */
/* update stencil buffer values according to z pass/fail result */
if (zFailOp != PIPE_STENCIL_OP_KEEP) {
const unsigned zFailMask = origMask & ~quad->inout.mask;
apply_stencil_op(data, zFailMask, zFailOp, ref, wrtMask);
}
if (zPassOp != PIPE_STENCIL_OP_KEEP) {
const unsigned zPassMask = origMask & quad->inout.mask;
apply_stencil_op(data, zPassMask, zPassOp, ref, wrtMask);
}
}
else {
/* no depth test, apply Zpass operator to stencil buffer values */
apply_stencil_op(data, quad->inout.mask, zPassOp, ref, wrtMask);
}
}
}
#define ALPHATEST( FUNC, COMP ) \
static unsigned \
alpha_test_quads_##FUNC( struct quad_stage *qs, \
struct quad_header *quads[], \
unsigned nr ) \
{ \
const float ref = qs->softpipe->depth_stencil->alpha.ref_value; \
const uint cbuf = 0; /* only output[0].alpha is tested */ \
unsigned pass_nr = 0; \
unsigned i; \
\
for (i = 0; i < nr; i++) { \
const float *aaaa = quads[i]->output.color[cbuf][3]; \
unsigned passMask = 0; \
\
if (aaaa[0] COMP ref) passMask |= (1 << 0); \
if (aaaa[1] COMP ref) passMask |= (1 << 1); \
if (aaaa[2] COMP ref) passMask |= (1 << 2); \
if (aaaa[3] COMP ref) passMask |= (1 << 3); \
\
quads[i]->inout.mask &= passMask; \
\
if (quads[i]->inout.mask) \
quads[pass_nr++] = quads[i]; \
} \
\
return pass_nr; \
}
ALPHATEST( LESS, < )
ALPHATEST( EQUAL, == )
ALPHATEST( LEQUAL, <= )
ALPHATEST( GREATER, > )
ALPHATEST( NOTEQUAL, != )
ALPHATEST( GEQUAL, >= )
/* XXX: Incorporate into shader using KILP.
*/
static unsigned
alpha_test_quads(struct quad_stage *qs,
struct quad_header *quads[],
unsigned nr)
{
switch (qs->softpipe->depth_stencil->alpha.func) {
case PIPE_FUNC_LESS:
return alpha_test_quads_LESS( qs, quads, nr );
case PIPE_FUNC_EQUAL:
return alpha_test_quads_EQUAL( qs, quads, nr );
case PIPE_FUNC_LEQUAL:
return alpha_test_quads_LEQUAL( qs, quads, nr );
case PIPE_FUNC_GREATER:
return alpha_test_quads_GREATER( qs, quads, nr );
case PIPE_FUNC_NOTEQUAL:
return alpha_test_quads_NOTEQUAL( qs, quads, nr );
case PIPE_FUNC_GEQUAL:
return alpha_test_quads_GEQUAL( qs, quads, nr );
case PIPE_FUNC_ALWAYS:
return nr;
case PIPE_FUNC_NEVER:
default:
return 0;
}
}
static unsigned mask_count[16] =
{
0, /* 0x0 */
1, /* 0x1 */
1, /* 0x2 */
2, /* 0x3 */
1, /* 0x4 */
2, /* 0x5 */
2, /* 0x6 */
3, /* 0x7 */
1, /* 0x8 */
2, /* 0x9 */
2, /* 0xa */
3, /* 0xb */
2, /* 0xc */
3, /* 0xd */
3, /* 0xe */
4, /* 0xf */
};
/**
* General depth/stencil test function. Used when there's no fast-path.
*/
static void
depth_test_quads_fallback(struct quad_stage *qs,
struct quad_header *quads[],
unsigned nr)
{
unsigned i, pass = 0;
const struct tgsi_shader_info *fsInfo = &qs->softpipe->fs_variant->info;
boolean interp_depth = !fsInfo->writes_z;
boolean shader_stencil_ref = fsInfo->writes_stencil;
struct depth_data data;
data.use_shader_stencil_refs = FALSE;
if (qs->softpipe->depth_stencil->alpha.enabled) {
nr = alpha_test_quads(qs, quads, nr);
}
if (qs->softpipe->framebuffer.zsbuf &&
(qs->softpipe->depth_stencil->depth.enabled ||
qs->softpipe->depth_stencil->stencil[0].enabled)) {
data.ps = qs->softpipe->framebuffer.zsbuf;
data.format = data.ps->format;
data.tile = sp_get_cached_tile(qs->softpipe->zsbuf_cache,
quads[0]->input.x0,
quads[0]->input.y0);
for (i = 0; i < nr; i++) {
get_depth_stencil_values(&data, quads[i]);
if (qs->softpipe->depth_stencil->depth.enabled) {
if (interp_depth)
interpolate_quad_depth(quads[i]);
convert_quad_depth(&data, quads[i]);
}
if (qs->softpipe->depth_stencil->stencil[0].enabled) {
if (shader_stencil_ref)
convert_quad_stencil(&data, quads[i]);
depth_stencil_test_quad(qs, &data, quads[i]);
write_depth_stencil_values(&data, quads[i]);
}
else {
if (!depth_test_quad(qs, &data, quads[i]))
continue;
if (qs->softpipe->depth_stencil->depth.writemask)
write_depth_stencil_values(&data, quads[i]);
}
quads[pass++] = quads[i];
}
nr = pass;
}
if (qs->softpipe->active_query_count) {
for (i = 0; i < nr; i++)
qs->softpipe->occlusion_count += mask_count[quads[i]->inout.mask];
}
if (nr)
qs->next->run(qs->next, quads, nr);
}
/**
* Special-case Z testing for 16-bit Zbuffer and Z buffer writes enabled.
