blob: 3cbdc719b0240396c6d5628d2435e612e96c5a31 [file] [log] [blame]
/**************************************************************************
*
* Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* \author
* Michal Krol,
* Keith Whitwell
*/
#include "pipe/p_compiler.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "pipe/p_shader_tokens.h"
#include "pipe/p_state.h"
#include "tgsi/tgsi_ureg.h"
#include "st_mesa_to_tgsi.h"
#include "st_context.h"
#include "program/prog_instruction.h"
#include "program/prog_parameter.h"
#include "util/u_debug.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
(1 << PROGRAM_ENV_PARAM) | \
(1 << PROGRAM_STATE_VAR) | \
(1 << PROGRAM_NAMED_PARAM) | \
(1 << PROGRAM_CONSTANT) | \
(1 << PROGRAM_UNIFORM))
struct label {
unsigned branch_target;
unsigned token;
};
/**
* Intermediate state used during shader translation.
*/
struct st_translate {
struct ureg_program *ureg;
struct ureg_dst temps[MAX_PROGRAM_TEMPS];
struct ureg_src *constants;
struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
struct ureg_dst address[1];
struct ureg_src samplers[PIPE_MAX_SAMPLERS];
struct ureg_src systemValues[SYSTEM_VALUE_MAX];
const GLuint *inputMapping;
const GLuint *outputMapping;
/* For every instruction that contains a label (eg CALL), keep
* details so that we can go back afterwards and emit the correct
* tgsi instruction number for each label.
*/
struct label *labels;
unsigned labels_size;
unsigned labels_count;
/* Keep a record of the tgsi instruction number that each mesa
* instruction starts at, will be used to fix up labels after
* translation.
*/
unsigned *insn;
unsigned insn_size;
unsigned insn_count;
unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
boolean error;
};
/** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
TGSI_SEMANTIC_FACE,
TGSI_SEMANTIC_VERTEXID,
TGSI_SEMANTIC_INSTANCEID
};
/**
* Make note of a branch to a label in the TGSI code.
* After we've emitted all instructions, we'll go over the list
* of labels built here and patch the TGSI code with the actual
* location of each label.
*/
static unsigned *get_label( struct st_translate *t,
unsigned branch_target )
{
unsigned i;
if (t->labels_count + 1 >= t->labels_size) {
t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
t->labels = realloc(t->labels, t->labels_size * sizeof t->labels[0]);
if (t->labels == NULL) {
static unsigned dummy;
t->error = TRUE;
return &dummy;
}
}
i = t->labels_count++;
t->labels[i].branch_target = branch_target;
return &t->labels[i].token;
}
/**
* Called prior to emitting the TGSI code for each Mesa instruction.
* Allocate additional space for instructions if needed.
* Update the insn[] array so the next Mesa instruction points to
* the next TGSI instruction.
*/
static void set_insn_start( struct st_translate *t,
unsigned start )
{
if (t->insn_count + 1 >= t->insn_size) {
t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
t->insn = realloc(t->insn, t->insn_size * sizeof t->insn[0]);
if (t->insn == NULL) {
t->error = TRUE;
return;
}
}
t->insn[t->insn_count++] = start;
}
/**
* Map a Mesa dst register to a TGSI ureg_dst register.
*/
static struct ureg_dst
dst_register( struct st_translate *t,
gl_register_file file,
GLuint index )
{
switch( file ) {
case PROGRAM_UNDEFINED:
return ureg_dst_undef();
case PROGRAM_TEMPORARY:
if (ureg_dst_is_undef(t->temps[index]))
t->temps[index] = ureg_DECL_temporary( t->ureg );
return t->temps[index];
case PROGRAM_OUTPUT:
if (t->procType == TGSI_PROCESSOR_VERTEX)
assert(index < VERT_RESULT_MAX);
else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
assert(index < FRAG_RESULT_MAX);
else
assert(index < GEOM_RESULT_MAX);
assert(t->outputMapping[index] < Elements(t->outputs));
return t->outputs[t->outputMapping[index]];
case PROGRAM_ADDRESS:
return t->address[index];
default:
debug_assert( 0 );
return ureg_dst_undef();
}
}
/**
* Map a Mesa src register to a TGSI ureg_src register.
