blob: ef0fc458480613b2004d0c6c5d4a5cde462b0430 [file] [log] [blame]
//===-- R600KernelParameters.cpp - Lower kernel function arguments --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers kernel function arguments to loads from the vertex buffer.
//
// Kernel arguemnts are stored in the vertex buffer at an offset of 9 dwords,
// so arg0 needs to be loaded from VTX_BUFFER[9] and arg1 is loaded from
// VTX_BUFFER[10], etc.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDIL.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/TypeBuilder.h"
#include <map>
#include <set>
using namespace llvm;
namespace {
#define CONSTANT_CACHE_SIZE_DW 127
class R600KernelParameters : public FunctionPass {
const TargetData *TD;
LLVMContext* Context;
Module *Mod;
struct Param {
Param() : Val(NULL), PtrVal(NULL), OffsetInDW(0), SizeInDW(0),
IsIndirect(true), SpecialID(0) {}
Value* Val;
Value* PtrVal;
int OffsetInDW;
int SizeInDW;
bool IsIndirect;
std::string SpecialType;
int SpecialID;
int End() { return OffsetInDW + SizeInDW; }
// The first 9 dwords are reserved for the grid sizes.
int getRatOffset() { return 9 + OffsetInDW; }
};
std::vector<Param> Params;
bool IsOpenCLKernel(const Function *Fun);
int getLastSpecialID(const std::string& TypeName);
int getListSize();
void AddParam(Argument *Arg);
int CalculateArgumentSize(Argument *Arg);
void RunAna(Function *Fun);
void Replace(Function *Fun);
bool IsIndirect(Value *Val, std::set<Value*> &Visited);
void Propagate(Function* Fun);
void Propagate(Value *V, const Twine &Name, bool IsIndirect = true);
Value* ConstantRead(Function *Fun, Param &P);
Value* handleSpecial(Function *Fun, Param &P);
bool IsSpecialType(Type *T);
std::string getSpecialTypeName(Type *T);
public:
static char ID;
R600KernelParameters() : FunctionPass(ID) {};
R600KernelParameters(const TargetData* TD) : FunctionPass(ID), TD(TD) {}
bool runOnFunction (Function &F);
void getAnalysisUsage(AnalysisUsage &AU) const;
const char *getPassName() const;
bool doInitialization(Module &M);
bool doFinalization(Module &M);
};
char R600KernelParameters::ID = 0;
static RegisterPass<R600KernelParameters> X("kerparam",
"OpenCL Kernel Parameter conversion", false, false);
bool R600KernelParameters::IsOpenCLKernel(const Function* Fun) {
Module *Mod = const_cast<Function*>(Fun)->getParent();
NamedMDNode * MD = Mod->getOrInsertNamedMetadata("opencl.kernels");
if (!MD || !MD->getNumOperands()) {
return false;
}
for (int i = 0; i < int(MD->getNumOperands()); i++) {
if (!MD->getOperand(i) || !MD->getOperand(i)->getOperand(0)) {
continue;
}
assert(MD->getOperand(i)->getNumOperands() == 1);
if (MD->getOperand(i)->getOperand(0)->getName() == Fun->getName()) {
return true;
}
}
return false;
}
int R600KernelParameters::getLastSpecialID(const std::string &TypeName) {
int LastID = -1;
for (std::vector<Param>::iterator i = Params.begin(); i != Params.end(); i++) {
if (i->SpecialType == TypeName) {
LastID = i->SpecialID;
}
}
return LastID;
}
int R600KernelParameters::getListSize() {
if (Params.size() == 0) {
return 0;
}
return Params.back().End();
}
bool R600KernelParameters::IsIndirect(Value *Val, std::set<Value*> &Visited) {
//XXX Direct parameters are not supported yet, so return true here.
