blob: 82a7ee99ae8f0f11e50ac29a88c7a1251c7a76dc [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_fs.h"
#include "glsl/glsl_types.h"
#include "glsl/ir_optimization.h"
#include "glsl/ir_print_visitor.h"
static void
assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width)
{
if (reg->file == GRF) {
assert(reg->reg_offset >= 0);
reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width;
reg->reg_offset = 0;
}
}
void
fs_visitor::assign_regs_trivial()
{
int hw_reg_mapping[this->virtual_grf_count + 1];
int i;
int reg_width = c->dispatch_width / 8;
/* Note that compressed instructions require alignment to 2 registers. */
hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
for (i = 1; i <= this->virtual_grf_count; i++) {
hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
this->virtual_grf_sizes[i - 1] * reg_width);
}
this->grf_used = hw_reg_mapping[this->virtual_grf_count];
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
assign_reg(hw_reg_mapping, &inst->dst, reg_width);
assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
}
if (this->grf_used >= max_grf) {
fail("Ran out of regs on trivial allocator (%d/%d)\n",
this->grf_used, max_grf);
}
}
static void
brw_alloc_reg_set_for_classes(struct brw_context *brw,
int *class_sizes,
int class_count,
int reg_width,
int base_reg_count)
{
struct intel_context *intel = &brw->intel;
/* Compute the total number of registers across all classes. */
int ra_reg_count = 0;
for (int i = 0; i < class_count; i++) {
ra_reg_count += base_reg_count - (class_sizes[i] - 1);
}
ralloc_free(brw->wm.ra_reg_to_grf);
brw->wm.ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count);
ralloc_free(brw->wm.regs);
brw->wm.regs = ra_alloc_reg_set(brw, ra_reg_count);
ralloc_free(brw->wm.classes);
brw->wm.classes = ralloc_array(brw, int, class_count + 1);
brw->wm.aligned_pairs_class = -1;
/* Now, add the registers to their classes, and add the conflicts
* between them and the base GRF registers (and also each other).
*/
int reg = 0;
int pairs_base_reg = 0;
int pairs_reg_count = 0;
for (int i = 0; i < class_count; i++) {
int class_reg_count = base_reg_count - (class_sizes[i] - 1);
brw->wm.classes[i] = ra_alloc_reg_class(brw->wm.regs);
/* Save this off for the aligned pair class at the end. */
if (class_sizes[i] == 2) {
pairs_base_reg = reg;
pairs_reg_count = class_reg_count;
}
for (int j = 0; j < class_reg_count; j++) {
ra_class_add_reg(brw->wm.regs, brw->wm.classes[i], reg);
brw->wm.ra_reg_to_grf[reg] = j;
for (int base_reg = j;
base_reg < j + class_sizes[i];
base_reg++) {
ra_add_transitive_reg_conflict(brw->wm.regs, base_reg, reg);
}
reg++;
}
}
assert(reg == ra_reg_count);
/* Add a special class for aligned pairs, which we'll put delta_x/y
* in on gen5 so that we can do PLN.
*/
if (brw->has_pln && reg_width == 1 && intel->gen < 6) {
brw->wm.aligned_pairs_class = ra_alloc_reg_class(brw->wm.regs);
for (int i = 0; i < pairs_reg_count; i++) {
if ((brw->wm.ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
ra_class_add_reg(brw->wm.regs, brw->wm.aligned_pairs_class,
pairs_base_reg + i);
}
}
class_count++;
}
ra_set_finalize(brw->wm.regs);
}
bool
fs_visitor::assign_regs()
{
/* Most of this allocation was written for a reg_width of 1
* (dispatch_width == 8). In extending to 16-wide, the code was
* left in place and it was converted to have the hardware
* registers it's allocating be contiguous physical pairs of regs
* for reg_width == 2.
*/
int reg_width = c->dispatch_width / 8;
int hw_reg_mapping[this->virtual_grf_count];
int first_assigned_grf = ALIGN(this->first_non_payload_grf, reg_width);
int base_reg_count = (max_grf - first_assigned_grf) / reg_width;
int class_sizes[base_reg_count];
int class_count = 0;
calculate_live_intervals();
/* Set up the register classes.
