blob: d07b050799d17e44e37079a1c55b516889f2630d [file] [log] [blame]
/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Tom Stellard <thomas.stellard@amd.com>
* Michel Dänzer <michel.daenzer@amd.com>
* Christian König <christian.koenig@amd.com>
*/
#include "gallivm/lp_bld_tgsi_action.h"
#include "gallivm/lp_bld_const.h"
#include "gallivm/lp_bld_gather.h"
#include "gallivm/lp_bld_intr.h"
#include "gallivm/lp_bld_tgsi.h"
#include "radeon_llvm.h"
#include "radeon_llvm_emit.h"
#include "tgsi/tgsi_info.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_scan.h"
#include "tgsi/tgsi_dump.h"
#include "radeonsi_pipe.h"
#include "radeonsi_shader.h"
#include "si_state.h"
#include "sid.h"
#include <assert.h>
#include <errno.h>
#include <stdio.h>
/*
static ps_remap_inputs(
struct tgsi_llvm_context * tl_ctx,
unsigned tgsi_index,
unsigned tgsi_chan)
{
:
}
struct si_input
{
struct list_head head;
unsigned tgsi_index;
unsigned tgsi_chan;
unsigned order;
};
*/
struct si_shader_context
{
struct radeon_llvm_context radeon_bld;
struct r600_context *rctx;
struct tgsi_parse_context parse;
struct tgsi_token * tokens;
struct si_pipe_shader *shader;
unsigned type; /* TGSI_PROCESSOR_* specifies the type of shader. */
/* unsigned num_inputs; */
/* struct list_head inputs; */
/* unsigned * input_mappings *//* From TGSI to SI hw */
/* struct tgsi_shader_info info;*/
};
static struct si_shader_context * si_shader_context(
struct lp_build_tgsi_context * bld_base)
{
return (struct si_shader_context *)bld_base;
}
#define PERSPECTIVE_BASE 0
#define LINEAR_BASE 9
#define SAMPLE_OFFSET 0
#define CENTER_OFFSET 2
#define CENTROID_OFSET 4
#define USE_SGPR_MAX_SUFFIX_LEN 5
#define CONST_ADDR_SPACE 2
#define USER_SGPR_ADDR_SPACE 8
enum sgpr_type {
SGPR_CONST_PTR_F32,
SGPR_CONST_PTR_V4I32,
SGPR_CONST_PTR_V8I32,
SGPR_I32,
SGPR_I64
};
/**
* Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad
*
* @param offset The offset parameter specifies the number of
* elements to offset, not the number of bytes or dwords. An element is the
* the type pointed to by the base_ptr parameter (e.g. int is the element of
* an int* pointer)
*
* When LLVM lowers the load instruction, it will convert the element offset
* into a dword offset automatically.
*
*/
static LLVMValueRef build_indexed_load(
struct gallivm_state * gallivm,
LLVMValueRef base_ptr,
LLVMValueRef offset)
{
LLVMValueRef computed_ptr = LLVMBuildGEP(
gallivm->builder, base_ptr, &offset, 1, "");
return LLVMBuildLoad(gallivm->builder, computed_ptr, "");
}
/**
* Load a value stored in one of the user SGPRs
*
* @param sgpr This is the sgpr to load the value from. If you need to load a
* value that is stored in consecutive SGPR registers (e.g. a 64-bit pointer),
* then you should pass the index of the first SGPR that holds the value. For
* example, if you want to load a pointer that is stored in SGPRs 2 and 3, then
* use pass 2 for the sgpr parameter.
*
* The value of the sgpr parameter must also be aligned to the width of the type
* being loaded, so that the sgpr parameter is divisible by the dword width of the
* type. For example, if the value being loaded is two dwords wide, then the sgpr
* parameter must be divisible by two.