return true;
#if 0
if (isa<LoadInst>(Val)) {
return false;
}
if (isa<IntegerType>(Val->getType())) {
assert(0 && "Internal error");
return false;
}
if (Visited.count(Val)) {
return false;
}
Visited.insert(Val);
if (isa<getElementPtrInst>(Val)) {
getElementPtrInst* GEP = dyn_cast<getElementPtrInst>(Val);
getElementPtrInst::op_iterator I = GEP->op_begin();
for (++I; I != GEP->op_end(); ++I) {
if (!isa<Constant>(*I)) {
return true;
}
}
}
for (Value::use_iterator I = Val->use_begin(); i != Val->use_end(); ++I) {
Value* V2 = dyn_cast<Value>(*I);
if (V2) {
if (IsIndirect(V2, Visited)) {
return true;
}
}
}
return false;
#endif
}
void R600KernelParameters::AddParam(Argument *Arg) {
Param P;
P.Val = dyn_cast<Value>(Arg);
P.OffsetInDW = getListSize();
P.SizeInDW = CalculateArgumentSize(Arg);
if (isa<PointerType>(Arg->getType()) && Arg->hasByValAttr()) {
std::set<Value*> Visited;
P.IsIndirect = IsIndirect(P.Val, Visited);
}
Params.push_back(P);
}
int R600KernelParameters::CalculateArgumentSize(Argument *Arg) {
Type* T = Arg->getType();
if (Arg->hasByValAttr() && dyn_cast<PointerType>(T)) {
T = dyn_cast<PointerType>(T)->getElementType();
}
int StoreSizeInDW = (TD->getTypeStoreSize(T) + 3)/4;
assert(StoreSizeInDW);
return StoreSizeInDW;
}
void R600KernelParameters::RunAna(Function* Fun) {
assert(IsOpenCLKernel(Fun));
for (Function::arg_iterator I = Fun->arg_begin(); I != Fun->arg_end(); ++I) {
AddParam(I);
}
}
void R600KernelParameters::Replace(Function* Fun) {
for (std::vector<Param>::iterator I = Params.begin(); I != Params.end(); ++I) {
Value *NewVal;
if (IsSpecialType(I->Val->getType())) {
NewVal = handleSpecial(Fun, *I);
} else {
NewVal = ConstantRead(Fun, *I);
}
if (NewVal) {
I->Val->replaceAllUsesWith(NewVal);
}
}
}
void R600KernelParameters::Propagate(Function* Fun) {
for (std::vector<Param>::iterator I = Params.begin(); I != Params.end(); ++I) {
if (I->PtrVal) {
Propagate(I->PtrVal, I->Val->getName(), I->IsIndirect);
}
}
}
void R600KernelParameters::Propagate(Value* V, const Twine& Name, bool IsIndirect) {
LoadInst* Load = dyn_cast<LoadInst>(V);
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
unsigned Addrspace;
if (IsIndirect) {
Addrspace = AMDGPUAS::PARAM_I_ADDRESS;
} else {
Addrspace = AMDGPUAS::PARAM_D_ADDRESS;
}
if (GEP && GEP->getType()->getAddressSpace() != Addrspace) {
Value *Op = GEP->getPointerOperand();
if (dyn_cast<PointerType>(Op->getType())->getAddressSpace() != Addrspace) {
Op = new BitCastInst(Op, PointerType::get(dyn_cast<PointerType>(
Op->getType())->getElementType(), Addrspace),
Name, dyn_cast<Instruction>(V));
}
std::vector<Value*> Params(GEP->idx_begin(), GEP->idx_end());
GetElementPtrInst* GEP2 = GetElementPtrInst::Create(Op, Params, Name,
dyn_cast<Instruction>(V));
GEP2->setIsInBounds(GEP->isInBounds());
V = dyn_cast<Value>(GEP2);
GEP->replaceAllUsesWith(GEP2);
GEP->eraseFromParent();
Load = NULL;
}
if (Load) {
///normally at this point we have the right address space
if (Load->getPointerAddressSpace() != Addrspace) {
Value *OrigPtr = Load->getPointerOperand();
PointerType *OrigPtrType = dyn_cast<PointerType>(OrigPtr->getType());
Type* NewPtrType = PointerType::get(OrigPtrType->getElementType(),
Addrspace);
Value* NewPtr = OrigPtr;
if (OrigPtr->getType() != NewPtrType) {
NewPtr = new BitCastInst(OrigPtr, NewPtrType, "prop_cast", Load);
}
Value* new_Load = new LoadInst(NewPtr, Name, Load);
Load->replaceAllUsesWith(new_Load);
Load->eraseFromParent();
}
return;
}
std::vector<User*> Users(V->use_begin(), V->use_end());
