blob: 89c516c877d166ebac04fd594e028717b9ca5ff6 [file] [log] [blame]
/* -*- c++ -*- */
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#pragma once
#ifndef IR_H
#define IR_H
#include <stdio.h>
#include <stdlib.h>
#include "ralloc.h"
#include "glsl_types.h"
#include "list.h"
#include "ir_visitor.h"
#include "ir_hierarchical_visitor.h"
#include "main/mtypes.h"
/**
* \defgroup IR Intermediate representation nodes
*
* @{
*/
/**
* Class tags
*
* Each concrete class derived from \c ir_instruction has a value in this
* enumerant. The value for the type is stored in \c ir_instruction::ir_type
* by the constructor. While using type tags is not very C++, it is extremely
* convenient. For example, during debugging you can simply inspect
* \c ir_instruction::ir_type to find out the actual type of the object.
*
* In addition, it is possible to use a switch-statement based on \c
* \c ir_instruction::ir_type to select different behavior for different object
* types. For functions that have only slight differences for several object
* types, this allows writing very straightforward, readable code.
*/
enum ir_node_type {
/**
* Zero is unused so that the IR validator can detect cases where
* \c ir_instruction::ir_type has not been initialized.
*/
ir_type_unset,
ir_type_variable,
ir_type_assignment,
ir_type_call,
ir_type_constant,
ir_type_dereference_array,
ir_type_dereference_record,
ir_type_dereference_variable,
ir_type_discard,
ir_type_expression,
ir_type_function,
ir_type_function_signature,
ir_type_if,
ir_type_loop,
ir_type_loop_jump,
ir_type_return,
ir_type_swizzle,
ir_type_texture,
ir_type_max /**< maximum ir_type enum number, for validation */
};
/**
* Base class of all IR instructions
*/
class ir_instruction : public exec_node {
public:
enum ir_node_type ir_type;
/**
* GCC 4.7+ and clang warn when deleting an ir_instruction unless
* there's a virtual destructor present. Because we almost
* universally use ralloc for our memory management of
* ir_instructions, the destructor doesn't need to do any work.
*/
virtual ~ir_instruction()
{
}
/** ir_print_visitor helper for debugging. */
void print(void) const;
virtual void accept(ir_visitor *) = 0;
virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
virtual ir_instruction *clone(void *mem_ctx,
struct hash_table *ht) const = 0;
/**
* \name IR instruction downcast functions
*
* These functions either cast the object to a derived class or return
* \c NULL if the object's type does not match the specified derived class.
* Additional downcast functions will be added as needed.
*/
/*@{*/
virtual class ir_variable * as_variable() { return NULL; }
virtual class ir_function * as_function() { return NULL; }
virtual class ir_dereference * as_dereference() { return NULL; }
virtual class ir_dereference_array * as_dereference_array() { return NULL; }
virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
virtual class ir_expression * as_expression() { return NULL; }
virtual class ir_rvalue * as_rvalue() { return NULL; }
virtual class ir_loop * as_loop() { return NULL; }
virtual class ir_assignment * as_assignment() { return NULL; }
virtual class ir_call * as_call() { return NULL; }
virtual class ir_return * as_return() { return NULL; }
virtual class ir_if * as_if() { return NULL; }
virtual class ir_swizzle * as_swizzle() { return NULL; }
virtual class ir_constant * as_constant() { return NULL; }
virtual class ir_discard * as_discard() { return NULL; }
/*@}*/
protected:
ir_instruction()
{
ir_type = ir_type_unset;
}
};
/**
* The base class for all "values"/expression trees.
*/
class ir_rvalue : public ir_instruction {
public:
const struct glsl_type *type;
virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual ir_rvalue * as_rvalue()
{
return this;
}
ir_rvalue *as_rvalue_to_saturate();
virtual bool is_lvalue() const
{
return false;
}
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return NULL;
}
/**
* If an r-value is a reference to a whole variable, get that variable
*
* \return
* Pointer to a variable that is completely dereferenced by the r-value. If
* the r-value is not a dereference or the dereference does not access the
* entire variable (i.e., it's just one array element, struct field), \c NULL
* is returned.
*/
virtual ir_variable *whole_variable_referenced()
{
return NULL;
}
/**
* Determine if an r-value has the value zero
*
* The base implementation of this function always returns \c false. The
* \c ir_constant class over-rides this function to return \c true \b only
* for vector and scalar types that have all elements set to the value
* zero (or \c false for booleans).
*
* \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
* ir_constant::is_basis
*/
virtual bool is_zero() const;
/**
* Determine if an r-value has the value one
*
* The base implementation of this function always returns \c false. The
* \c ir_constant class over-rides this function to return \c true \b only
* for vector and scalar types that have all elements set to the value
* one (or \c true for booleans).