*/
static LLVMValueRef use_sgpr(
struct gallivm_state * gallivm,
enum sgpr_type type,
unsigned sgpr)
{
LLVMValueRef sgpr_index;
LLVMTypeRef ret_type;
LLVMValueRef ptr;
sgpr_index = lp_build_const_int32(gallivm, sgpr);
switch (type) {
case SGPR_CONST_PTR_F32:
assert(sgpr % 2 == 0);
ret_type = LLVMFloatTypeInContext(gallivm->context);
ret_type = LLVMPointerType(ret_type, CONST_ADDR_SPACE);
break;
case SGPR_I32:
ret_type = LLVMInt32TypeInContext(gallivm->context);
break;
case SGPR_I64:
assert(sgpr % 2 == 0);
ret_type= LLVMInt64TypeInContext(gallivm->context);
break;
case SGPR_CONST_PTR_V4I32:
assert(sgpr % 2 == 0);
ret_type = LLVMInt32TypeInContext(gallivm->context);
ret_type = LLVMVectorType(ret_type, 4);
ret_type = LLVMPointerType(ret_type, CONST_ADDR_SPACE);
break;
case SGPR_CONST_PTR_V8I32:
assert(sgpr % 2 == 0);
ret_type = LLVMInt32TypeInContext(gallivm->context);
ret_type = LLVMVectorType(ret_type, 8);
ret_type = LLVMPointerType(ret_type, CONST_ADDR_SPACE);
break;
default:
assert(!"Unsupported SGPR type in use_sgpr()");
return NULL;
}
ret_type = LLVMPointerType(ret_type, USER_SGPR_ADDR_SPACE);
ptr = LLVMBuildIntToPtr(gallivm->builder, sgpr_index, ret_type, "");
return LLVMBuildLoad(gallivm->builder, ptr, "");
}
static void declare_input_vs(
struct si_shader_context * si_shader_ctx,
unsigned input_index,
const struct tgsi_full_declaration *decl)
{
LLVMValueRef t_list_ptr;
LLVMValueRef t_offset;
LLVMValueRef t_list;
LLVMValueRef attribute_offset;
LLVMValueRef buffer_index_reg;
LLVMValueRef args[3];
LLVMTypeRef vec4_type;
LLVMValueRef input;
struct lp_build_context * uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
struct lp_build_context * base = &si_shader_ctx->radeon_bld.soa.bld_base.base;
struct r600_context *rctx = si_shader_ctx->rctx;
//struct pipe_vertex_element *velem = &rctx->vertex_elements->elements[input_index];
unsigned chan;
/* Load the T list */
/* XXX: Communicate with the rest of the driver about which SGPR the T#
* list pointer is going to be stored in. Hard code to SGPR[6:7] for
* now */
t_list_ptr = use_sgpr(base->gallivm, SGPR_CONST_PTR_V4I32, 6);
t_offset = lp_build_const_int32(base->gallivm, input_index);
t_list = build_indexed_load(base->gallivm, t_list_ptr, t_offset);
/* Build the attribute offset */
attribute_offset = lp_build_const_int32(base->gallivm, 0);
/* Load the buffer index is always, which is always stored in VGPR0
* for Vertex Shaders */
buffer_index_reg = build_intrinsic(base->gallivm->builder,
"llvm.SI.vs.load.buffer.index", uint->elem_type, NULL, 0,
LLVMReadNoneAttribute);
vec4_type = LLVMVectorType(base->elem_type, 4);
args[0] = t_list;
args[1] = attribute_offset;
args[2] = buffer_index_reg;
input = lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.vs.load.input", vec4_type, args, 3);
/* Break up the vec4 into individual components */
for (chan = 0; chan < 4; chan++) {
LLVMValueRef llvm_chan = lp_build_const_int32(base->gallivm, chan);
/* XXX: Use a helper function for this. There is one in
* tgsi_llvm.c. */
si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, chan)] =
LLVMBuildExtractElement(base->gallivm->builder,
input, llvm_chan, "");
}
}
static void declare_input_fs(
struct si_shader_context * si_shader_ctx,
unsigned input_index,
const struct tgsi_full_declaration *decl)
{
const char * intr_name;
unsigned chan;
struct lp_build_context * base =
&si_shader_ctx->radeon_bld.soa.bld_base.base;
struct gallivm_state * gallivm = base->gallivm;
/* This value is:
* [15:0] NewPrimMask (Bit mask for each quad. It is set it the
* quad begins a new primitive. Bit 0 always needs
* to be unset)
* [32:16] ParamOffset
*
*/
/* XXX: This register number must be identical to the S_00B02C_USER_SGPR
