blob: efb51249115474229f59ebad456a7f7fee3ca585 [file] [log] [blame]
/*
* Copyright 2011 Christoph Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "nv50/codegen/nv50_ir.h"
#include "nv50/codegen/nv50_ir_build_util.h"
#include "nv50_ir_target_nvc0.h"
#include <limits>
namespace nv50_ir {
#define QOP_ADD 0
#define QOP_SUBR 1
#define QOP_SUB 2
#define QOP_MOV2 3
// UL UR LL LR
#define QUADOP(q, r, s, t) \
((QOP_##q << 6) | (QOP_##r << 4) | \
(QOP_##s << 2) | (QOP_##t << 0))
class NVC0LegalizeSSA : public Pass
{
private:
virtual bool visit(BasicBlock *);
virtual bool visit(Function *);
// we want to insert calls to the builtin library only after optimization
void handleDIV(Instruction *); // integer division, modulus
void handleRCPRSQ(Instruction *); // double precision float recip/rsqrt
private:
BuildUtil bld;
};
void
NVC0LegalizeSSA::handleDIV(Instruction *i)
{
FlowInstruction *call;
int builtin;
Value *def[2];
bld.setPosition(i, false);
def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0);
def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0);
switch (i->dType) {
case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
default:
return;
}
call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]);
bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
call->fixed = 1;
call->absolute = call->builtin = 1;
call->target.builtin = builtin;
delete_Instruction(prog, i);
}
void
NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
{
// TODO
}
bool
NVC0LegalizeSSA::visit(Function *fn)
{
bld.setProgram(fn->getProgram());
return true;
}
bool
NVC0LegalizeSSA::visit(BasicBlock *bb)
{
Instruction *next;
for (Instruction *i = bb->getEntry(); i; i = next) {
next = i->next;
if (i->dType == TYPE_F32)
continue;
switch (i->op) {
case OP_DIV:
case OP_MOD:
handleDIV(i);
break;
case OP_RCP:
case OP_RSQ:
if (i->dType == TYPE_F64)
handleRCPRSQ(i);
break;
default:
break;
}
}
return true;
}
class NVC0LegalizePostRA : public Pass
{
public:
NVC0LegalizePostRA(const Program *);
private:
virtual bool visit(Function *);
virtual bool visit(BasicBlock *);
void replaceZero(Instruction *);
void split64BitOp(Instruction *);
bool tryReplaceContWithBra(BasicBlock *);
void propagateJoin(BasicBlock *);
struct TexUse
{
TexUse(Instruction *use, const Instruction *tex)
: insn(use), tex(tex), level(-1) { }
Instruction *insn;
const Instruction *tex; // or split / mov
int level;
};
struct Limits
{
Limits() { }
Limits(int min, int max) : min(min), max(max) { }
int min, max;
};
bool insertTextureBarriers(Function *);
inline bool insnDominatedBy(const Instruction *, const Instruction *) const;
void findFirstUses(const Instruction *tex, const Instruction *def,
std::list<TexUse>&);
void findOverwritingDefs(const Instruction *tex, Instruction *insn,
const BasicBlock *term,
std::list<TexUse>&);
void addTexUse(std::list<TexUse>&, Instruction *, const Instruction *);
const Instruction *recurseDef(const Instruction *);
private:
LValue *r63;
const bool needTexBar;
};
NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
: needTexBar(prog->getTarget()->getChipset() >= 0xe0)
{
}
bool
NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
const Instruction *early) const
{
if (early->bb == later->bb)
return early->serial < later->serial;
return later->bb->dominatedBy(early->bb);
}
void
NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
Instruction *usei, const Instruction *insn)
{
bool add = true;
for (std::list<TexUse>::iterator it = uses.begin();
it != uses.end();) {
if (insnDominatedBy(usei, it->insn)) {
add = false;
break;
}
if (insnDominatedBy(it->insn, usei))
it = uses.erase(it);
else
++it;
}
if (add)
uses.push_back(TexUse(usei, insn));
}
void
NVC0LegalizePostRA::findOverwritingDefs(const Instruction *texi,
Instruction *insn,
const BasicBlock *term,
std::list<TexUse> &uses)
{
while (insn->op == OP_MOV && insn->getDef(0)->equals(insn->getSrc(0)))
insn = insn->getSrc(0)->getUniqueInsn();
if (!insn || !insn->bb->reachableBy(texi->bb, term))
return;
switch (insn->op) {
/* Values not connected to the tex's definition through any of these should
* not be conflicting.