*/
static struct ureg_src
src_register( struct st_translate *t,
gl_register_file file,
GLint index )
{
switch( file ) {
case PROGRAM_UNDEFINED:
return ureg_src_undef();
case PROGRAM_TEMPORARY:
assert(index >= 0);
assert(index < Elements(t->temps));
if (ureg_dst_is_undef(t->temps[index]))
t->temps[index] = ureg_DECL_temporary( t->ureg );
return ureg_src(t->temps[index]);
case PROGRAM_NAMED_PARAM:
case PROGRAM_ENV_PARAM:
case PROGRAM_LOCAL_PARAM:
case PROGRAM_UNIFORM:
assert(index >= 0);
return t->constants[index];
case PROGRAM_STATE_VAR:
case PROGRAM_CONSTANT: /* ie, immediate */
if (index < 0)
return ureg_DECL_constant( t->ureg, 0 );
else
return t->constants[index];
case PROGRAM_INPUT:
assert(t->inputMapping[index] < Elements(t->inputs));
return t->inputs[t->inputMapping[index]];
case PROGRAM_OUTPUT:
assert(t->outputMapping[index] < Elements(t->outputs));
return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
case PROGRAM_ADDRESS:
return ureg_src(t->address[index]);
case PROGRAM_SYSTEM_VALUE:
assert(index < Elements(t->systemValues));
return t->systemValues[index];
default:
debug_assert( 0 );
return ureg_src_undef();
}
}
/**
* Map mesa texture target to TGSI texture target.
*/
unsigned
st_translate_texture_target( GLuint textarget,
GLboolean shadow )
{
if (shadow) {
switch( textarget ) {
case TEXTURE_1D_INDEX: return TGSI_TEXTURE_SHADOW1D;
case TEXTURE_2D_INDEX: return TGSI_TEXTURE_SHADOW2D;
case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_SHADOWRECT;
case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW1D_ARRAY;
case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_SHADOW2D_ARRAY;
case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_SHADOWCUBE;
default: break;
}
}
switch( textarget ) {
case TEXTURE_1D_INDEX: return TGSI_TEXTURE_1D;
case TEXTURE_2D_INDEX: return TGSI_TEXTURE_2D;
case TEXTURE_3D_INDEX: return TGSI_TEXTURE_3D;
case TEXTURE_CUBE_INDEX: return TGSI_TEXTURE_CUBE;
case TEXTURE_RECT_INDEX: return TGSI_TEXTURE_RECT;
case TEXTURE_1D_ARRAY_INDEX: return TGSI_TEXTURE_1D_ARRAY;
case TEXTURE_2D_ARRAY_INDEX: return TGSI_TEXTURE_2D_ARRAY;
case TEXTURE_EXTERNAL_INDEX: return TGSI_TEXTURE_2D;
default:
debug_assert( 0 );
return TGSI_TEXTURE_1D;
}
}
/**
* Create a TGSI ureg_dst register from a Mesa dest register.
*/
static struct ureg_dst
translate_dst( struct st_translate *t,
const struct prog_dst_register *DstReg,
boolean saturate,
boolean clamp_color)
{
struct ureg_dst dst = dst_register( t,
DstReg->File,
DstReg->Index );
dst = ureg_writemask( dst,
DstReg->WriteMask );
if (saturate)
dst = ureg_saturate( dst );
else if (clamp_color && DstReg->File == PROGRAM_OUTPUT) {
/* Clamp colors for ARB_color_buffer_float. */
switch (t->procType) {
case TGSI_PROCESSOR_VERTEX:
/* XXX if the geometry shader is present, this must be done there
* instead of here. */
if (DstReg->Index == VERT_RESULT_COL0 ||
DstReg->Index == VERT_RESULT_COL1 ||
DstReg->Index == VERT_RESULT_BFC0 ||
DstReg->Index == VERT_RESULT_BFC1) {
dst = ureg_saturate(dst);
}
break;
case TGSI_PROCESSOR_FRAGMENT:
if (DstReg->Index >= FRAG_RESULT_COLOR) {
dst = ureg_saturate(dst);
}
break;
}
}
if (DstReg->RelAddr)
dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
return dst;
}
/**
* Create a TGSI ureg_src register from a Mesa src register.