* register field value
*/
LLVMValueRef params = use_sgpr(base->gallivm, SGPR_I32, 6);
/* XXX: Is this the input_index? */
LLVMValueRef attr_number = lp_build_const_int32(gallivm, input_index);
/* XXX: Handle all possible interpolation modes */
switch (decl->Interp.Interpolate) {
case TGSI_INTERPOLATE_COLOR:
/* XXX: Flat shading hangs the GPU */
if (si_shader_ctx->rctx->queued.named.rasterizer &&
si_shader_ctx->rctx->queued.named.rasterizer->flatshade) {
#if 0
intr_name = "llvm.SI.fs.interp.constant";
#else
intr_name = "llvm.SI.fs.interp.linear.center";
#endif
} else {
if (decl->Interp.Centroid)
intr_name = "llvm.SI.fs.interp.persp.centroid";
else
intr_name = "llvm.SI.fs.interp.persp.center";
}
break;
case TGSI_INTERPOLATE_CONSTANT:
/* XXX: Flat shading hangs the GPU */
#if 0
intr_name = "llvm.SI.fs.interp.constant";
break;
#endif
case TGSI_INTERPOLATE_LINEAR:
if (decl->Interp.Centroid)
intr_name = "llvm.SI.fs.interp.linear.centroid";
else
intr_name = "llvm.SI.fs.interp.linear.center";
break;
case TGSI_INTERPOLATE_PERSPECTIVE:
if (decl->Interp.Centroid)
intr_name = "llvm.SI.fs.interp.persp.centroid";
else
intr_name = "llvm.SI.fs.interp.persp.center";
break;
default:
fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
return;
}
/* XXX: Could there be more than TGSI_NUM_CHANNELS (4) ? */
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
LLVMValueRef args[3];
LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan);
LLVMTypeRef input_type = LLVMFloatTypeInContext(gallivm->context);
args[0] = llvm_chan;
args[1] = attr_number;
args[2] = params;
si_shader_ctx->radeon_bld.inputs[soa_index] =
build_intrinsic(base->gallivm->builder, intr_name,
input_type, args, 3, LLVMReadOnlyAttribute);
}
}
static void declare_input(
struct radeon_llvm_context * radeon_bld,
unsigned input_index,
const struct tgsi_full_declaration *decl)
{
struct si_shader_context * si_shader_ctx =
si_shader_context(&radeon_bld->soa.bld_base);
if (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX) {
declare_input_vs(si_shader_ctx, input_index, decl);
} else if (si_shader_ctx->type == TGSI_PROCESSOR_FRAGMENT) {
declare_input_fs(si_shader_ctx, input_index, decl);
} else {
fprintf(stderr, "Warning: Unsupported shader type,\n");
}
}
static LLVMValueRef fetch_constant(
struct lp_build_tgsi_context * bld_base,
const struct tgsi_full_src_register *reg,
enum tgsi_opcode_type type,
unsigned swizzle)
{
struct lp_build_context * base = &bld_base->base;
LLVMValueRef const_ptr;
LLVMValueRef offset;
LLVMValueRef load;
/* XXX: Assume the pointer to the constant buffer is being stored in
* SGPR[0:1] */
const_ptr = use_sgpr(base->gallivm, SGPR_CONST_PTR_F32, 0);
/* XXX: This assumes that the constant buffer is not packed, so
* CONST[0].x will have an offset of 0 and CONST[1].x will have an
* offset of 4. */
offset = lp_build_const_int32(base->gallivm,
(reg->Register.Index * 4) + swizzle);
load = build_indexed_load(base->gallivm, const_ptr, offset);
return bitcast(bld_base, type, load);
}
/* Initialize arguments for the shader export intrinsic */
static void si_llvm_init_export_args(struct lp_build_tgsi_context *bld_base,
struct tgsi_full_declaration *d,
unsigned index,
unsigned target,
LLVMValueRef *args)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct lp_build_context *uint =
&si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
struct lp_build_context *base = &bld_base->base;
unsigned compressed = 0;
unsigned chan;
if (si_shader_ctx->type == TGSI_PROCESSOR_FRAGMENT) {
int cbuf = target - V_008DFC_SQ_EXP_MRT;
if (cbuf >= 0 && cbuf < 8) {
struct r600_context *rctx = si_shader_ctx->rctx;
compressed = (rctx->export_16bpc >> cbuf) & 0x1;
}
}
if (compressed) {
