blob: 1b73d46e49bde9aad03269f81eae863620ff6e15 [file] [log] [blame]
/*
* Mesa 3-D graphics library
*
* Copyright (C) 2011 VMware, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* Functions for mapping/unmapping texture images.
*/
#include "main/context.h"
#include "main/fbobject.h"
#include "main/teximage.h"
#include "main/texobj.h"
#include "swrast/swrast.h"
#include "swrast/s_context.h"
/**
* Allocate a new swrast_texture_image (a subclass of gl_texture_image).
* Called via ctx->Driver.NewTextureImage().
*/
struct gl_texture_image *
_swrast_new_texture_image( struct gl_context *ctx )
{
(void) ctx;
return (struct gl_texture_image *) CALLOC_STRUCT(swrast_texture_image);
}
/**
* Free a swrast_texture_image (a subclass of gl_texture_image).
* Called via ctx->Driver.DeleteTextureImage().
*/
void
_swrast_delete_texture_image(struct gl_context *ctx,
struct gl_texture_image *texImage)
{
/* Nothing special for the subclass yet */
_mesa_delete_texture_image(ctx, texImage);
}
/**
* Called via ctx->Driver.AllocTextureImageBuffer()
*/
GLboolean
_swrast_alloc_texture_image_buffer(struct gl_context *ctx,
struct gl_texture_image *texImage)
{
struct swrast_texture_image *swImg = swrast_texture_image(texImage);
GLuint bytes = _mesa_format_image_size(texImage->TexFormat, texImage->Width,
texImage->Height, texImage->Depth);
GLuint i;
assert(!swImg->Buffer);
swImg->Buffer = _mesa_align_malloc(bytes, 512);
if (!swImg->Buffer)
return GL_FALSE;
/* RowStride and ImageOffsets[] describe how to address texels in 'Data' */
swImg->RowStride = texImage->Width;
/* Allocate the ImageOffsets array and initialize to typical values.
* We allocate the array for 1D/2D textures too in order to avoid special-
* case code in the texstore routines.
*/
swImg->ImageOffsets = (GLuint *) malloc(texImage->Depth * sizeof(GLuint));
if (!swImg->ImageOffsets)
return GL_FALSE;
for (i = 0; i < texImage->Depth; i++) {
swImg->ImageOffsets[i] = i * texImage->Width * texImage->Height;
}
_swrast_init_texture_image(texImage);
return GL_TRUE;
}
/**
* Code that overrides ctx->Driver.AllocTextureImageBuffer may use this to
* initialize the fields of swrast_texture_image without allocating the image
* buffer or initializing ImageOffsets or RowStride.
*
* Returns GL_TRUE on success, GL_FALSE on memory allocation failure.
*/
void
_swrast_init_texture_image(struct gl_texture_image *texImage)
{
struct swrast_texture_image *swImg = swrast_texture_image(texImage);
if ((texImage->Width == 1 || _mesa_is_pow_two(texImage->Width2)) &&
(texImage->Height == 1 || _mesa_is_pow_two(texImage->Height2)) &&
(texImage->Depth == 1 || _mesa_is_pow_two(texImage->Depth2)))
swImg->_IsPowerOfTwo = GL_TRUE;
else
swImg->_IsPowerOfTwo = GL_FALSE;
/* Compute Width/Height/DepthScale for mipmap lod computation */
if (texImage->TexObject->Target == GL_TEXTURE_RECTANGLE_NV) {
/* scale = 1.0 since texture coords directly map to texels */
swImg->WidthScale = 1.0;
swImg->HeightScale = 1.0;
swImg->DepthScale = 1.0;
}
else {
swImg->WidthScale = (GLfloat) texImage->Width;
swImg->HeightScale = (GLfloat) texImage->Height;
swImg->DepthScale = (GLfloat) texImage->Depth;
}
}
/**
* Called via ctx->Driver.FreeTextureImageBuffer()
*/
void
_swrast_free_texture_image_buffer(struct gl_context *ctx,
struct gl_texture_image *texImage)
{
struct swrast_texture_image *swImage = swrast_texture_image(texImage);
if (swImage->Buffer) {
_mesa_align_free(swImage->Buffer);
swImage->Buffer = NULL;
}
if (swImage->ImageOffsets) {
free(swImage->ImageOffsets);
swImage->ImageOffsets = NULL;
}
}
/**
* Error checking for debugging only.
*/
static void
_mesa_check_map_teximage(struct gl_texture_image *texImage,
GLuint slice, GLuint x, GLuint y, GLuint w, GLuint h)
{
if (texImage->TexObject->Target == GL_TEXTURE_1D)
assert(y == 0 && h == 1);
assert(x < texImage->Width || texImage->Width == 0);
assert(y < texImage->Height || texImage->Height == 0);
assert(x + w <= texImage->Width);
assert(y + h <= texImage->Height);
}
/**
* Map a 2D slice of a texture image into user space.
* (x,y,w,h) defines a region of interest (ROI). Reading/writing texels
* outside of the ROI is undefined.