*
* \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
* ir_constant::is_basis
*/
virtual bool is_one() const;
/**
* Determine if an r-value has the value negative one
*
* The base implementation of this function always returns \c false. The
* \c ir_constant class over-rides this function to return \c true \b only
* for vector and scalar types that have all elements set to the value
* negative one. For boolean types, the result is always \c false.
*
* \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
* ir_constant::is_basis
*/
virtual bool is_negative_one() const;
/**
* Determine if an r-value is a basis vector
*
* The base implementation of this function always returns \c false. The
* \c ir_constant class over-rides this function to return \c true \b only
* for vector and scalar types that have one element set to the value one,
* and the other elements set to the value zero. For boolean types, the
* result is always \c false.
*
* \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
* is_constant::is_negative_one
*/
virtual bool is_basis() const;
/**
* Return a generic value of error_type.
*
* Allocation will be performed with 'mem_ctx' as ralloc owner.
*/
static ir_rvalue *error_value(void *mem_ctx);
protected:
ir_rvalue();
};
/**
* Variable storage classes
*/
enum ir_variable_mode {
ir_var_auto = 0, /**< Function local variables and globals. */
ir_var_uniform, /**< Variable declared as a uniform. */
ir_var_in,
ir_var_out,
ir_var_inout,
ir_var_const_in, /**< "in" param that must be a constant expression */
ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
ir_var_temporary /**< Temporary variable generated during compilation. */
};
/**
* \brief Layout qualifiers for gl_FragDepth.
*
* The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
* with a layout qualifier.
*/
enum ir_depth_layout {
ir_depth_layout_none, /**< No depth layout is specified. */
ir_depth_layout_any,
ir_depth_layout_greater,
ir_depth_layout_less,
ir_depth_layout_unchanged
};
/**
* \brief Convert depth layout qualifier to string.
*/
const char*
depth_layout_string(ir_depth_layout layout);
/**
* Description of built-in state associated with a uniform
*
* \sa ir_variable::state_slots
*/
struct ir_state_slot {
int tokens[5];
int swizzle;
};
class ir_variable : public ir_instruction {
public:
ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
virtual ir_variable *as_variable()
{
return this;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Get the string value for the interpolation qualifier
*
* \return The string that would be used in a shader to specify \c
* mode will be returned.
*
* This function is used to generate error messages of the form "shader
* uses %s interpolation qualifier", so in the case where there is no
* interpolation qualifier, it returns "no".
*
* This function should only be used on a shader input or output variable.
*/
const char *interpolation_string() const;
/**
* Determine how this variable should be interpolated based on its
* interpolation qualifier (if present), whether it is gl_Color or
* gl_SecondaryColor, and whether flatshading is enabled in the current GL
* state.
*
* The return value will always be either INTERP_QUALIFIER_SMOOTH,
* INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
*/
glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
/**
* Declared type of the variable
*/
const struct glsl_type *type;
/**
* Declared name of the variable
*/
const char *name;
/**
* Highest element accessed with a constant expression array index
*
* Not used for non-array variables.
*/
unsigned max_array_access;
/**
* Is the variable read-only?
*
* This is set for variables declared as \c const, shader inputs,
* and uniforms.
*/
unsigned read_only:1;
unsigned centroid:1;
unsigned invariant:1;
/**
* Has this variable been used for reading or writing?
*
* Several GLSL semantic checks require knowledge of whether or not a
* variable has been used. For example, it is an error to redeclare a
* variable as invariant after it has been used.
*
* This is only maintained in the ast_to_hir.cpp path, not in
* Mesa's fixed function or ARB program paths.
*/
unsigned used:1;
/**
* Has this variable been statically assigned?
*
* This answers whether the variable was assigned in any path of
* the shader during ast_to_hir. This doesn't answer whether it is
* still written after dead code removal, nor is it maintained in
* non-ast_to_hir.cpp (GLSL parsing) paths.
*/
unsigned assigned:1;
/**
* Storage class of the variable.
*
* \sa ir_variable_mode
*/
unsigned mode:3;
/**
* Interpolation mode for shader inputs / outputs
*
* \sa ir_variable_interpolation
*/
unsigned interpolation:2;
/**
* \name ARB_fragment_coord_conventions
* @{
*/
unsigned origin_upper_left:1;
unsigned pixel_center_integer:1;
/*@}*/
/**
* Was the location explicitly set in the shader?
*
* If the location is explicitly set in the shader, it \b cannot be changed
* by the linker or by the API (e.g., calls to \c glBindAttribLocation have
* no effect).