*/
static struct ureg_src
translate_src( struct st_translate *t,
const struct prog_src_register *SrcReg )
{
struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
if (t->procType == TGSI_PROCESSOR_GEOMETRY && SrcReg->HasIndex2) {
src = src_register( t, SrcReg->File, SrcReg->Index2 );
if (SrcReg->RelAddr2)
src = ureg_src_dimension_indirect( src, ureg_src(t->address[0]),
SrcReg->Index);
else
src = ureg_src_dimension( src, SrcReg->Index);
}
src = ureg_swizzle( src,
GET_SWZ( SrcReg->Swizzle, 0 ) & 0x3,
GET_SWZ( SrcReg->Swizzle, 1 ) & 0x3,
GET_SWZ( SrcReg->Swizzle, 2 ) & 0x3,
GET_SWZ( SrcReg->Swizzle, 3 ) & 0x3);
if (SrcReg->Negate == NEGATE_XYZW)
src = ureg_negate(src);
if (SrcReg->Abs)
src = ureg_abs(src);
if (SrcReg->RelAddr) {
src = ureg_src_indirect( src, ureg_src(t->address[0]));
if (SrcReg->File != PROGRAM_INPUT &&
SrcReg->File != PROGRAM_OUTPUT) {
/* If SrcReg->Index was negative, it was set to zero in
* src_register(). Reassign it now. But don't do this
* for input/output regs since they get remapped while
* const buffers don't.
*/
src.Index = SrcReg->Index;
}
}
return src;
}
static struct ureg_src swizzle_4v( struct ureg_src src,
const unsigned *swz )
{
return ureg_swizzle( src, swz[0], swz[1], swz[2], swz[3] );
}
/**
* Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
*
* SWZ dst, src.x-y10
*
* becomes:
*
* MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
*/
static void emit_swz( struct st_translate *t,
struct ureg_dst dst,
const struct prog_src_register *SrcReg )
{
struct ureg_program *ureg = t->ureg;
struct ureg_src src = src_register( t, SrcReg->File, SrcReg->Index );
unsigned negate_mask = SrcReg->Negate;
unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
(GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
(GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
(GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
(GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
(GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
(GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
unsigned negative_one_mask = one_mask & negate_mask;
unsigned positive_one_mask = one_mask & ~negate_mask;
struct ureg_src imm;
unsigned i;
unsigned mul_swizzle[4] = {0,0,0,0};
unsigned add_swizzle[4] = {0,0,0,0};
unsigned src_swizzle[4] = {0,0,0,0};
boolean need_add = FALSE;
boolean need_mul = FALSE;
if (dst.WriteMask == 0)
return;
/* Is this just a MOV?
*/
if (zero_mask == 0 &&
one_mask == 0 &&
(negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW))
{
ureg_MOV( ureg, dst, translate_src( t, SrcReg ));
return;
}
#define IMM_ZERO 0
#define IMM_ONE 1
#define IMM_NEG_ONE 2
imm = ureg_imm3f( ureg, 0, 1, -1 );
for (i = 0; i < 4; i++) {
unsigned bit = 1 << i;
if (dst.WriteMask & bit) {
if (positive_one_mask & bit) {
mul_swizzle[i] = IMM_ZERO;
add_swizzle[i] = IMM_ONE;
need_add = TRUE;
}
else if (negative_one_mask & bit) {
mul_swizzle[i] = IMM_ZERO;
add_swizzle[i] = IMM_NEG_ONE;
need_add = TRUE;
}
else if (zero_mask & bit) {
mul_swizzle[i] = IMM_ZERO;
add_swizzle[i] = IMM_ZERO;
need_add = TRUE;
}
else {
add_swizzle[i] = IMM_ZERO;
src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
need_mul = TRUE;
if (negate_mask & bit) {
mul_swizzle[i] = IMM_NEG_ONE;
}
else {
mul_swizzle[i] = IMM_ONE;
}
}
}
}
if (need_mul && need_add) {
ureg_MAD( ureg,
dst,
swizzle_4v( src, src_swizzle ),
swizzle_4v( imm, mul_swizzle ),
swizzle_4v( imm, add_swizzle ) );
}
else if (need_mul) {
ureg_MUL( ureg,
dst,
swizzle_4v( src, src_swizzle ),
swizzle_4v( imm, mul_swizzle ) );
}
else if (need_add) {
ureg_MOV( ureg,
dst,
swizzle_4v( imm, add_swizzle ) );
}
else {
debug_assert(0);
}
#undef IMM_ZERO
#undef IMM_ONE
#undef IMM_NEG_ONE
}
/**
* Negate the value of DDY to match GL semantics where (0,0) is the
* lower-left corner of the window.