/* Pixel shader needs to pack output values before export */
for (chan = 0; chan < 2; chan++ ) {
LLVMValueRef *out_ptr =
si_shader_ctx->radeon_bld.soa.outputs[index];
args[0] = LLVMBuildLoad(base->gallivm->builder,
out_ptr[2 * chan], "");
args[1] = LLVMBuildLoad(base->gallivm->builder,
out_ptr[2 * chan + 1], "");
args[chan + 5] =
build_intrinsic(base->gallivm->builder,
"llvm.SI.packf16",
LLVMInt32TypeInContext(base->gallivm->context),
args, 2,
LLVMReadNoneAttribute);
args[chan + 7] = args[chan + 5];
}
/* Set COMPR flag */
args[4] = uint->one;
} else {
for (chan = 0; chan < 4; chan++ ) {
LLVMValueRef out_ptr =
si_shader_ctx->radeon_bld.soa.outputs[index][chan];
/* +5 because the first output value will be
* the 6th argument to the intrinsic. */
args[chan + 5] = LLVMBuildLoad(base->gallivm->builder,
out_ptr, "");
}
/* Clear COMPR flag */
args[4] = uint->zero;
}
/* XXX: This controls which components of the output
* registers actually get exported. (e.g bit 0 means export
* X component, bit 1 means export Y component, etc.) I'm
* hard coding this to 0xf for now. In the future, we might
* want to do something else. */
args[0] = lp_build_const_int32(base->gallivm, 0xf);
/* Specify whether the EXEC mask represents the valid mask */
args[1] = uint->zero;
/* Specify whether this is the last export */
args[2] = uint->zero;
/* Specify the target we are exporting */
args[3] = lp_build_const_int32(base->gallivm, target);
/* XXX: We probably need to keep track of the output
* values, so we know what we are passing to the next
* stage. */
}
/* XXX: This is partially implemented for VS only at this point. It is not complete */
static void si_llvm_emit_epilogue(struct lp_build_tgsi_context * bld_base)
{
struct si_shader_context * si_shader_ctx = si_shader_context(bld_base);
struct si_shader * shader = &si_shader_ctx->shader->shader;
struct lp_build_context * base = &bld_base->base;
struct lp_build_context * uint =
&si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
struct tgsi_parse_context *parse = &si_shader_ctx->parse;
LLVMValueRef last_args[9] = { 0 };
unsigned color_count = 0;
unsigned param_count = 0;
while (!tgsi_parse_end_of_tokens(parse)) {
struct tgsi_full_declaration *d =
&parse->FullToken.FullDeclaration;
LLVMValueRef args[9];
unsigned target;
unsigned index;
int i;
tgsi_parse_token(parse);
if (parse->FullToken.Token.Type != TGSI_TOKEN_TYPE_DECLARATION)
continue;
switch (d->Declaration.File) {
case TGSI_FILE_INPUT:
i = shader->ninput++;
shader->input[i].name = d->Semantic.Name;
shader->input[i].sid = d->Semantic.Index;
shader->input[i].interpolate = d->Interp.Interpolate;
shader->input[i].centroid = d->Interp.Centroid;
continue;
case TGSI_FILE_OUTPUT:
i = shader->noutput++;
shader->output[i].name = d->Semantic.Name;
shader->output[i].sid = d->Semantic.Index;
shader->output[i].interpolate = d->Interp.Interpolate;
break;
default:
continue;
}
for (index = d->Range.First; index <= d->Range.Last; index++) {
/* Select the correct target */
switch(d->Semantic.Name) {
case TGSI_SEMANTIC_POSITION:
target = V_008DFC_SQ_EXP_POS;
break;
case TGSI_SEMANTIC_COLOR:
if (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX) {
target = V_008DFC_SQ_EXP_PARAM + param_count;
shader->output[i].param_offset = param_count;
param_count++;
} else {
target = V_008DFC_SQ_EXP_MRT + color_count;
color_count++;
}
break;
case TGSI_SEMANTIC_GENERIC:
target = V_008DFC_SQ_EXP_PARAM + param_count;
shader->output[i].param_offset = param_count;
param_count++;
break;
default:
target = 0;
fprintf(stderr,
"Warning: SI unhandled output type:%d\n",
d->Semantic.Name);
}
si_llvm_init_export_args(bld_base, d, index, target, args);
if (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX ?