*/
unsigned explicit_location:1;
unsigned explicit_index:1;
/**
* Does this variable have an initializer?
*
* This is used by the linker to cross-validiate initializers of global
* variables.
*/
unsigned has_initializer:1;
/**
* \brief Layout qualifier for gl_FragDepth.
*
* This is not equal to \c ir_depth_layout_none if and only if this
* variable is \c gl_FragDepth and a layout qualifier is specified.
*/
ir_depth_layout depth_layout;
/**
* Storage location of the base of this variable
*
* The precise meaning of this field depends on the nature of the variable.
*
* - Vertex shader input: one of the values from \c gl_vert_attrib.
* - Vertex shader output: one of the values from \c gl_vert_result.
* - Fragment shader input: one of the values from \c gl_frag_attrib.
* - Fragment shader output: one of the values from \c gl_frag_result.
* - Uniforms: Per-stage uniform slot number for default uniform block.
* - Uniforms: Index within the uniform block definition for UBO members.
* - Other: This field is not currently used.
*
* If the variable is a uniform, shader input, or shader output, and the
* slot has not been assigned, the value will be -1.
*/
int location;
/**
* Uniform block number for uniforms.
*
* This index is into the shader's list of uniform blocks, not the
* linked program's merged list.
*
* If the variable is not in a uniform block, the value will be -1.
*/
int uniform_block;
/**
* output index for dual source blending.
*/
int index;
/**
* Built-in state that backs this uniform
*
* Once set at variable creation, \c state_slots must remain invariant.
* This is because, ideally, this array would be shared by all clones of
* this variable in the IR tree. In other words, we'd really like for it
* to be a fly-weight.
*
* If the variable is not a uniform, \c num_state_slots will be zero and
* \c state_slots will be \c NULL.
*/
/*@{*/
unsigned num_state_slots; /**< Number of state slots used */
ir_state_slot *state_slots; /**< State descriptors. */
/*@}*/
/**
* Emit a warning if this variable is accessed.
*/
const char *warn_extension;
/**
* Value assigned in the initializer of a variable declared "const"
*/
ir_constant *constant_value;
/**
* Constant expression assigned in the initializer of the variable
*
* \warning
* This field and \c ::constant_value are distinct. Even if the two fields
* refer to constants with the same value, they must point to separate
* objects.
*/
ir_constant *constant_initializer;
};
/*@{*/
/**
* The representation of a function instance; may be the full definition or
* simply a prototype.
*/
class ir_function_signature : public ir_instruction {
/* An ir_function_signature will be part of the list of signatures in
* an ir_function.
*/
public:
ir_function_signature(const glsl_type *return_type);
virtual ir_function_signature *clone(void *mem_ctx,
struct hash_table *ht) const;
ir_function_signature *clone_prototype(void *mem_ctx,
struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Attempt to evaluate this function as a constant expression,
* given a list of the actual parameters and the variable context.
* Returns NULL for non-built-ins.
*/
ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
/**
* Get the name of the function for which this is a signature
*/
const char *function_name() const;
/**
* Get a handle to the function for which this is a signature
*
* There is no setter function, this function returns a \c const pointer,
* and \c ir_function_signature::_function is private for a reason. The
* only way to make a connection between a function and function signature
* is via \c ir_function::add_signature. This helps ensure that certain
* invariants (i.e., a function signature is in the list of signatures for
* its \c _function) are met.
*
* \sa ir_function::add_signature
*/
inline const class ir_function *function() const
{
return this->_function;
}
/**
* Check whether the qualifiers match between this signature's parameters
* and the supplied parameter list. If not, returns the name of the first
* parameter with mismatched qualifiers (for use in error messages).
*/
const char *qualifiers_match(exec_list *params);
/**
* Replace the current parameter list with the given one. This is useful
* if the current information came from a prototype, and either has invalid
* or missing parameter names.
*/
void replace_parameters(exec_list *new_params);
/**
* Function return type.
*
* \note This discards the optional precision qualifier.
*/
const struct glsl_type *return_type;
/**
* List of ir_variable of function parameters.
*
* This represents the storage. The paramaters passed in a particular
* call will be in ir_call::actual_paramaters.
*/
struct exec_list parameters;
/** Whether or not this function has a body (which may be empty). */
unsigned is_defined:1;
/** Whether or not this function signature is a built-in. */
unsigned is_builtin:1;
/** Body of instructions in the function. */
struct exec_list body;
private:
/** Function of which this signature is one overload. */
class ir_function *_function;
/** Function signature of which this one is a prototype clone */
const ir_function_signature *origin;
friend class ir_function;
/**
* Helper function to run a list of instructions for constant
* expression evaluation.
