blob: ca757c3c9006b1411a6cebf9dfe858c95d1a7b5a [file] [log] [blame]
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file brw_vec4_copy_propagation.cpp
*
* Implements tracking of values copied between registers, and
* optimizations based on that: copy propagation and constant
* propagation.
*/
#include "brw_vec4.h"
extern "C" {
#include "main/macros.h"
}
namespace brw {
static bool
is_direct_copy(vec4_instruction *inst)
{
return (inst->opcode == BRW_OPCODE_MOV &&
!inst->predicate &&
inst->dst.file == GRF &&
!inst->saturate &&
!inst->dst.reladdr &&
!inst->src[0].reladdr &&
inst->dst.type == inst->src[0].type);
}
static bool
is_dominated_by_previous_instruction(vec4_instruction *inst)
{
return (inst->opcode != BRW_OPCODE_DO &&
inst->opcode != BRW_OPCODE_WHILE &&
inst->opcode != BRW_OPCODE_ELSE &&
inst->opcode != BRW_OPCODE_ENDIF);
}
static bool
try_constant_propagation(vec4_instruction *inst, int arg, src_reg *values[4])
{
/* For constant propagation, we only handle the same constant
* across all 4 channels. Some day, we should handle the 8-bit
* float vector format, which would let us constant propagate
* vectors better.
*/
src_reg value = *values[0];
for (int i = 1; i < 4; i++) {
if (!value.equals(values[i]))
return false;
}
if (value.file != IMM)
return false;
if (inst->src[arg].abs) {
if (value.type == BRW_REGISTER_TYPE_F) {
value.imm.f = fabs(value.imm.f);
} else if (value.type == BRW_REGISTER_TYPE_D) {
if (value.imm.i < 0)
value.imm.i = -value.imm.i;
}
}
if (inst->src[arg].negate) {
if (value.type == BRW_REGISTER_TYPE_F)
value.imm.f = -value.imm.f;
else
value.imm.u = -value.imm.u;
}
switch (inst->opcode) {
case BRW_OPCODE_MOV:
inst->src[arg] = value;
return true;
case BRW_OPCODE_MUL:
case BRW_OPCODE_ADD:
if (arg == 1) {
inst->src[arg] = value;
return true;
} else if (arg == 0 && inst->src[1].file != IMM) {
/* Fit this constant in by commuting the operands. Exception: we
* can't do this for 32-bit integer MUL because it's asymmetric.
*/
if (inst->opcode == BRW_OPCODE_MUL &&
(inst->src[1].type == BRW_REGISTER_TYPE_D ||
inst->src[1].type == BRW_REGISTER_TYPE_UD))
break;
inst->src[0] = inst->src[1];
inst->src[1] = value;
return true;
}
break;
case BRW_OPCODE_CMP:
if (arg == 1) {
inst->src[arg] = value;
return true;
} else if (arg == 0 && inst->src[1].file != IMM) {
uint32_t new_cmod;
new_cmod = brw_swap_cmod(inst->conditional_mod);
if (new_cmod != ~0u) {
/* Fit this constant in by swapping the operands and
* flipping the test.
*/
inst->src[0] = inst->src[1];
inst->src[1] = value;
inst->conditional_mod = new_cmod;
return true;
}
}
break;
case BRW_OPCODE_SEL:
if (arg == 1) {
inst->src[arg] = value;
return true;
} else if (arg == 0 && inst->src[1].file != IMM) {
inst->src[0] = inst->src[1];
inst->src[1] = value;
/* If this was predicated, flipping operands means
* we also need to flip the predicate.
*/
if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
inst->predicate_inverse = !inst->predicate_inverse;
}
return true;
}
break;
default:
break;
}
return false;
}
static bool
try_copy_propagation(struct intel_context *intel,
vec4_instruction *inst, int arg, src_reg *values[4])
{
/* For constant propagation, we only handle the same constant
* across all 4 channels. Some day, we should handle the 8-bit
* float vector format, which would let us constant propagate
* vectors better.
*/
src_reg value = *values[0];
for (int i = 1; i < 4; i++) {
/* This is equals() except we don't care about the swizzle. */
if (value.file != values[i]->file ||
value.reg != values[i]->reg ||
value.reg_offset != values[i]->reg_offset ||
value.type != values[i]->type ||
value.negate != values[i]->negate ||
value.abs != values[i]->abs) {
return false;
}
}
/* Compute the swizzle of the original register by swizzling the
* component loaded from each value according to the swizzle of
* operand we're going to change.