* Note that the GL_ARB_fragment_coord_conventions extension will
* effect this someday.
*/
static void emit_ddy( struct st_translate *t,
struct ureg_dst dst,
const struct prog_src_register *SrcReg )
{
struct ureg_program *ureg = t->ureg;
struct ureg_src src = translate_src( t, SrcReg );
src = ureg_negate( src );
ureg_DDY( ureg, dst, src );
}
static unsigned
translate_opcode( unsigned op )
{
switch( op ) {
case OPCODE_ARL:
return TGSI_OPCODE_ARL;
case OPCODE_ABS:
return TGSI_OPCODE_ABS;
case OPCODE_ADD:
return TGSI_OPCODE_ADD;
case OPCODE_BGNLOOP:
return TGSI_OPCODE_BGNLOOP;
case OPCODE_BGNSUB:
return TGSI_OPCODE_BGNSUB;
case OPCODE_BRA:
return TGSI_OPCODE_BRA;
case OPCODE_BRK:
return TGSI_OPCODE_BRK;
case OPCODE_CAL:
return TGSI_OPCODE_CAL;
case OPCODE_CMP:
return TGSI_OPCODE_CMP;
case OPCODE_CONT:
return TGSI_OPCODE_CONT;
case OPCODE_COS:
return TGSI_OPCODE_COS;
case OPCODE_DDX:
return TGSI_OPCODE_DDX;
case OPCODE_DDY:
return TGSI_OPCODE_DDY;
case OPCODE_DP2:
return TGSI_OPCODE_DP2;
case OPCODE_DP2A:
return TGSI_OPCODE_DP2A;
case OPCODE_DP3:
return TGSI_OPCODE_DP3;
case OPCODE_DP4:
return TGSI_OPCODE_DP4;
case OPCODE_DPH:
return TGSI_OPCODE_DPH;
case OPCODE_DST:
return TGSI_OPCODE_DST;
case OPCODE_ELSE:
return TGSI_OPCODE_ELSE;
case OPCODE_EMIT_VERTEX:
return TGSI_OPCODE_EMIT;
case OPCODE_END_PRIMITIVE:
return TGSI_OPCODE_ENDPRIM;
case OPCODE_ENDIF:
return TGSI_OPCODE_ENDIF;
case OPCODE_ENDLOOP:
return TGSI_OPCODE_ENDLOOP;
case OPCODE_ENDSUB:
return TGSI_OPCODE_ENDSUB;
case OPCODE_EX2:
return TGSI_OPCODE_EX2;
case OPCODE_EXP:
return TGSI_OPCODE_EXP;
case OPCODE_FLR:
return TGSI_OPCODE_FLR;
case OPCODE_FRC:
return TGSI_OPCODE_FRC;
case OPCODE_IF:
return TGSI_OPCODE_IF;
case OPCODE_TRUNC:
return TGSI_OPCODE_TRUNC;
case OPCODE_KIL:
return TGSI_OPCODE_KIL;
case OPCODE_KIL_NV:
return TGSI_OPCODE_KILP;
case OPCODE_LG2:
return TGSI_OPCODE_LG2;
case OPCODE_LOG:
return TGSI_OPCODE_LOG;
case OPCODE_LIT:
return TGSI_OPCODE_LIT;
case OPCODE_LRP:
return TGSI_OPCODE_LRP;
case OPCODE_MAD:
return TGSI_OPCODE_MAD;
case OPCODE_MAX:
return TGSI_OPCODE_MAX;
case OPCODE_MIN:
return TGSI_OPCODE_MIN;
case OPCODE_MOV:
return TGSI_OPCODE_MOV;
case OPCODE_MUL:
return TGSI_OPCODE_MUL;
case OPCODE_NOP:
return TGSI_OPCODE_NOP;
case OPCODE_NRM3:
return TGSI_OPCODE_NRM;
case OPCODE_NRM4:
return TGSI_OPCODE_NRM4;
case OPCODE_POW:
return TGSI_OPCODE_POW;
case OPCODE_RCP:
return TGSI_OPCODE_RCP;
case OPCODE_RET:
return TGSI_OPCODE_RET;
case OPCODE_RSQ:
return TGSI_OPCODE_RSQ;
case OPCODE_SCS:
return TGSI_OPCODE_SCS;
case OPCODE_SEQ:
return TGSI_OPCODE_SEQ;
case OPCODE_SGE:
return TGSI_OPCODE_SGE;
case OPCODE_SGT:
return TGSI_OPCODE_SGT;
case OPCODE_SIN:
return TGSI_OPCODE_SIN;
case OPCODE_SLE:
return TGSI_OPCODE_SLE;
case OPCODE_SLT:
return TGSI_OPCODE_SLT;
case OPCODE_SNE:
return TGSI_OPCODE_SNE;
case OPCODE_SSG:
return TGSI_OPCODE_SSG;
case OPCODE_SUB:
return TGSI_OPCODE_SUB;