*
* The hash table represents the values of the visible variables.
* There are no scoping issues because the table is indexed on
* ir_variable pointers, not variable names.
*
* Returns false if the expression is not constant, true otherwise,
* and the value in *result if result is non-NULL.
*/
bool constant_expression_evaluate_expression_list(const struct exec_list &body,
struct hash_table *variable_context,
ir_constant **result);
};
/**
* Header for tracking multiple overloaded functions with the same name.
* Contains a list of ir_function_signatures representing each of the
* actual functions.
*/
class ir_function : public ir_instruction {
public:
ir_function(const char *name);
virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
virtual ir_function *as_function()
{
return this;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
void add_signature(ir_function_signature *sig)
{
sig->_function = this;
this->signatures.push_tail(sig);
}
/**
* Get an iterator for the set of function signatures
*/
exec_list_iterator iterator()
{
return signatures.iterator();
}
/**
* Find a signature that matches a set of actual parameters, taking implicit
* conversions into account. Also flags whether the match was exact.
*/
ir_function_signature *matching_signature(const exec_list *actual_param,
bool *match_is_exact);
/**
* Find a signature that matches a set of actual parameters, taking implicit
* conversions into account.
*/
ir_function_signature *matching_signature(const exec_list *actual_param);
/**
* Find a signature that exactly matches a set of actual parameters without
* any implicit type conversions.
*/
ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
/**
* Name of the function.
*/
const char *name;
/** Whether or not this function has a signature that isn't a built-in. */
bool has_user_signature();
/**
* List of ir_function_signature for each overloaded function with this name.
*/
struct exec_list signatures;
};
inline const char *ir_function_signature::function_name() const
{
return this->_function->name;
}
/*@}*/
/**
* IR instruction representing high-level if-statements
*/
class ir_if : public ir_instruction {
public:
ir_if(ir_rvalue *condition)
: condition(condition)
{
ir_type = ir_type_if;
}
virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
virtual ir_if *as_if()
{
return this;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *condition;
/** List of ir_instruction for the body of the then branch */
exec_list then_instructions;
/** List of ir_instruction for the body of the else branch */
exec_list else_instructions;
};
/**
* IR instruction representing a high-level loop structure.
*/
class ir_loop : public ir_instruction {
public:
ir_loop();
virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual ir_loop *as_loop()
{
return this;
}
/**
* Get an iterator for the instructions of the loop body
*/
exec_list_iterator iterator()
{
return body_instructions.iterator();
}
/** List of ir_instruction that make up the body of the loop. */
exec_list body_instructions;
/**
* \name Loop counter and controls
*
* Represents a loop like a FORTRAN \c do-loop.
*
* \note
* If \c from and \c to are the same value, the loop will execute once.
*/
/*@{*/
ir_rvalue *from; /** Value of the loop counter on the first
* iteration of the loop.
*/
ir_rvalue *to; /** Value of the loop counter on the last
* iteration of the loop.
*/
ir_rvalue *increment;
ir_variable *counter;
/**
* Comparison operation in the loop terminator.
*
* If any of the loop control fields are non-\c NULL, this field must be
* one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
* \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
*/
int cmp;
/*@}*/
};
class ir_assignment : public ir_instruction {
public:
ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
/**
* Construct an assignment with an explicit write mask
*
* \note
* Since a write mask is supplied, the LHS must already be a bare
* \c ir_dereference. The cannot be any swizzles in the LHS.
*/
ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
unsigned write_mask);
virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual ir_assignment * as_assignment()
{
return this;
}
/**
* Get a whole variable written by an assignment
*
* If the LHS of the assignment writes a whole variable, the variable is
* returned. Otherwise \c NULL is returned. Examples of whole-variable
* assignment are:
*
* - Assigning to a scalar
* - Assigning to all components of a vector
* - Whole array (or matrix) assignment
* - Whole structure assignment
*/
ir_variable *whole_variable_written();
/**
* Set the LHS of an assignment
*/
void set_lhs(ir_rvalue *lhs);
/**
* Left-hand side of the assignment.
*
* This should be treated as read only. If you need to set the LHS of an
* assignment, use \c ir_assignment::set_lhs.
*/
ir_dereference *lhs;
/**
* Value being assigned
*/
ir_rvalue *rhs;
/**
* Optional condition for the assignment.
*/
ir_rvalue *condition;
/**
* Component mask written
*
* For non-vector types in the LHS, this field will be zero. For vector
* types, a bit will be set for each component that is written. Note that
* for \c vec2 and \c vec3 types only the lower bits will ever be set.