*
* \param texImage the texture image
* \param slice the 3D image slice or array texture slice
* \param x, y, w, h region of interest
* \param mode bitmask of GL_MAP_READ_BIT, GL_MAP_WRITE_BIT
* \param mapOut returns start of mapping of region of interest
* \param rowStrideOut returns row stride (in bytes)
*/
void
_swrast_map_teximage(struct gl_context *ctx,
struct gl_texture_image *texImage,
GLuint slice,
GLuint x, GLuint y, GLuint w, GLuint h,
GLbitfield mode,
GLubyte **mapOut,
GLint *rowStrideOut)
{
struct swrast_texture_image *swImage = swrast_texture_image(texImage);
GLubyte *map;
GLint stride, texelSize;
GLuint bw, bh;
_mesa_check_map_teximage(texImage, slice, x, y, w, h);
texelSize = _mesa_get_format_bytes(texImage->TexFormat);
stride = _mesa_format_row_stride(texImage->TexFormat, texImage->Width);
_mesa_get_format_block_size(texImage->TexFormat, &bw, &bh);
assert(x % bw == 0);
assert(y % bh == 0);
if (!swImage->Buffer) {
/* probably ran out of memory when allocating tex mem */
*mapOut = NULL;
return;
}
map = swImage->Buffer;
if (texImage->TexObject->Target == GL_TEXTURE_3D ||
texImage->TexObject->Target == GL_TEXTURE_2D_ARRAY) {
GLuint sliceSize = _mesa_format_image_size(texImage->TexFormat,
texImage->Width,
texImage->Height,
1);
assert(slice < texImage->Depth);
map += slice * sliceSize;
} else if (texImage->TexObject->Target == GL_TEXTURE_1D_ARRAY) {
GLuint sliceSize = _mesa_format_image_size(texImage->TexFormat,
texImage->Width,
1,
1);
assert(slice < texImage->Height);
map += slice * sliceSize;
}
/* apply x/y offset to map address */
map += stride * (y / bh) + texelSize * (x / bw);
*mapOut = map;
*rowStrideOut = stride;
}
void
_swrast_unmap_teximage(struct gl_context *ctx,
struct gl_texture_image *texImage,
GLuint slice)
{
/* nop */
}
void
_swrast_map_texture(struct gl_context *ctx, struct gl_texture_object *texObj)
{
const GLuint faces = _mesa_num_tex_faces(texObj->Target);
GLuint face, level;
for (face = 0; face < faces; face++) {
for (level = texObj->BaseLevel; level < MAX_TEXTURE_LEVELS; level++) {
struct gl_texture_image *texImage = texObj->Image[face][level];
if (texImage) {
struct swrast_texture_image *swImage =
swrast_texture_image(texImage);
/* XXX we'll eventually call _swrast_map_teximage() here */
swImage->Map = swImage->Buffer;
}
}
}
}
void
_swrast_unmap_texture(struct gl_context *ctx, struct gl_texture_object *texObj)
{
const GLuint faces = _mesa_num_tex_faces(texObj->Target);
GLuint face, level;
for (face = 0; face < faces; face++) {
for (level = texObj->BaseLevel; level < MAX_TEXTURE_LEVELS; level++) {
struct gl_texture_image *texImage = texObj->Image[face][level];
if (texImage) {
struct swrast_texture_image *swImage
= swrast_texture_image(texImage);
/* XXX we'll eventually call _swrast_unmap_teximage() here */
swImage->Map = NULL;
}
}
}
}
/**
* Map all textures for reading prior to software rendering.
*/
void
_swrast_map_textures(struct gl_context *ctx)
{
GLbitfield enabledUnits = ctx->Texture._EnabledUnits;
/* loop over enabled texture units */
while (enabledUnits) {
GLuint unit = ffs(enabledUnits) - 1;
struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current;
_swrast_map_texture(ctx, texObj);
enabledUnits &= ~(1 << unit);
}
}
/**
* Unmap all textures for reading prior to software rendering.
*/
void
_swrast_unmap_textures(struct gl_context *ctx)
{
GLbitfield enabledUnits = ctx->Texture._EnabledUnits;
/* loop over enabled texture units */
while (enabledUnits) {
GLuint unit = ffs(enabledUnits) - 1;
struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current;
_swrast_unmap_texture(ctx, texObj);
enabledUnits &= ~(1 << unit);
}
}
/**
* Called via ctx->Driver.AllocTextureStorage()
* Just have to allocate memory for the texture images.
*/
GLboolean
_swrast_AllocTextureStorage(struct gl_context *ctx,
struct gl_texture_object *texObj,
GLsizei levels, GLsizei width,
GLsizei height, GLsizei depth)
{
const GLint numFaces = (texObj->Target == GL_TEXTURE_CUBE_MAP) ? 6 : 1;
GLint face, level;
for (face = 0; face < numFaces; face++) {
for (level = 0; level < levels; level++) {
struct gl_texture_image *texImage = texObj->Image[face][level];
if (!_swrast_alloc_texture_image_buffer(ctx, texImage)) {
return GL_FALSE;
}
}
}
return GL_TRUE;
}