case OPCODE_TEX:
return TGSI_OPCODE_TEX;
case OPCODE_TXB:
return TGSI_OPCODE_TXB;
case OPCODE_TXD:
return TGSI_OPCODE_TXD;
case OPCODE_TXL:
return TGSI_OPCODE_TXL;
case OPCODE_TXP:
return TGSI_OPCODE_TXP;
case OPCODE_XPD:
return TGSI_OPCODE_XPD;
case OPCODE_END:
return TGSI_OPCODE_END;
default:
debug_assert( 0 );
return TGSI_OPCODE_NOP;
}
}
static void
compile_instruction(
struct st_translate *t,
const struct prog_instruction *inst,
boolean clamp_dst_color_output)
{
struct ureg_program *ureg = t->ureg;
GLuint i;
struct ureg_dst dst[1] = { { 0 } };
struct ureg_src src[4];
unsigned num_dst;
unsigned num_src;
num_dst = _mesa_num_inst_dst_regs( inst->Opcode );
num_src = _mesa_num_inst_src_regs( inst->Opcode );
if (num_dst)
dst[0] = translate_dst( t,
&inst->DstReg,
inst->SaturateMode,
clamp_dst_color_output);
for (i = 0; i < num_src; i++)
src[i] = translate_src( t, &inst->SrcReg[i] );
switch( inst->Opcode ) {
case OPCODE_SWZ:
emit_swz( t, dst[0], &inst->SrcReg[0] );
return;
case OPCODE_BGNLOOP:
case OPCODE_CAL:
case OPCODE_ELSE:
case OPCODE_ENDLOOP:
case OPCODE_IF:
debug_assert(num_dst == 0);
ureg_label_insn( ureg,
translate_opcode( inst->Opcode ),
src, num_src,
get_label( t, inst->BranchTarget ));
return;
case OPCODE_TEX:
case OPCODE_TXB:
case OPCODE_TXD:
case OPCODE_TXL:
case OPCODE_TXP:
src[num_src++] = t->samplers[inst->TexSrcUnit];
ureg_tex_insn( ureg,
translate_opcode( inst->Opcode ),
dst, num_dst,
st_translate_texture_target( inst->TexSrcTarget,
inst->TexShadow ),
NULL, 0,
src, num_src );
return;
case OPCODE_SCS:
dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
ureg_insn( ureg,
translate_opcode( inst->Opcode ),
dst, num_dst,
src, num_src );
break;
case OPCODE_XPD:
dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ );
ureg_insn( ureg,
translate_opcode( inst->Opcode ),
dst, num_dst,
src, num_src );
break;
case OPCODE_NOISE1:
case OPCODE_NOISE2:
case OPCODE_NOISE3:
case OPCODE_NOISE4:
/* At some point, a motivated person could add a better
* implementation of noise. Currently not even the nvidia
* binary drivers do anything more than this. In any case, the
* place to do this is in the GL state tracker, not the poor
* driver.
*/
ureg_MOV( ureg, dst[0], ureg_imm1f(ureg, 0.5) );
break;
case OPCODE_DDY:
emit_ddy( t, dst[0], &inst->SrcReg[0] );
break;
default:
ureg_insn( ureg,
translate_opcode( inst->Opcode ),
dst, num_dst,
src, num_src );
break;
}
}
/**
* Emit the TGSI instructions for inverting and adjusting WPOS.
* This code is unavoidable because it also depends on whether
* a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
*/
static void
emit_wpos_adjustment( struct st_translate *t,
const struct gl_program *program,
boolean invert,
GLfloat adjX, GLfloat adjY[2])
{
struct ureg_program *ureg = t->ureg;
/* Fragment program uses fragment position input.
* Need to replace instances of INPUT[WPOS] with temp T
* where T = INPUT[WPOS] by y is inverted.