*
* A partially-set write mask means that each enabled channel gets
* the value from a consecutive channel of the rhs. For example,
* to write just .xyw of gl_FrontColor with color:
*
* (assign (constant bool (1)) (xyw)
* (var_ref gl_FragColor)
* (swiz xyw (var_ref color)))
*/
unsigned write_mask:4;
};
/* Update ir_expression::num_operands() and operator_strs when
* updating this list.
*/
enum ir_expression_operation {
ir_unop_bit_not,
ir_unop_logic_not,
ir_unop_neg,
ir_unop_abs,
ir_unop_sign,
ir_unop_rcp,
ir_unop_rsq,
ir_unop_sqrt,
ir_unop_exp, /**< Log base e on gentype */
ir_unop_log, /**< Natural log on gentype */
ir_unop_exp2,
ir_unop_log2,
ir_unop_f2i, /**< Float-to-integer conversion. */
ir_unop_f2u, /**< Float-to-unsigned conversion. */
ir_unop_i2f, /**< Integer-to-float conversion. */
ir_unop_f2b, /**< Float-to-boolean conversion */
ir_unop_b2f, /**< Boolean-to-float conversion */
ir_unop_i2b, /**< int-to-boolean conversion */
ir_unop_b2i, /**< Boolean-to-int conversion */
ir_unop_u2f, /**< Unsigned-to-float conversion. */
ir_unop_i2u, /**< Integer-to-unsigned conversion. */
ir_unop_u2i, /**< Unsigned-to-integer conversion. */
ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
ir_unop_any,
/**
* \name Unary floating-point rounding operations.
*/
/*@{*/
ir_unop_trunc,
ir_unop_ceil,
ir_unop_floor,
ir_unop_fract,
ir_unop_round_even,
/*@}*/
/**
* \name Trigonometric operations.
*/
/*@{*/
ir_unop_sin,
ir_unop_cos,
ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
/*@}*/
/**
* \name Partial derivatives.
*/
/*@{*/
ir_unop_dFdx,
ir_unop_dFdy,
/*@}*/
ir_unop_noise,
/**
* A sentinel marking the last of the unary operations.
*/
ir_last_unop = ir_unop_noise,
ir_binop_add,
ir_binop_sub,
ir_binop_mul,
ir_binop_div,
/**
* Takes one of two combinations of arguments:
*
* - mod(vecN, vecN)
* - mod(vecN, float)
*
* Does not take integer types.
*/
ir_binop_mod,
/**
* \name Binary comparison operators which return a boolean vector.
* The type of both operands must be equal.
*/
/*@{*/
ir_binop_less,
ir_binop_greater,
ir_binop_lequal,
ir_binop_gequal,
ir_binop_equal,
ir_binop_nequal,
/**
* Returns single boolean for whether all components of operands[0]
* equal the components of operands[1].
*/
ir_binop_all_equal,
/**
* Returns single boolean for whether any component of operands[0]
* is not equal to the corresponding component of operands[1].
*/
ir_binop_any_nequal,
/*@}*/
/**
* \name Bit-wise binary operations.
*/
/*@{*/
ir_binop_lshift,
ir_binop_rshift,
ir_binop_bit_and,
ir_binop_bit_xor,
ir_binop_bit_or,
/*@}*/
ir_binop_logic_and,
ir_binop_logic_xor,
ir_binop_logic_or,
ir_binop_dot,
ir_binop_min,
ir_binop_max,
ir_binop_pow,
/**
* Load a value the size of a given GLSL type from a uniform block.
*
* operand0 is the ir_constant uniform block index in the linked shader.
* operand1 is a byte offset within the uniform block.
*/
ir_binop_ubo_load,
/**
* A sentinel marking the last of the binary operations.
*/
ir_last_binop = ir_binop_ubo_load,
ir_quadop_vector,
/**
* A sentinel marking the last of all operations.
*/
ir_last_opcode = ir_quadop_vector
};
class ir_expression : public ir_rvalue {
public:
/**
* Constructor for unary operation expressions
*/
ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
ir_expression(int op, ir_rvalue *);
/**
* Constructor for binary operation expressions
*/
ir_expression(int op, const struct glsl_type *type,
ir_rvalue *, ir_rvalue *);
ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
/**
* Constructor for quad operator expressions
*/
ir_expression(int op, const struct glsl_type *type,
ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
virtual ir_expression *as_expression()
{
return this;
}
virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
/**
* Attempt to constant-fold the expression
*
* The "variable_context" hash table links ir_variable * to ir_constant *
* that represent the variables' values. \c NULL represents an empty
* context.