*/
#define NAME depth_interp_z16_less_write
#define OPERATOR <
#include "sp_quad_depth_test_tmp.h"
#define NAME depth_interp_z16_equal_write
#define OPERATOR ==
#include "sp_quad_depth_test_tmp.h"
#define NAME depth_interp_z16_lequal_write
#define OPERATOR <=
#include "sp_quad_depth_test_tmp.h"
#define NAME depth_interp_z16_greater_write
#define OPERATOR >
#include "sp_quad_depth_test_tmp.h"
#define NAME depth_interp_z16_notequal_write
#define OPERATOR !=
#include "sp_quad_depth_test_tmp.h"
#define NAME depth_interp_z16_gequal_write
#define OPERATOR >=
#include "sp_quad_depth_test_tmp.h"
#define NAME depth_interp_z16_always_write
#define ALWAYS 1
#include "sp_quad_depth_test_tmp.h"
static void
depth_noop(struct quad_stage *qs,
struct quad_header *quads[],
unsigned nr)
{
qs->next->run(qs->next, quads, nr);
}
static void
choose_depth_test(struct quad_stage *qs,
struct quad_header *quads[],
unsigned nr)
{
const struct tgsi_shader_info *fsInfo = &qs->softpipe->fs_variant->info;
boolean interp_depth = !fsInfo->writes_z;
boolean alpha = qs->softpipe->depth_stencil->alpha.enabled;
boolean depth = qs->softpipe->depth_stencil->depth.enabled;
unsigned depthfunc = qs->softpipe->depth_stencil->depth.func;
boolean stencil = qs->softpipe->depth_stencil->stencil[0].enabled;
boolean depthwrite = qs->softpipe->depth_stencil->depth.writemask;
boolean occlusion = qs->softpipe->active_query_count;
if(!qs->softpipe->framebuffer.zsbuf)
depth = depthwrite = stencil = FALSE;
/* default */
qs->run = depth_test_quads_fallback;
/* look for special cases */
if (!alpha &&
!depth &&
!occlusion &&
!stencil) {
qs->run = depth_noop;
}
else if (!alpha &&
interp_depth &&
depth &&
depthwrite &&
!occlusion &&
!stencil)
{
if (qs->softpipe->framebuffer.zsbuf->format == PIPE_FORMAT_Z16_UNORM) {
switch (depthfunc) {
case PIPE_FUNC_NEVER:
qs->run = depth_test_quads_fallback;
break;
case PIPE_FUNC_LESS:
qs->run = depth_interp_z16_less_write;
break;
case PIPE_FUNC_EQUAL:
qs->run = depth_interp_z16_equal_write;
break;
case PIPE_FUNC_LEQUAL:
qs->run = depth_interp_z16_lequal_write;
break;
case PIPE_FUNC_GREATER:
qs->run = depth_interp_z16_greater_write;
break;
case PIPE_FUNC_NOTEQUAL:
qs->run = depth_interp_z16_notequal_write;
break;
case PIPE_FUNC_GEQUAL:
qs->run = depth_interp_z16_gequal_write;
break;
case PIPE_FUNC_ALWAYS:
qs->run = depth_interp_z16_always_write;
break;
default:
qs->run = depth_test_quads_fallback;
break;
}
}
}
/* next quad/fragment stage */
qs->run( qs, quads, nr );
}
static void
depth_test_begin(struct quad_stage *qs)
{
qs->run = choose_depth_test;
qs->next->begin(qs->next);
}
static void
depth_test_destroy(struct quad_stage *qs)
{
FREE( qs );
}
struct quad_stage *
sp_quad_depth_test_stage(struct softpipe_context *softpipe)
{
struct quad_stage *stage = CALLOC_STRUCT(quad_stage);
stage->softpipe = softpipe;
stage->begin = depth_test_begin;
stage->run = choose_depth_test;
stage->destroy = depth_test_destroy;
return stage;
}