*/
case OP_SPLIT:
case OP_MERGE:
case OP_PHI:
case OP_UNION:
/* recurse again */
for (int s = 0; insn->srcExists(s); ++s)
findOverwritingDefs(texi, insn->getSrc(s)->getUniqueInsn(), term,
uses);
break;
default:
// if (!isTextureOp(insn->op)) // TODO: are TEXes always ordered ?
addTexUse(uses, insn, texi);
break;
}
}
void
NVC0LegalizePostRA::findFirstUses(const Instruction *texi,
const Instruction *insn,
std::list<TexUse> &uses)
{
for (int d = 0; insn->defExists(d); ++d) {
Value *v = insn->getDef(d);
for (Value::UseIterator u = v->uses.begin(); u != v->uses.end(); ++u) {
Instruction *usei = (*u)->getInsn();
if (usei->op == OP_PHI || usei->op == OP_UNION) {
// need a barrier before WAW cases
for (int s = 0; usei->srcExists(s); ++s) {
Instruction *defi = usei->getSrc(s)->getUniqueInsn();
if (defi && &usei->src(s) != *u)
findOverwritingDefs(texi, defi, usei->bb, uses);
}
}
if (usei->op == OP_SPLIT ||
usei->op == OP_MERGE ||
usei->op == OP_PHI ||
usei->op == OP_UNION) {
// these uses don't manifest in the machine code
findFirstUses(texi, usei, uses);
} else
if (usei->op == OP_MOV && usei->getDef(0)->equals(usei->getSrc(0)) &&
usei->subOp != NV50_IR_SUBOP_MOV_FINAL) {
findFirstUses(texi, usei, uses);
} else {
addTexUse(uses, usei, insn);
}
}
}
}
// Texture barriers:
// This pass is a bit long and ugly and can probably be optimized.
//
// 1. obtain a list of TEXes and their outputs' first use(s)
// 2. calculate the barrier level of each first use (minimal number of TEXes,
// over all paths, between the TEX and the use in question)
// 3. for each barrier, if all paths from the source TEX to that barrier
// contain a barrier of lesser level, it can be culled
bool
NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
{
std::list<TexUse> *uses;
std::vector<Instruction *> texes;
std::vector<int> bbFirstTex;
std::vector<int> bbFirstUse;
std::vector<int> texCounts;
std::vector<TexUse> useVec;
ArrayList insns;
fn->orderInstructions(insns);
texCounts.resize(fn->allBBlocks.getSize(), 0);
bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
// tag BB CFG nodes by their id for later
for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
if (bb)
bb->cfg.tag = bb->getId();
}
// gather the first uses for each TEX
for (int i = 0; i < insns.getSize(); ++i) {
Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
if (isTextureOp(tex->op)) {
texes.push_back(tex);
if (!texCounts.at(tex->bb->getId()))
bbFirstTex[tex->bb->getId()] = texes.size() - 1;
texCounts[tex->bb->getId()]++;
}
}
insns.clear();
if (texes.empty())
return false;
uses = new std::list<TexUse>[texes.size()];
if (!uses)
return false;
for (size_t i = 0; i < texes.size(); ++i)
findFirstUses(texes[i], texes[i], uses[i]);
// determine the barrier level at each use
for (size_t i = 0; i < texes.size(); ++i) {
for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
++u) {
BasicBlock *tb = texes[i]->bb;
BasicBlock *ub = u->insn->bb;
if (tb == ub) {
u->level = 0;
for (size_t j = i + 1; j < texes.size() &&
texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
++j)
u->level++;
} else {
u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
&ub->cfg, texCounts);
if (u->level < 0) {
WARN("Failed to find path TEX -> TEXBAR\n");
u->level = 0;
continue;
}
// this counted all TEXes in the origin block, correct that
u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
// and did not count the TEXes in the destination block, add those
for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
++j)
u->level++;
}
assert(u->level >= 0);