*
* If the expression cannot be constant folded, this method will return
* \c NULL.
*/
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
/**
* Determine the number of operands used by an expression
*/
static unsigned int get_num_operands(ir_expression_operation);
/**
* Determine the number of operands used by an expression
*/
unsigned int get_num_operands() const
{
return (this->operation == ir_quadop_vector)
? this->type->vector_elements : get_num_operands(operation);
}
/**
* Return a string representing this expression's operator.
*/
const char *operator_string();
/**
* Return a string representing this expression's operator.
*/
static const char *operator_string(ir_expression_operation);
/**
* Do a reverse-lookup to translate the given string into an operator.
*/
static ir_expression_operation get_operator(const char *);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_expression_operation operation;
ir_rvalue *operands[4];
};
/**
* HIR instruction representing a high-level function call, containing a list
* of parameters and returning a value in the supplied temporary.
*/
class ir_call : public ir_instruction {
public:
ir_call(ir_function_signature *callee,
ir_dereference_variable *return_deref,
exec_list *actual_parameters)
: return_deref(return_deref), callee(callee)
{
ir_type = ir_type_call;
assert(callee->return_type != NULL);
actual_parameters->move_nodes_to(& this->actual_parameters);
this->use_builtin = callee->is_builtin;
}
virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual ir_call *as_call()
{
return this;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Get an iterator for the set of acutal parameters
*/
exec_list_iterator iterator()
{
return actual_parameters.iterator();
}
/**
* Get the name of the function being called.
*/
const char *callee_name() const
{
return callee->function_name();
}
/**
* Generates an inline version of the function before @ir,
* storing the return value in return_deref.
*/
void generate_inline(ir_instruction *ir);
/**
* Storage for the function's return value.
* This must be NULL if the return type is void.
*/
ir_dereference_variable *return_deref;
/**
* The specific function signature being called.
*/
ir_function_signature *callee;
/* List of ir_rvalue of paramaters passed in this call. */
exec_list actual_parameters;
/** Should this call only bind to a built-in function? */
bool use_builtin;
};
/**
* \name Jump-like IR instructions.
*
* These include \c break, \c continue, \c return, and \c discard.
*/
/*@{*/
class ir_jump : public ir_instruction {
protected:
ir_jump()
{
ir_type = ir_type_unset;
}
};
class ir_return : public ir_jump {
public:
ir_return()
: value(NULL)
{
this->ir_type = ir_type_return;
}
ir_return(ir_rvalue *value)
: value(value)
{
this->ir_type = ir_type_return;
}
virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
virtual ir_return *as_return()
{
return this;
}
ir_rvalue *get_value() const
{
return value;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *value;
};
/**
* Jump instructions used inside loops
*
* These include \c break and \c continue. The \c break within a loop is
* different from the \c break within a switch-statement.
*
* \sa ir_switch_jump
*/
class ir_loop_jump : public ir_jump {
public:
enum jump_mode {
jump_break,
jump_continue
};
ir_loop_jump(jump_mode mode)
{
this->ir_type = ir_type_loop_jump;
this->mode = mode;
}
virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
bool is_break() const
{
return mode == jump_break;
}
bool is_continue() const
{
return mode == jump_continue;
}
/** Mode selector for the jump instruction. */
enum jump_mode mode;
};
/**
* IR instruction representing discard statements.
*/
class ir_discard : public ir_jump {
public:
ir_discard()
{
this->ir_type = ir_type_discard;
this->condition = NULL;
}
ir_discard(ir_rvalue *cond)
{
this->ir_type = ir_type_discard;
this->condition = cond;
}
virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual ir_discard *as_discard()
{
return this;
}
ir_rvalue *condition;
};
/*@}*/
/**
* Texture sampling opcodes used in ir_texture
*/
enum ir_texture_opcode {
ir_tex, /**< Regular texture look-up */
ir_txb, /**< Texture look-up with LOD bias */
ir_txl, /**< Texture look-up with explicit LOD */
ir_txd, /**< Texture look-up with partial derivatvies */
ir_txf, /**< Texel fetch with explicit LOD */
ir_txs /**< Texture size */
};
/**
* IR instruction to sample a texture
*
* The specific form of the IR instruction depends on the \c mode value
* selected from \c ir_texture_opcodes. In the printed IR, these will
* appear as:
*
* Texel offset (0 or an expression)
* | Projection divisor
* | | Shadow comparitor
* | | |
* v v v
* (tex <type> <sampler> <coordinate> 0 1 ( ))
* (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
* (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
* (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
* (txf <type> <sampler> <coordinate> 0 <lod>)
* (txs <type> <sampler> <lod>)
*/
class ir_texture : public ir_rvalue {
public:
ir_texture(enum ir_texture_opcode op)
: op(op), coordinate(NULL), projector(NULL), shadow_comparitor(NULL),
offset(NULL)
{
this->ir_type = ir_type_texture;
}
virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Return a string representing the ir_texture_opcode.