for (int i = 0; i < int(Users.size()); i++) {
Value* V2 = dyn_cast<Value>(Users[i]);
if (V2) {
Propagate(V2, Name, IsIndirect);
}
}
}
Value* R600KernelParameters::ConstantRead(Function *Fun, Param &P) {
assert(Fun->front().begin() != Fun->front().end());
Instruction *FirstInst = Fun->front().begin();
IRBuilder <> Builder (FirstInst);
/* First 3 dwords are reserved for the dimmension info */
if (!P.Val->hasNUsesOrMore(1)) {
return NULL;
}
unsigned Addrspace;
if (P.IsIndirect) {
Addrspace = AMDGPUAS::PARAM_I_ADDRESS;
} else {
Addrspace = AMDGPUAS::PARAM_D_ADDRESS;
}
Argument *Arg = dyn_cast<Argument>(P.Val);
Type * ArgType = P.Val->getType();
PointerType * ArgPtrType = dyn_cast<PointerType>(P.Val->getType());
if (ArgPtrType && Arg->hasByValAttr()) {
Value* ParamAddrSpacePtr = ConstantPointerNull::get(
PointerType::get(Type::getInt32Ty(*Context),
Addrspace));
Value* ParamPtr = GetElementPtrInst::Create(ParamAddrSpacePtr,
ConstantInt::get(Type::getInt32Ty(*Context),
P.getRatOffset()), Arg->getName(),
FirstInst);
ParamPtr = new BitCastInst(ParamPtr,
PointerType::get(ArgPtrType->getElementType(),
Addrspace),
Arg->getName(), FirstInst);
P.PtrVal = ParamPtr;
return ParamPtr;
} else {
Value *ParamAddrSpacePtr = ConstantPointerNull::get(PointerType::get(
ArgType, Addrspace));
Value *ParamPtr = Builder.CreateGEP(ParamAddrSpacePtr,
ConstantInt::get(Type::getInt32Ty(*Context), P.getRatOffset()),
Arg->getName());
Value *Param_Value = Builder.CreateLoad(ParamPtr, Arg->getName());
return Param_Value;
}
}
Value* R600KernelParameters::handleSpecial(Function* Fun, Param& P) {
std::string Name = getSpecialTypeName(P.Val->getType());
int ID;
assert(!Name.empty());
if (Name == "image2d_t" || Name == "image3d_t") {
int LastID = std::max(getLastSpecialID("image2d_t"),
getLastSpecialID("image3d_t"));
if (LastID == -1) {
ID = 2; ///ID0 and ID1 are used internally by the driver
} else {
ID = LastID + 1;
}
} else if (Name == "sampler_t") {
int LastID = getLastSpecialID("sampler_t");
if (LastID == -1) {
ID = 0;
} else {
ID = LastID + 1;
}
} else {
///TODO: give some error message
return NULL;
}
P.SpecialType = Name;
P.SpecialID = ID;
Instruction *FirstInst = Fun->front().begin();
return new IntToPtrInst(ConstantInt::get(Type::getInt32Ty(*Context),
P.SpecialID), P.Val->getType(),
"resourceID", FirstInst);
}
bool R600KernelParameters::IsSpecialType(Type* T) {
return !getSpecialTypeName(T).empty();
}
std::string R600KernelParameters::getSpecialTypeName(Type* T) {
PointerType *PT = dyn_cast<PointerType>(T);
StructType *ST = NULL;
if (PT) {
ST = dyn_cast<StructType>(PT->getElementType());
}
if (ST) {
std::string Prefix = "struct.opencl_builtin_type_";
std::string Name = ST->getName().str();
if (Name.substr(0, Prefix.length()) == Prefix) {
return Name.substr(Prefix.length(), Name.length());
}
}
return "";
}
bool R600KernelParameters::runOnFunction (Function &F) {
if (!IsOpenCLKernel(&F)) {
return false;
}
RunAna(&F);
Replace(&F);
Propagate(&F);
return false;
}
void R600KernelParameters::getAnalysisUsage(AnalysisUsage &AU) const {
FunctionPass::getAnalysisUsage(AU);
AU.setPreservesAll();
}
const char *R600KernelParameters::getPassName() const {
return "OpenCL Kernel parameter conversion to memory";
}
bool R600KernelParameters::doInitialization(Module &M) {
Context = &M.getContext();
Mod = &M;
return false;
}
bool R600KernelParameters::doFinalization(Module &M) {
return false;
}
} // End anonymous namespace
FunctionPass* llvm::createR600KernelParametersPass(const TargetData* TD) {
return new R600KernelParameters(TD);
}