useVec.push_back(*u);
}
}
delete[] uses;
uses = NULL;
// insert the barriers
for (size_t i = 0; i < useVec.size(); ++i) {
Instruction *prev = useVec[i].insn->prev;
if (useVec[i].level < 0)
continue;
if (prev && prev->op == OP_TEXBAR) {
if (prev->subOp > useVec[i].level)
prev->subOp = useVec[i].level;
prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
} else {
Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
bar->fixed = 1;
bar->subOp = useVec[i].level;
// make use explicit to ease latency calculation
bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
}
}
if (fn->getProgram()->optLevel < 3) {
if (uses)
delete[] uses;
return true;
}
std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
limitS.resize(fn->allBBlocks.getSize());
// cull unneeded barriers (should do that earlier, but for simplicity)
IteratorRef bi = fn->cfg.iteratorCFG();
// first calculate min/max outstanding TEXes for each BB
for (bi->reset(); !bi->end(); bi->next()) {
Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
BasicBlock *bb = BasicBlock::get(n);
int min = 0;
int max = std::numeric_limits<int>::max();
for (Instruction *i = bb->getFirst(); i; i = i->next) {
if (isTextureOp(i->op)) {
min++;
if (max < std::numeric_limits<int>::max())
max++;
} else
if (i->op == OP_TEXBAR) {
min = MIN2(min, i->subOp);
max = MIN2(max, i->subOp);
}
}
// limits when looking at an isolated block
limitS[bb->getId()].min = min;
limitS[bb->getId()].max = max;
}
// propagate the min/max values
for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
for (bi->reset(); !bi->end(); bi->next()) {
Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
BasicBlock *bb = BasicBlock::get(n);
const int bbId = bb->getId();
for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
BasicBlock *in = BasicBlock::get(ei.getNode());
const int inId = in->getId();
limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
}
// I just hope this is correct ...
if (limitS[bbId].max == std::numeric_limits<int>::max()) {
// no barrier
limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
} else {
// block contained a barrier
limitB[bbId].min = MIN2(limitS[bbId].max,
limitT[bbId].min + limitS[bbId].min);
limitB[bbId].max = MIN2(limitS[bbId].max,
limitT[bbId].max + limitS[bbId].min);
}
}
}
// finally delete unnecessary barriers
for (bi->reset(); !bi->end(); bi->next()) {
Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
BasicBlock *bb = BasicBlock::get(n);
Instruction *prev = NULL;
Instruction *next;
int max = limitT[bb->getId()].max;
for (Instruction *i = bb->getFirst(); i; i = next) {
next = i->next;
if (i->op == OP_TEXBAR) {
if (i->subOp >= max) {
delete_Instruction(prog, i);
} else {
max = i->subOp;
if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
delete_Instruction(prog, prev);
prev = NULL;
}
}
} else
if (isTextureOp(i->op)) {
max++;
}
if (!i->isNop())
prev = i;
}
}
if (uses)
delete[] uses;
return true;
}
bool
NVC0LegalizePostRA::visit(Function *fn)
{
if (needTexBar)
insertTextureBarriers(fn);
r63 = new_LValue(fn, FILE_GPR);
r63->reg.data.id = 63;
return true;
}
void
NVC0LegalizePostRA::replaceZero(Instruction *i)
{
for (int s = 0; i->srcExists(s); ++s) {
ImmediateValue *imm = i->getSrc(s)->asImm();
if (imm && imm->reg.data.u64 == 0)
i->setSrc(s, r63);
}
}
void
NVC0LegalizePostRA::split64BitOp(Instruction *i)
{
if (i->dType == TYPE_F64) {
if (i->op == OP_MAD)
i->op = OP_FMA;
if (i->op == OP_ADD || i->op == OP_MUL || i->op == OP_FMA ||
i->op == OP_CVT || i->op == OP_MIN || i->op == OP_MAX ||
i->op == OP_SET)