(d->Semantic.Name == TGSI_SEMANTIC_POSITION) :
(d->Semantic.Name == TGSI_SEMANTIC_COLOR)) {
if (last_args[0]) {
lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.export",
LLVMVoidTypeInContext(base->gallivm->context),
last_args, 9);
}
memcpy(last_args, args, sizeof(args));
} else {
lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.export",
LLVMVoidTypeInContext(base->gallivm->context),
args, 9);
}
}
}
if (!last_args[0]) {
assert(si_shader_ctx->type == TGSI_PROCESSOR_FRAGMENT);
/* Specify which components to enable */
last_args[0] = lp_build_const_int32(base->gallivm, 0x0);
/* Specify the target we are exporting */
last_args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRT);
/* Set COMPR flag to zero to export data as 32-bit */
last_args[4] = uint->zero;
/* dummy bits */
last_args[5]= uint->zero;
last_args[6]= uint->zero;
last_args[7]= uint->zero;
last_args[8]= uint->zero;
}
/* Specify whether the EXEC mask represents the valid mask */
last_args[1] = lp_build_const_int32(base->gallivm,
si_shader_ctx->type == TGSI_PROCESSOR_FRAGMENT);
/* Specify that this is the last export */
last_args[2] = lp_build_const_int32(base->gallivm, 1);
lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.export",
LLVMVoidTypeInContext(base->gallivm->context),
last_args, 9);
/* XXX: Look up what this function does */
/* ctx->shader->output[i].spi_sid = r600_spi_sid(&ctx->shader->output[i]);*/
}
static void tex_fetch_args(
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data)
{
const struct tgsi_full_instruction * inst = emit_data->inst;
LLVMValueRef ptr;
LLVMValueRef offset;
/* WriteMask */
/* XXX: should be optimized using emit_data->inst->Dst[0].Register.WriteMask*/
emit_data->args[0] = lp_build_const_int32(bld_base->base.gallivm, 0xf);
/* Coordinates */
/* XXX: Not all sample instructions need 4 address arguments. */
if (inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
LLVMValueRef src_w;
unsigned chan;
LLVMValueRef coords[4];
emit_data->dst_type = LLVMVectorType(bld_base->base.elem_type, 4);
src_w = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_W);
for (chan = 0; chan < 3; chan++ ) {
LLVMValueRef arg = lp_build_emit_fetch(bld_base,
emit_data->inst, 0, chan);
coords[chan] = lp_build_emit_llvm_binary(bld_base,
TGSI_OPCODE_DIV,
arg, src_w);
}
coords[3] = bld_base->base.one;
emit_data->args[1] = lp_build_gather_values(bld_base->base.gallivm,
coords, 4);
} else
emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
0, LP_CHAN_ALL);
/* Resource */
ptr = use_sgpr(bld_base->base.gallivm, SGPR_CONST_PTR_V8I32, 4);
offset = lp_build_const_int32(bld_base->base.gallivm,
emit_data->inst->Src[1].Register.Index);
emit_data->args[2] = build_indexed_load(bld_base->base.gallivm,
ptr, offset);
/* Sampler */
ptr = use_sgpr(bld_base->base.gallivm, SGPR_CONST_PTR_V4I32, 2);
offset = lp_build_const_int32(bld_base->base.gallivm,
emit_data->inst->Src[1].Register.Index);
emit_data->args[3] = build_indexed_load(bld_base->base.gallivm,
ptr, offset);
/* Dimensions */
/* XXX: We might want to pass this information to the shader at some. */
/* emit_data->args[4] = lp_build_const_int32(bld_base->base.gallivm,
emit_data->inst->Texture.Texture);
*/
emit_data->arg_count = 4;