*/
const char *opcode_string();
/** Set the sampler and type. */
void set_sampler(ir_dereference *sampler, const glsl_type *type);
/**
* Do a reverse-lookup to translate a string into an ir_texture_opcode.
*/
static ir_texture_opcode get_opcode(const char *);
enum ir_texture_opcode op;
/** Sampler to use for the texture access. */
ir_dereference *sampler;
/** Texture coordinate to sample */
ir_rvalue *coordinate;
/**
* Value used for projective divide.
*
* If there is no projective divide (the common case), this will be
* \c NULL. Optimization passes should check for this to point to a constant
* of 1.0 and replace that with \c NULL.
*/
ir_rvalue *projector;
/**
* Coordinate used for comparison on shadow look-ups.
*
* If there is no shadow comparison, this will be \c NULL. For the
* \c ir_txf opcode, this *must* be \c NULL.
*/
ir_rvalue *shadow_comparitor;
/** Texel offset. */
ir_rvalue *offset;
union {
ir_rvalue *lod; /**< Floating point LOD */
ir_rvalue *bias; /**< Floating point LOD bias */
struct {
ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
} grad;
} lod_info;
};
struct ir_swizzle_mask {
unsigned x:2;
unsigned y:2;
unsigned z:2;
unsigned w:2;
/**
* Number of components in the swizzle.
*/
unsigned num_components:3;
/**
* Does the swizzle contain duplicate components?
*
* L-value swizzles cannot contain duplicate components.
*/
unsigned has_duplicates:1;
};
class ir_swizzle : public ir_rvalue {
public:
ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
unsigned count);
ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual ir_swizzle *as_swizzle()
{
return this;
}
/**
* Construct an ir_swizzle from the textual representation. Can fail.
*/
static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
bool is_lvalue() const
{
return val->is_lvalue() && !mask.has_duplicates;
}
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const;
ir_rvalue *val;
ir_swizzle_mask mask;
private:
/**
* Initialize the mask component of a swizzle
*
* This is used by the \c ir_swizzle constructors.
*/
void init_mask(const unsigned *components, unsigned count);
};
class ir_dereference : public ir_rvalue {
public:
virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
virtual ir_dereference *as_dereference()
{
return this;
}
bool is_lvalue() const;
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const = 0;
/**
* Get the constant that is ultimately referenced by an r-value,
* in a constant expression evaluation context.
*
* The offset is used when the reference is to a specific column of
* a matrix.
*/
virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
};
class ir_dereference_variable : public ir_dereference {
public:
ir_dereference_variable(ir_variable *var);
virtual ir_dereference_variable *clone(void *mem_ctx,
struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual ir_dereference_variable *as_dereference_variable()
{
return this;
}
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return this->var;
}
/**
* Get the constant that is ultimately referenced by an r-value,
* in a constant expression evaluation context.
*
* The offset is used when the reference is to a specific column of
* a matrix.
*/
virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
virtual ir_variable *whole_variable_referenced()
{
/* ir_dereference_variable objects always dereference the entire
* variable. However, if this dereference is dereferenced by anything
* else, the complete deferefernce chain is not a whole-variable
* dereference. This method should only be called on the top most
* ir_rvalue in a dereference chain.
*/
return this->var;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Object being dereferenced.
*/
ir_variable *var;
};
class ir_dereference_array : public ir_dereference {
public:
ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
virtual ir_dereference_array *clone(void *mem_ctx,
struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual ir_dereference_array *as_dereference_array()
{
return this;
}
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return this->array->variable_referenced();
}
/**
* Get the constant that is ultimately referenced by an r-value,
* in a constant expression evaluation context.
*
* The offset is used when the reference is to a specific column of
* a matrix.
*/
virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *array;
ir_rvalue *array_index;
private:
void set_array(ir_rvalue *value);
};
class ir_dereference_record : public ir_dereference {
public:
ir_dereference_record(ir_rvalue *value, const char *field);
ir_dereference_record(ir_variable *var, const char *field);
virtual ir_dereference_record *clone(void *mem_ctx,
struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return this->record->variable_referenced();
}
/**
* Get the constant that is ultimately referenced by an r-value,
* in a constant expression evaluation context.
*
* The offset is used when the reference is to a specific column of
* a matrix.