*/
static const gl_state_index wposTransformState[STATE_LENGTH]
= { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
/* XXX: note we are modifying the incoming shader here! Need to
* do this before emitting the constant decls below, or this
* will be missed:
*/
unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
wposTransformState);
struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
/* First, apply the coordinate shift: */
if (adjX || adjY[0] || adjY[1]) {
if (adjY[0] != adjY[1]) {
/* Adjust the y coordinate by adjY[1] or adjY[0] respectively
* depending on whether inversion is actually going to be applied
* or not, which is determined by testing against the inversion
* state variable used below, which will be either +1 or -1.
*/
struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
ureg_CMP(ureg, adj_temp,
ureg_scalar(wpostrans, invert ? 2 : 0),
ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
} else {
ureg_ADD(ureg, wpos_temp, wpos_input,
ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
}
wpos_input = ureg_src(wpos_temp);
} else {
/* MOV wpos_temp, input[wpos]
*/
ureg_MOV( ureg, wpos_temp, wpos_input );
}
/* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
* inversion/identity, or the other way around if we're drawing to an FBO.
*/
if (invert) {
/* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
*/
ureg_MAD( ureg,
ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
wpos_input,
ureg_scalar(wpostrans, 0),
ureg_scalar(wpostrans, 1));
} else {
/* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
*/
ureg_MAD( ureg,
ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
wpos_input,
ureg_scalar(wpostrans, 2),
ureg_scalar(wpostrans, 3));
}
/* Use wpos_temp as position input from here on:
*/
t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
}
/**
* Emit fragment position/ooordinate code.
*/
static void
emit_wpos(struct st_context *st,
struct st_translate *t,
const struct gl_program *program,
struct ureg_program *ureg)
{
const struct gl_fragment_program *fp =
(const struct gl_fragment_program *) program;
struct pipe_screen *pscreen = st->pipe->screen;
GLfloat adjX = 0.0f;
GLfloat adjY[2] = { 0.0f, 0.0f };
boolean invert = FALSE;
/* Query the pixel center conventions supported by the pipe driver and set
* adjX, adjY to help out if it cannot handle the requested one internally.
*
* The bias of the y-coordinate depends on whether y-inversion takes place
* (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
* drawing to an FBO (causes additional inversion), and whether the the pipe
* driver origin and the requested origin differ (the latter condition is
* stored in the 'invert' variable).
*
* For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
*
* center shift only:
* i -> h: +0.5
* h -> i: -0.5
*
* inversion only:
* l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
* l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
* u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
* u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
*
* inversion and center shift:
* l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
* l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
* u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
* u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
*/
if (fp->OriginUpperLeft) {
/* Fragment shader wants origin in upper-left */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
/* the driver supports upper-left origin */
}
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
/* the driver supports lower-left origin, need to invert Y */
ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
invert = TRUE;
}
else
assert(0);
}
else {
/* Fragment shader wants origin in lower-left */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
/* the driver supports lower-left origin */
ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
/* the driver supports upper-left origin, need to invert Y */
invert = TRUE;
else
assert(0);
}
if (fp->PixelCenterInteger) {
/* Fragment shader wants pixel center integer */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
/* the driver supports pixel center integer */
adjY[1] = 1.0f;
ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
}
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
/* the driver supports pixel center half integer, need to bias X,Y */
adjX = -0.5f;
adjY[0] = -0.5f;
adjY[1] = 0.5f;
}
else
assert(0);
}
else {
/* Fragment shader wants pixel center half integer */
if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
/* the driver supports pixel center half integer */
}
else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
/* the driver supports pixel center integer, need to bias X,Y */
adjX = adjY[0] = adjY[1] = 0.5f;
ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
}
else
assert(0);
}
/* we invert after adjustment so that we avoid the MOV to temporary,
* and reuse the adjustment ADD instead */
emit_wpos_adjustment(t, program, invert, adjX, adjY);
}
/**
* OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
* TGSI uses +1 for front, -1 for back.
* This function converts the TGSI value to the GL value. Simply clamping/
* saturating the value to [0,1] does the job.