/* XXX: To optimize, we could use a float or v2f32, if the last bits of
* the writemask are clear */
emit_data->dst_type = LLVMVectorType(
LLVMFloatTypeInContext(bld_base->base.gallivm->context),
4);
}
static const struct lp_build_tgsi_action tex_action = {
.fetch_args = tex_fetch_args,
.emit = lp_build_tgsi_intrinsic,
.intr_name = "llvm.SI.sample"
};
int si_pipe_shader_create(
struct pipe_context *ctx,
struct si_pipe_shader *shader)
{
struct r600_context *rctx = (struct r600_context*)ctx;
struct si_pipe_shader_selector *sel = shader->selector;
struct si_shader_context si_shader_ctx;
struct tgsi_shader_info shader_info;
struct lp_build_tgsi_context * bld_base;
LLVMModuleRef mod;
unsigned char * inst_bytes;
unsigned inst_byte_count;
unsigned i;
uint32_t *ptr;
bool dump;
dump = debug_get_bool_option("RADEON_DUMP_SHADERS", FALSE);
memset(&si_shader_ctx.radeon_bld, 0, sizeof(si_shader_ctx.radeon_bld));
radeon_llvm_context_init(&si_shader_ctx.radeon_bld);
bld_base = &si_shader_ctx.radeon_bld.soa.bld_base;
tgsi_scan_shader(sel->tokens, &shader_info);
bld_base->info = &shader_info;
bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
bld_base->emit_epilogue = si_llvm_emit_epilogue;
bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXP] = tex_action;
si_shader_ctx.radeon_bld.load_input = declare_input;
si_shader_ctx.tokens = sel->tokens;
tgsi_parse_init(&si_shader_ctx.parse, si_shader_ctx.tokens);
si_shader_ctx.shader = shader;
si_shader_ctx.type = si_shader_ctx.parse.FullHeader.Processor.Processor;
si_shader_ctx.rctx = rctx;
shader->shader.nr_cbufs = rctx->framebuffer.nr_cbufs;
/* Dump TGSI code before doing TGSI->LLVM conversion in case the
* conversion fails. */
if (dump) {
tgsi_dump(sel->tokens, 0);
}
if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
return -EINVAL;
}
radeon_llvm_finalize_module(&si_shader_ctx.radeon_bld);
mod = bld_base->base.gallivm->module;
if (dump) {
LLVMDumpModule(mod);
}
radeon_llvm_compile(mod, &inst_bytes, &inst_byte_count, "SI", dump);
if (dump) {
fprintf(stderr, "SI CODE:\n");
for (i = 0; i < inst_byte_count; i+=4 ) {
fprintf(stderr, "%02x%02x%02x%02x\n", inst_bytes[i + 3],
inst_bytes[i + 2], inst_bytes[i + 1],
inst_bytes[i]);
}
}
shader->num_sgprs = util_le32_to_cpu(*(uint32_t*)inst_bytes);
shader->num_vgprs = util_le32_to_cpu(*(uint32_t*)(inst_bytes + 4));
shader->spi_ps_input_ena = util_le32_to_cpu(*(uint32_t*)(inst_bytes + 8));
radeon_llvm_dispose(&si_shader_ctx.radeon_bld);
tgsi_parse_free(&si_shader_ctx.parse);
/* copy new shader */
si_resource_reference(&shader->bo, NULL);
shader->bo = si_resource_create_custom(ctx->screen, PIPE_USAGE_IMMUTABLE,
inst_byte_count - 12);
if (shader->bo == NULL) {
return -ENOMEM;
}
ptr = (uint32_t*)rctx->ws->buffer_map(shader->bo->cs_buf, rctx->cs, PIPE_TRANSFER_WRITE);
if (0 /*R600_BIG_ENDIAN*/) {
for (i = 0; i < (inst_byte_count-12)/4; ++i) {
ptr[i] = util_bswap32(*(uint32_t*)(inst_bytes+12 + i*4));
}
} else {
memcpy(ptr, inst_bytes + 12, inst_byte_count - 12);
}
rctx->ws->buffer_unmap(shader->bo->cs_buf);
free(inst_bytes);
return 0;
}
void si_pipe_shader_destroy(struct pipe_context *ctx, struct si_pipe_shader *shader)
{
si_resource_reference(&shader->bo, NULL);
}