*/
int s[4];
for (int i = 0; i < 4; i++) {
s[i] = BRW_GET_SWZ(values[i]->swizzle,
BRW_GET_SWZ(inst->src[arg].swizzle, i));
}
value.swizzle = BRW_SWIZZLE4(s[0], s[1], s[2], s[3]);
if (value.file != UNIFORM &&
value.file != GRF &&
value.file != ATTR)
return false;
if (inst->src[arg].abs) {
value.negate = false;
value.abs = true;
}
if (inst->src[arg].negate)
value.negate = !value.negate;
/* FINISHME: We can't copy-propagate things that aren't normal
* vec8s into gen6 math instructions, because of the weird src
* handling for those instructions. Just ignore them for now.
*/
if (intel->gen >= 6 && inst->is_math())
return false;
/* We can't copy-propagate a UD negation into a condmod
* instruction, because the condmod ends up looking at the 33-bit
* signed accumulator value instead of the 32-bit value we wanted
*/
if (inst->conditional_mod &&
value.negate &&
value.type == BRW_REGISTER_TYPE_UD)
return false;
/* Don't report progress if this is a noop. */
if (value.equals(&inst->src[arg]))
return false;
value.type = inst->src[arg].type;
inst->src[arg] = value;
return true;
}
bool
vec4_visitor::opt_copy_propagation()
{
bool progress = false;
src_reg *cur_value[virtual_grf_reg_count][4];
memset(&cur_value, 0, sizeof(cur_value));
foreach_list(node, &this->instructions) {
vec4_instruction *inst = (vec4_instruction *)node;
/* This pass only works on basic blocks. If there's flow
* control, throw out all our information and start from
* scratch.
*
* This should really be fixed by using a structure like in
* src/glsl/opt_copy_propagation.cpp to track available copies.
*/
if (!is_dominated_by_previous_instruction(inst)) {
memset(cur_value, 0, sizeof(cur_value));
continue;
}
/* For each source arg, see if each component comes from a copy
* from the same type file (IMM, GRF, UNIFORM), and try
* optimizing out access to the copy result
*/
for (int i = 2; i >= 0; i--) {
/* Copied values end up in GRFs, and we don't track reladdr
* accesses.
*/
if (inst->src[i].file != GRF ||
inst->src[i].reladdr)
continue;
int reg = (virtual_grf_reg_map[inst->src[i].reg] +
inst->src[i].reg_offset);
/* Find the regs that each swizzle component came from.
*/
src_reg *values[4];
int c;
for (c = 0; c < 4; c++) {
values[c] = cur_value[reg][BRW_GET_SWZ(inst->src[i].swizzle, c)];
/* If there's no available copy for this channel, bail.
* We could be more aggressive here -- some channels might
* not get used based on the destination writemask.
*/
if (!values[c])
break;
/* We'll only be able to copy propagate if the sources are
* all from the same file -- there's no ability to swizzle
* 0 or 1 constants in with source registers like in i915.
*/
if (c > 0 && values[c - 1]->file != values[c]->file)
break;
}
if (c != 4)
continue;
if (try_constant_propagation(inst, i, values) ||
try_copy_propagation(intel, inst, i, values))
progress = true;
}
/* Track available source registers. */
if (inst->dst.file == GRF) {
const int reg =
virtual_grf_reg_map[inst->dst.reg] + inst->dst.reg_offset;
/* Update our destination's current channel values. For a direct copy,
* the value is the newly propagated source. Otherwise, we don't know
* the new value, so clear it.
*/
bool direct_copy = is_direct_copy(inst);
for (int i = 0; i < 4; i++) {
if (inst->dst.writemask & (1 << i)) {
cur_value[reg][i] = direct_copy ? &inst->src[0] : NULL;
}
}
/* Clear the records for any registers whose current value came from
* our destination's updated channels, as the two are no longer equal.
*/
if (inst->dst.reladdr)
memset(cur_value, 0, sizeof(cur_value));
else {
for (int i = 0; i < virtual_grf_reg_count; i++) {
for (int j = 0; j < 4; j++) {
if (inst->dst.writemask & (1 << j) &&
cur_value[i][j] &&
cur_value[i][j]->file == GRF &&
cur_value[i][j]->reg == inst->dst.reg &&
cur_value[i][j]->reg_offset == inst->dst.reg_offset) {
cur_value[i][j] = NULL;
}
}
}
}
}
}
if (progress)
live_intervals_valid = false;
return progress;
}
} /* namespace brw */