*/
static void
emit_face_var( struct st_translate *t,
const struct gl_program *program )
{
struct ureg_program *ureg = t->ureg;
struct ureg_dst face_temp = ureg_DECL_temporary( ureg );
struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
/* MOV_SAT face_temp, input[face]
*/
face_temp = ureg_saturate( face_temp );
ureg_MOV( ureg, face_temp, face_input );
/* Use face_temp as face input from here on:
*/
t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
}
static void
emit_edgeflags( struct st_translate *t,
const struct gl_program *program )
{
struct ureg_program *ureg = t->ureg;
struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
ureg_MOV( ureg, edge_dst, edge_src );
}
/**
* Translate Mesa program to TGSI format.
* \param program the program to translate
* \param numInputs number of input registers used
* \param inputMapping maps Mesa fragment program inputs to TGSI generic
* input indexes
* \param inputSemanticName the TGSI_SEMANTIC flag for each input
* \param inputSemanticIndex the semantic index (ex: which texcoord) for
* each input
* \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
* \param numOutputs number of output registers used
* \param outputMapping maps Mesa fragment program outputs to TGSI
* generic outputs
* \param outputSemanticName the TGSI_SEMANTIC flag for each output
* \param outputSemanticIndex the semantic index (ex: which texcoord) for
* each output
*
* \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
*/
enum pipe_error
st_translate_mesa_program(
struct gl_context *ctx,
uint procType,
struct ureg_program *ureg,
const struct gl_program *program,
GLuint numInputs,
const GLuint inputMapping[],
const ubyte inputSemanticName[],
const ubyte inputSemanticIndex[],
const GLuint interpMode[],
GLuint numOutputs,
const GLuint outputMapping[],
const ubyte outputSemanticName[],
const ubyte outputSemanticIndex[],
boolean passthrough_edgeflags,
boolean clamp_color)
{
struct st_translate translate, *t;
unsigned i;
enum pipe_error ret = PIPE_OK;
assert(numInputs <= Elements(t->inputs));
assert(numOutputs <= Elements(t->outputs));
t = &translate;
memset(t, 0, sizeof *t);
t->procType = procType;
t->inputMapping = inputMapping;
t->outputMapping = outputMapping;
t->ureg = ureg;
/*_mesa_print_program(program);*/
/*
* Declare input attributes.
*/
if (procType == TGSI_PROCESSOR_FRAGMENT) {
for (i = 0; i < numInputs; i++) {
if (program->InputFlags[0] & PROG_PARAM_BIT_CYL_WRAP) {
t->inputs[i] = ureg_DECL_fs_input_cyl(ureg,
inputSemanticName[i],
inputSemanticIndex[i],
interpMode[i],
TGSI_CYLINDRICAL_WRAP_X);
}
else {
t->inputs[i] = ureg_DECL_fs_input(ureg,
inputSemanticName[i],
inputSemanticIndex[i],
interpMode[i]);
}
}
if (program->InputsRead & FRAG_BIT_WPOS) {
/* Must do this after setting up t->inputs, and before
* emitting constant references, below:
*/
emit_wpos(st_context(ctx), t, program, ureg);
}
if (program->InputsRead & FRAG_BIT_FACE) {
emit_face_var( t, program );
}
/*
* Declare output attributes.
*/
for (i = 0; i < numOutputs; i++) {
switch (outputSemanticName[i]) {
case TGSI_SEMANTIC_POSITION:
t->outputs[i] = ureg_DECL_output( ureg,
TGSI_SEMANTIC_POSITION, /* Z / Depth */
outputSemanticIndex[i] );
t->outputs[i] = ureg_writemask( t->outputs[i],
TGSI_WRITEMASK_Z );
break;
case TGSI_SEMANTIC_STENCIL:
t->outputs[i] = ureg_DECL_output( ureg,
TGSI_SEMANTIC_STENCIL, /* Stencil */
outputSemanticIndex[i] );
t->outputs[i] = ureg_writemask( t->outputs[i],
TGSI_WRITEMASK_Y );
break;
case TGSI_SEMANTIC_COLOR:
t->outputs[i] = ureg_DECL_output( ureg,
TGSI_SEMANTIC_COLOR,
outputSemanticIndex[i] );
break;
default:
debug_assert(0);
return 0;
}
}
}
else if (procType == TGSI_PROCESSOR_GEOMETRY) {
for (i = 0; i < numInputs; i++) {
t->inputs[i] = ureg_DECL_gs_input(ureg,
i,
inputSemanticName[i],
inputSemanticIndex[i]);
}
for (i = 0; i < numOutputs; i++) {
t->outputs[i] = ureg_DECL_output( ureg,
outputSemanticName[i],
outputSemanticIndex[i] );
}
}
else {
assert(procType == TGSI_PROCESSOR_VERTEX);
for (i = 0; i < numInputs; i++) {
t->inputs[i] = ureg_DECL_vs_input(ureg, i);
}
for (i = 0; i < numOutputs; i++) {
t->outputs[i] = ureg_DECL_output( ureg,
outputSemanticName[i],
outputSemanticIndex[i] );
}
if (passthrough_edgeflags)
emit_edgeflags( t, program );
}
/* Declare address register.