return;
i->dType = i->sType = TYPE_U32;
i->bb->insertAfter(i, cloneForward(func, i));
}
}
// replace CONT with BRA for single unconditional continue
bool
NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
{
if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
return false;
Graph::EdgeIterator ei = bb->cfg.incident();
if (ei.getType() != Graph::Edge::BACK)
ei.next();
if (ei.getType() != Graph::Edge::BACK)
return false;
BasicBlock *contBB = BasicBlock::get(ei.getNode());
if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
contBB->getExit()->getPredicate())
return false;
contBB->getExit()->op = OP_BRA;
bb->remove(bb->getEntry()); // delete PRECONT
ei.next();
assert(ei.end() || ei.getType() != Graph::Edge::BACK);
return true;
}
// replace branches to join blocks with join ops
void
NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
{
if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
return;
for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
BasicBlock *in = BasicBlock::get(ei.getNode());
Instruction *exit = in->getExit();
if (!exit) {
in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
// there should always be a terminator instruction
WARN("inserted missing terminator in BB:%i\n", in->getId());
} else
if (exit->op == OP_BRA) {
exit->op = OP_JOIN;
exit->asFlow()->limit = 1; // must-not-propagate marker
}
}
bb->remove(bb->getEntry());
}
bool
NVC0LegalizePostRA::visit(BasicBlock *bb)
{
Instruction *i, *next;
// remove pseudo operations and non-fixed no-ops, split 64 bit operations
for (i = bb->getFirst(); i; i = next) {
next = i->next;
if (i->op == OP_EMIT || i->op == OP_RESTART) {
if (!i->getDef(0)->refCount())
i->setDef(0, NULL);
if (i->src(0).getFile() == FILE_IMMEDIATE)
i->setSrc(0, r63); // initial value must be 0
} else
if (i->isNop()) {
bb->remove(i);
} else {
if (i->op != OP_MOV && i->op != OP_PFETCH)
replaceZero(i);
if (typeSizeof(i->dType) == 8)
split64BitOp(i);
}
}
if (!bb->getEntry())
return true;
if (!tryReplaceContWithBra(bb))
propagateJoin(bb);
return true;
}
class NVC0LoweringPass : public Pass
{
public:
NVC0LoweringPass(Program *);
private:
virtual bool visit(Function *);
virtual bool visit(BasicBlock *);
virtual bool visit(Instruction *);
bool handleRDSV(Instruction *);
bool handleWRSV(Instruction *);
bool handleEXPORT(Instruction *);
bool handleOUT(Instruction *);
bool handleDIV(Instruction *);
bool handleMOD(Instruction *);
bool handleSQRT(Instruction *);
bool handlePOW(Instruction *);
bool handleTEX(TexInstruction *);
bool handleTXD(TexInstruction *);
bool handleTXQ(TexInstruction *);
bool handleManualTXD(TexInstruction *);
void checkPredicate(Instruction *);
void readTessCoord(LValue *dst, int c);
private:
const Target *const targ;
BuildUtil bld;
LValue *gpEmitAddress;
};
NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
{
bld.setProgram(prog);
}
bool
NVC0LoweringPass::visit(Function *fn)
{
if (prog->getType() == Program::TYPE_GEOMETRY) {
assert(!strncmp(fn->getName(), "MAIN", 4));
// TODO: when we generate actual functions pass this value along somehow
bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
if (fn->cfgExit) {
bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
bld.mkMovToReg(0, gpEmitAddress);
}
}
return true;
}
bool
NVC0LoweringPass::visit(BasicBlock *bb)
{
return true;
}
// move array source to first slot, convert to u16, add indirections
bool
NVC0LoweringPass::handleTEX(TexInstruction *i)
{
const int dim = i->tex.target.getDim() + i->tex.target.isCube();
const int arg = i->tex.target.getArgCount();