*/
virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *record;
const char *field;
};
/**
* Data stored in an ir_constant
*/
union ir_constant_data {
unsigned u[16];
int i[16];
float f[16];
bool b[16];
};
class ir_constant : public ir_rvalue {
public:
ir_constant(const struct glsl_type *type, const ir_constant_data *data);
ir_constant(bool b);
ir_constant(unsigned int u);
ir_constant(int i);
ir_constant(float f);
/**
* Construct an ir_constant from a list of ir_constant values
*/
ir_constant(const struct glsl_type *type, exec_list *values);
/**
* Construct an ir_constant from a scalar component of another ir_constant
*
* The new \c ir_constant inherits the type of the component from the
* source constant.
*
* \note
* In the case of a matrix constant, the new constant is a scalar, \b not
* a vector.
*/
ir_constant(const ir_constant *c, unsigned i);
/**
* Return a new ir_constant of the specified type containing all zeros.
*/
static ir_constant *zero(void *mem_ctx, const glsl_type *type);
virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual ir_constant *as_constant()
{
return this;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Get a particular component of a constant as a specific type
*
* This is useful, for example, to get a value from an integer constant
* as a float or bool. This appears frequently when constructors are
* called with all constant parameters.
*/
/*@{*/
bool get_bool_component(unsigned i) const;
float get_float_component(unsigned i) const;
int get_int_component(unsigned i) const;
unsigned get_uint_component(unsigned i) const;
/*@}*/
ir_constant *get_array_element(unsigned i) const;
ir_constant *get_record_field(const char *name);
/**
* Copy the values on another constant at a given offset.
*
* The offset is ignored for array or struct copies, it's only for
* scalars or vectors into vectors or matrices.
*
* With identical types on both sides and zero offset it's clone()
* without creating a new object.
*/
void copy_offset(ir_constant *src, int offset);
/**
* Copy the values on another constant at a given offset and
* following an assign-like mask.
*
* The mask is ignored for scalars.
*
* Note that this function only handles what assign can handle,
* i.e. at most a vector as source and a column of a matrix as
* destination.
*/
void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
/**
* Determine whether a constant has the same value as another constant
*
* \sa ir_constant::is_zero, ir_constant::is_one,
* ir_constant::is_negative_one, ir_constant::is_basis
*/
bool has_value(const ir_constant *) const;
virtual bool is_zero() const;
virtual bool is_one() const;
virtual bool is_negative_one() const;
virtual bool is_basis() const;
/**
* Value of the constant.
*
* The field used to back the values supplied by the constant is determined
* by the type associated with the \c ir_instruction. Constants may be
* scalars, vectors, or matrices.
*/
union ir_constant_data value;
/* Array elements */
ir_constant **array_elements;
/* Structure fields */
exec_list components;
private:
/**
* Parameterless constructor only used by the clone method
*/
ir_constant(void);
};
/*@}*/
/**
* Apply a visitor to each IR node in a list
*/
void
visit_exec_list(exec_list *list, ir_visitor *visitor);
/**
* Validate invariants on each IR node in a list
*/
void validate_ir_tree(exec_list *instructions);
struct _mesa_glsl_parse_state;
struct gl_shader_program;
/**
* Detect whether an unlinked shader contains static recursion
*
* If the list of instructions is determined to contain static recursion,
* \c _mesa_glsl_error will be called to emit error messages for each function
* that is in the recursion cycle.
*/
void
detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
exec_list *instructions);
/**
* Detect whether a linked shader contains static recursion
*
* If the list of instructions is determined to contain static recursion,
* \c link_error_printf will be called to emit error messages for each function
* that is in the recursion cycle. In addition,
* \c gl_shader_program::LinkStatus will be set to false.
*/
void
detect_recursion_linked(struct gl_shader_program *prog,
exec_list *instructions);
/**
* Make a clone of each IR instruction in a list
*
* \param in List of IR instructions that are to be cloned
* \param out List to hold the cloned instructions
*/
void
clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
extern void
_mesa_glsl_initialize_variables(exec_list *instructions,
struct _mesa_glsl_parse_state *state);
extern void
_mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
extern void
_mesa_glsl_release_functions(void);
extern void
reparent_ir(exec_list *list, void *mem_ctx);
struct glsl_symbol_table;
extern void
import_prototypes(const exec_list *source, exec_list *dest,
struct glsl_symbol_table *symbols, void *mem_ctx);
extern bool
ir_has_call(ir_instruction *ir);
extern void
do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
bool is_fragment_shader);
extern char *
prototype_string(const glsl_type *return_type, const char *name,
exec_list *parameters);
#endif /* IR_H */