*/
if (program->NumAddressRegs > 0) {
debug_assert( program->NumAddressRegs == 1 );
t->address[0] = ureg_DECL_address( ureg );
}
/* Declare misc input registers
*/
{
GLbitfield sysInputs = program->SystemValuesRead;
unsigned numSys = 0;
for (i = 0; sysInputs; i++) {
if (sysInputs & (1 << i)) {
unsigned semName = mesa_sysval_to_semantic[i];
t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
if (semName == TGSI_SEMANTIC_INSTANCEID ||
semName == TGSI_SEMANTIC_VERTEXID) {
/* From Gallium perspective, these system values are always
* integer, and require native integer support. However, if
* native integer is supported on the vertex stage but not the
* pixel stage (e.g, i915g + draw), Mesa will generate IR that
* assumes these system values are floats. To resolve the
* inconsistency, we insert a U2F.
*/
struct st_context *st = st_context(ctx);
struct pipe_screen *pscreen = st->pipe->screen;
assert(procType == TGSI_PROCESSOR_VERTEX);
assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
if (!ctx->Const.NativeIntegers) {
struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
}
}
numSys++;
sysInputs &= ~(1 << i);
}
}
}
if (program->IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
/* If temps are accessed with indirect addressing, declare temporaries
* in sequential order. Else, we declare them on demand elsewhere.
*/
for (i = 0; i < program->NumTemporaries; i++) {
/* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
t->temps[i] = ureg_DECL_temporary( t->ureg );
}
}
/* Emit constants and immediates. Mesa uses a single index space
* for these, so we put all the translated regs in t->constants.
*/
if (program->Parameters) {
t->constants = calloc( program->Parameters->NumParameters,
sizeof t->constants[0] );
if (t->constants == NULL) {
ret = PIPE_ERROR_OUT_OF_MEMORY;
goto out;
}
for (i = 0; i < program->Parameters->NumParameters; i++) {
switch (program->Parameters->Parameters[i].Type) {
case PROGRAM_ENV_PARAM:
case PROGRAM_LOCAL_PARAM:
case PROGRAM_STATE_VAR:
case PROGRAM_NAMED_PARAM:
case PROGRAM_UNIFORM:
t->constants[i] = ureg_DECL_constant( ureg, i );
break;
/* Emit immediates only when there's no indirect addressing of
* the const buffer.
* FIXME: Be smarter and recognize param arrays:
* indirect addressing is only valid within the referenced
* array.
*/
case PROGRAM_CONSTANT:
if (program->IndirectRegisterFiles & PROGRAM_ANY_CONST)
t->constants[i] = ureg_DECL_constant( ureg, i );
else
t->constants[i] =
ureg_DECL_immediate( ureg,
(const float*) program->Parameters->ParameterValues[i],
4 );
break;
default:
break;
}
}
}
/* texture samplers */
for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
if (program->SamplersUsed & (1 << i)) {
t->samplers[i] = ureg_DECL_sampler( ureg, i );
}
}
/* Emit each instruction in turn:
*/
for (i = 0; i < program->NumInstructions; i++) {
set_insn_start( t, ureg_get_instruction_number( ureg ));
compile_instruction( t, &program->Instructions[i], clamp_color );
}
/* Fix up all emitted labels:
*/
for (i = 0; i < t->labels_count; i++) {
ureg_fixup_label( ureg,
t->labels[i].token,
t->insn[t->labels[i].branch_target] );
}
out:
FREE(t->insn);
FREE(t->labels);
FREE(t->constants);
if (t->error) {
debug_printf("%s: translate error flag set\n", __FUNCTION__);
}
return ret;
}
/**
* Tokens cannot be free with free otherwise the builtin gallium
* malloc debugging will get confused.
*/
void
st_free_tokens(const struct tgsi_token *tokens)
{
ureg_free_tokens(tokens);
}