*
* The base registers store a scalar value. For texture samples,
* we get virtual GRFs composed of 4 contiguous hw register. For
* structures and arrays, we store them as contiguous larger things
* than that, though we should be able to do better most of the
* time.
*/
class_sizes[class_count++] = 1;
if (brw->has_pln && intel->gen < 6) {
/* Always set up the (unaligned) pairs for gen5, so we can find
* them for making the aligned pair class.
*/
class_sizes[class_count++] = 2;
}
for (int r = 0; r < this->virtual_grf_count; r++) {
int i;
for (i = 0; i < class_count; i++) {
if (class_sizes[i] == this->virtual_grf_sizes[r])
break;
}
if (i == class_count) {
if (this->virtual_grf_sizes[r] >= base_reg_count) {
fail("Object too large to register allocate.\n");
}
class_sizes[class_count++] = this->virtual_grf_sizes[r];
}
}
brw_alloc_reg_set_for_classes(brw, class_sizes, class_count,
reg_width, base_reg_count);
struct ra_graph *g = ra_alloc_interference_graph(brw->wm.regs,
this->virtual_grf_count);
for (int i = 0; i < this->virtual_grf_count; i++) {
for (int c = 0; c < class_count; c++) {
if (class_sizes[c] == this->virtual_grf_sizes[i]) {
/* Special case: on pre-GEN6 hardware that supports PLN, the
* second operand of a PLN instruction needs to be an
* even-numbered register, so we have a special register class
* wm_aligned_pairs_class to handle this case. pre-GEN6 always
* uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
* second operand of a PLN instruction (since it doesn't support
* any other interpolation modes). So all we need to do is find
* that register and set it to the appropriate class.
*/
if (brw->wm.aligned_pairs_class >= 0 &&
this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
ra_set_node_class(g, i, brw->wm.aligned_pairs_class);
} else {
ra_set_node_class(g, i, brw->wm.classes[c]);
}
break;
}
}
for (int j = 0; j < i; j++) {
if (virtual_grf_interferes(i, j)) {
ra_add_node_interference(g, i, j);
}
}
}
if (!ra_allocate_no_spills(g)) {
/* Failed to allocate registers. Spill a reg, and the caller will
* loop back into here to try again.
*/
int reg = choose_spill_reg(g);
if (reg == -1) {
fail("no register to spill\n");
} else if (c->dispatch_width == 16) {
fail("Failure to register allocate. Reduce number of live scalar "
"values to avoid this.");
} else {
spill_reg(reg);
}
ralloc_free(g);
return false;
}
/* Get the chosen virtual registers for each node, and map virtual
* regs in the register classes back down to real hardware reg
* numbers.
*/
this->grf_used = first_assigned_grf;
for (int i = 0; i < this->virtual_grf_count; i++) {
int reg = ra_get_node_reg(g, i);
hw_reg_mapping[i] = (first_assigned_grf +
brw->wm.ra_reg_to_grf[reg] * reg_width);
this->grf_used = MAX2(this->grf_used,
hw_reg_mapping[i] + this->virtual_grf_sizes[i] *
reg_width);
}
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
assign_reg(hw_reg_mapping, &inst->dst, reg_width);
assign_reg(hw_reg_mapping, &inst->src[0], reg_width);
assign_reg(hw_reg_mapping, &inst->src[1], reg_width);
assign_reg(hw_reg_mapping, &inst->src[2], reg_width);
}
ralloc_free(g);
return true;
}
void
fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset)
{
fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst);
unspill_inst->offset = spill_offset;
unspill_inst->ir = inst->ir;
unspill_inst->annotation = inst->annotation;
/* Choose a MRF that won't conflict with an MRF that's live across the
* spill. Nothing else will make it up to MRF 14/15.