if (prog->getTarget()->getChipset() >= 0xe0) {
if (i->tex.r == i->tex.s) {
i->tex.r += 8; // NOTE: offset should probably be a driver option
i->tex.s = 0; // only a single cX[] value possible here
} else {
// TODO: extract handles and use register to select TIC/TSC entries
}
if (i->tex.target.isArray()) {
LValue *layer = new_LValue(func, FILE_GPR);
Value *src = i->getSrc(arg - 1);
const int sat = (i->op == OP_TXF) ? 1 : 0;
DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
for (int s = dim; s >= 1; --s)
i->setSrc(s, i->getSrc(s - 1));
i->setSrc(0, layer);
}
if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
Value *tmp[2];
Symbol *bind;
Value *rRel = i->getIndirectR();
Value *sRel = i->getIndirectS();
Value *shCnt = bld.loadImm(NULL, 2);
if (rRel) {
tmp[0] = bld.getScratch();
bind = bld.mkSymbol(FILE_MEMORY_CONST, 15, TYPE_U32, i->tex.r * 4);
bld.mkOp2(OP_SHL, TYPE_U32, tmp[0], rRel, shCnt);
tmp[1] = bld.mkLoad(TYPE_U32, bind, tmp[0]);
bld.mkOp2(OP_AND, TYPE_U32, tmp[0], tmp[1],
bld.loadImm(tmp[0], 0x00ffffffu));
rRel = tmp[0];
i->setSrc(i->tex.rIndirectSrc, NULL);
}
if (sRel) {
tmp[0] = bld.getScratch();
bind = bld.mkSymbol(FILE_MEMORY_CONST, 15, TYPE_U32, i->tex.s * 4);
bld.mkOp2(OP_SHL, TYPE_U32, tmp[0], sRel, shCnt);
tmp[1] = bld.mkLoad(TYPE_U32, bind, tmp[0]);
bld.mkOp2(OP_AND, TYPE_U32, tmp[0], tmp[1],
bld.loadImm(tmp[0], 0xff000000u));
sRel = tmp[0];
i->setSrc(i->tex.sIndirectSrc, NULL);
}
bld.mkOp2(OP_OR, TYPE_U32, rRel, rRel, sRel);
int min = i->tex.rIndirectSrc;
if (min < 0 || min > i->tex.sIndirectSrc)
min = i->tex.sIndirectSrc;
for (int s = min; s >= 1; --s)
i->setSrc(s, i->getSrc(s - 1));
i->setSrc(0, rRel);
}
} else
// (nvc0) generate and move the tsc/tic/array source to the front
if (dim != arg || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(arg - 1) : NULL;
for (int s = dim; s >= 1; --s)
i->setSrc(s, i->getSrc(s - 1));
i->setSrc(0, arrayIndex);
Value *ticRel = i->getIndirectR();
Value *tscRel = i->getIndirectS();
if (arrayIndex) {
int sat = (i->op == OP_TXF) ? 1 : 0;
DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
} else {
bld.loadImm(src, 0);
}
if (ticRel) {
i->setSrc(i->tex.rIndirectSrc, NULL);
bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
}
if (tscRel) {
i->setSrc(i->tex.sIndirectSrc, NULL);
bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
}
i->setSrc(0, src);
}
// offset is last source (lod 1st, dc 2nd)
if (i->tex.useOffsets) {
uint32_t value = 0;
int n, c;
int s = i->srcCount(0xff);
for (n = 0; n < i->tex.useOffsets; ++n)
for (c = 0; c < 3; ++c)
value |= (i->tex.offset[n][c] & 0xf) << (n * 12 + c * 4);
i->setSrc(s, bld.loadImm(NULL, value));
}
return true;
}
bool
NVC0LoweringPass::handleManualTXD(TexInstruction *i)
{
static const uint8_t qOps[4][2] =
{
{ QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) }, // l0
{ QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD, ADD) }, // l1
{ QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2
{ QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3
};
Value *def[4][4];
Value *crd[3];
Instruction *tex;
Value *zero = bld.loadImm(bld.getSSA(), 0);
int l, c;
const int dim = i->tex.target.getDim();
i->op = OP_TEX; // no need to clone dPdx/dPdy later
for (c = 0; c < dim; ++c)
crd[c] = bld.getScratch();
bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
for (l = 0; l < 4; ++l) {
// mov coordinates from lane l to all lanes
for (c = 0; c < dim; ++c)
bld.mkQuadop(0x00, crd[c], l, i->getSrc(c), zero);
// add dPdx from lane l to lanes dx