*/
unspill_inst->base_mrf = 14;
unspill_inst->mlen = 1; /* header contains offset */
inst->insert_before(unspill_inst);
}
int
fs_visitor::choose_spill_reg(struct ra_graph *g)
{
float loop_scale = 1.0;
float spill_costs[this->virtual_grf_count];
bool no_spill[this->virtual_grf_count];
for (int i = 0; i < this->virtual_grf_count; i++) {
spill_costs[i] = 0.0;
no_spill[i] = false;
}
/* Calculate costs for spilling nodes. Call it a cost of 1 per
* spill/unspill we'll have to do, and guess that the insides of
* loops run 10 times.
*/
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF) {
spill_costs[inst->src[i].reg] += loop_scale;
/* Register spilling logic assumes full-width registers; smeared
* registers have a width of 1 so if we try to spill them we'll
* generate invalid assembly. This shouldn't be a problem because
* smeared registers are only used as short-term temporaries when
* loading pull constants, so spilling them is unlikely to reduce
* register pressure anyhow.
*/
if (inst->src[i].smear >= 0) {
no_spill[inst->src[i].reg] = true;
}
}
}
if (inst->dst.file == GRF) {
spill_costs[inst->dst.reg] += inst->regs_written() * loop_scale;
if (inst->dst.smear >= 0) {
no_spill[inst->dst.reg] = true;
}
}
switch (inst->opcode) {
case BRW_OPCODE_DO:
loop_scale *= 10;
break;
case BRW_OPCODE_WHILE:
loop_scale /= 10;
break;
case FS_OPCODE_SPILL:
if (inst->src[0].file == GRF)
no_spill[inst->src[0].reg] = true;
break;
case FS_OPCODE_UNSPILL:
if (inst->dst.file == GRF)
no_spill[inst->dst.reg] = true;
break;
default:
break;
}
}
for (int i = 0; i < this->virtual_grf_count; i++) {
if (!no_spill[i])
ra_set_node_spill_cost(g, i, spill_costs[i]);
}
return ra_get_best_spill_node(g);
}
void
fs_visitor::spill_reg(int spill_reg)
{
int size = virtual_grf_sizes[spill_reg];
unsigned int spill_offset = c->last_scratch;
assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
c->last_scratch += size * REG_SIZE;
/* Generate spill/unspill instructions for the objects being
* spilled. Right now, we spill or unspill the whole thing to a
* virtual grf of the same size. For most instructions, though, we
* could just spill/unspill the GRF being accessed.
*/
foreach_list(node, &this->instructions) {
fs_inst *inst = (fs_inst *)node;
for (unsigned int i = 0; i < 3; i++) {
if (inst->src[i].file == GRF &&
inst->src[i].reg == spill_reg) {
inst->src[i].reg = virtual_grf_alloc(1);
emit_unspill(inst, inst->src[i],
spill_offset + REG_SIZE * inst->src[i].reg_offset);
}
}
if (inst->dst.file == GRF &&
inst->dst.reg == spill_reg) {
int subset_spill_offset = (spill_offset +
REG_SIZE * inst->dst.reg_offset);
inst->dst.reg = virtual_grf_alloc(inst->regs_written());
inst->dst.reg_offset = 0;
/* If our write is going to affect just part of the
* inst->regs_written(), then we need to unspill the destination
* since we write back out all of the regs_written().
*/
if (inst->predicated || inst->force_uncompressed || inst->force_sechalf) {
fs_reg unspill_reg = inst->dst;
for (int chan = 0; chan < inst->regs_written(); chan++) {
emit_unspill(inst, unspill_reg,
subset_spill_offset + REG_SIZE * chan);
unspill_reg.reg_offset++;
}
}
fs_reg spill_src = inst->dst;
spill_src.reg_offset = 0;
spill_src.abs = false;
spill_src.negate = false;
spill_src.smear = -1;
for (int chan = 0; chan < inst->regs_written(); chan++) {
fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL,
reg_null_f, spill_src);
spill_src.reg_offset++;
spill_inst->offset = subset_spill_offset + chan * REG_SIZE;
spill_inst->ir = inst->ir;
spill_inst->annotation = inst->annotation;
spill_inst->base_mrf = 14;
spill_inst->mlen = 2; /* header, value */
inst->insert_after(spill_inst);
}
}
}
this->live_intervals_valid = false;
}