for (c = 0; c < dim; ++c)
bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]);
// add dPdy from lane l to lanes dy
for (c = 0; c < dim; ++c)
bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]);
// texture
bld.insert(tex = cloneForward(func, i));
for (c = 0; c < dim; ++c)
tex->setSrc(c, crd[c]);
// save results
for (c = 0; i->defExists(c); ++c) {
Instruction *mov;
def[c][l] = bld.getSSA();
mov = bld.mkMov(def[c][l], tex->getDef(c));
mov->fixed = 1;
mov->lanes = 1 << l;
}
}
bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
for (c = 0; i->defExists(c); ++c) {
Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
for (l = 0; l < 4; ++l)
u->setSrc(l, def[c][l]);
}
i->bb->remove(i);
return true;
}
bool
NVC0LoweringPass::handleTXD(TexInstruction *txd)
{
int dim = txd->tex.target.getDim();
int arg = txd->tex.target.getArgCount();
handleTEX(txd);
while (txd->srcExists(arg))
++arg;
txd->tex.derivAll = true;
if (dim > 2 ||
txd->tex.target.isCube() ||
arg > 4 ||
txd->tex.target.isShadow())
return handleManualTXD(txd);
for (int c = 0; c < dim; ++c) {
txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
txd->dPdx[c].set(NULL);
txd->dPdy[c].set(NULL);
}
return true;
}
bool
NVC0LoweringPass::handleTXQ(TexInstruction *txq)
{
// TODO: indirect resource/sampler index
return true;
}
bool
NVC0LoweringPass::handleWRSV(Instruction *i)
{
Instruction *st;
Symbol *sym;
uint32_t addr;
// must replace, $sreg are not writeable
addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
if (addr >= 0x400)
return false;
sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
i->getSrc(1));
st->perPatch = i->perPatch;
bld.getBB()->remove(i);
return true;
}
void
NVC0LoweringPass::readTessCoord(LValue *dst, int c)
{
Value *laneid = bld.getSSA();
Value *x, *y;
bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
if (c == 0) {
x = dst;
y = NULL;
} else
if (c == 1) {
x = NULL;
y = dst;
} else {
assert(c == 2);
x = bld.getSSA();
y = bld.getSSA();
}
if (x)
bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
if (y)
bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
if (c == 2) {
bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
}
}
bool
NVC0LoweringPass::handleRDSV(Instruction *i)
{
Symbol *sym = i->getSrc(0)->asSym();
Value *vtx = NULL;
Instruction *ld;
uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
if (addr >= 0x400) // mov $sreg
return true;
switch (i->getSrc(0)->reg.data.sv.sv) {
case SV_POSITION:
assert(prog->getType() == Program::TYPE_FRAGMENT);
bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
break;
case SV_FACE:
{
Value *face = i->getDef(0);
bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
if (i->dType == TYPE_F32) {
bld.mkOp2(OP_AND, TYPE_U32, face, face, bld.mkImm(0x80000000));
bld.mkOp2(OP_XOR, TYPE_U32, face, face, bld.mkImm(0xbf800000));
}
}
break;
case SV_TESS_COORD:
assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
break;
default:
if (prog->getType() == Program::TYPE_TESSELLATION_EVAL)
vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
ld = bld.mkFetch(i->getDef(0), i->dType,
FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
ld->perPatch = i->perPatch;
break;
}
bld.getBB()->remove(i);
return true;
}
bool
NVC0LoweringPass::handleDIV(Instruction *i)
{
if (!isFloatType(i->dType))
return true;
bld.setPosition(i, false);
Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(), i->getSrc(1));
i->op = OP_MUL;
i->setSrc(1, rcp->getDef(0));
return true;
}
bool
NVC0LoweringPass::handleMOD(Instruction *i)
{
if (i->dType != TYPE_F32)
return true;
LValue *value = bld.getScratch();
bld.mkOp1(OP_RCP, TYPE_F32, value, i->getSrc(1));
bld.mkOp2(OP_MUL, TYPE_F32, value, i->getSrc(0), value);
bld.mkOp1(OP_TRUNC, TYPE_F32, value, value);
bld.mkOp2(OP_MUL, TYPE_F32, value, i->getSrc(1), value);
i->op = OP_SUB;
i->setSrc(1, value);
return true;
}
bool
NVC0LoweringPass::handleSQRT(Instruction *i)
{
Instruction *rsq = bld.mkOp1(OP_RSQ, TYPE_F32,
bld.getSSA(), i->getSrc(0));
i->op = OP_MUL;
i->setSrc(1, rsq->getDef(0));
return true;
}
bool
NVC0LoweringPass::handlePOW(Instruction *i)
{
LValue *val = bld.getScratch();
bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
i->op = OP_EX2;
i->setSrc(0, val);
i->setSrc(1, NULL);
return true;
}
bool
NVC0LoweringPass::handleEXPORT(Instruction *i)
{
if (prog->getType() == Program::TYPE_FRAGMENT) {
int id = i->getSrc(0)->reg.data.offset / 4;
if (i->src(0).isIndirect(0)) // TODO, ugly
return false;
i->op = OP_MOV;
i->subOp = NV50_IR_SUBOP_MOV_FINAL;
i->src(0).set(i->src(1));
i->setSrc(1, NULL);
i->setDef(0, new_LValue(func, FILE_GPR));
i->getDef(0)->reg.data.id = id;
prog->maxGPR = MAX2(prog->maxGPR, id);
} else
if (prog->getType() == Program::TYPE_GEOMETRY) {
i->setIndirect(0, 1, gpEmitAddress);
}
return true;
}
bool
NVC0LoweringPass::handleOUT(Instruction *i)
{
if (i->op == OP_RESTART && i->prev && i->prev->op == OP_EMIT) {
i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
delete_Instruction(prog, i);
} else {
assert(gpEmitAddress);
i->setDef(0, gpEmitAddress);
if (i->srcExists(0))
i->setSrc(1, i->getSrc(0));
i->setSrc(0, gpEmitAddress);
}
return true;
}
// Generate a binary predicate if an instruction is predicated by
// e.g. an f32 value.
void
NVC0LoweringPass::checkPredicate(Instruction *insn)
{
Value *pred = insn->getPredicate();
Value *pdst;
if (!pred || pred->reg.file == FILE_PREDICATE)
return;
pdst = new_LValue(func, FILE_PREDICATE);
// CAUTION: don't use pdst->getInsn, the definition might not be unique,
// delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
bld.mkCmp(OP_SET, CC_NEU, TYPE_U32, pdst, bld.mkImm(0), pred);
insn->setPredicate(insn->cc, pdst);
}
//
// - add quadop dance for texturing
// - put FP outputs in GPRs
// - convert instruction sequences
//
bool
NVC0LoweringPass::visit(Instruction *i)
{
bld.setPosition(i, false);
if (i->cc != CC_ALWAYS)
checkPredicate(i);
switch (i->op) {
case OP_TEX:
case OP_TXB:
case OP_TXL:
case OP_TXF:
case OP_TXG:
return handleTEX(i->asTex());
case OP_TXD:
return handleTXD(i->asTex());
case OP_TXQ:
return handleTXQ(i->asTex());
case OP_EX2:
bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
i->setSrc(0, i->getDef(0));
break;
case OP_POW:
return handlePOW(i);
case OP_DIV:
return handleDIV(i);
case OP_MOD:
return handleMOD(i);
case OP_SQRT:
return handleSQRT(i);
case OP_EXPORT:
return handleEXPORT(i);
case OP_EMIT:
case OP_RESTART:
return handleOUT(i);
case OP_RDSV:
return handleRDSV(i);
case OP_WRSV:
return handleWRSV(i);
case OP_LOAD:
if (i->src(0).getFile() == FILE_SHADER_INPUT) {
i->op = OP_VFETCH;
assert(prog->getType() != Program::TYPE_FRAGMENT);
}
break;
default:
break;
}
return true;
}
bool
TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
{
if (stage == CG_STAGE_PRE_SSA) {
NVC0LoweringPass pass(prog);
return pass.run(prog, false, true);
} else
if (stage == CG_STAGE_POST_RA) {
NVC0LegalizePostRA pass(prog);
return pass.run(prog, false, true);
} else
if (stage == CG_STAGE_SSA) {
NVC0LegalizeSSA pass;
return pass.run(prog, false, true);
}
return false;
}
} // namespace nv50_ir