blob: bb5b43f2f9523c90640437765c2b82b134a54ff1 [file] [log] [blame]
/*
* Copyright (C) 2009 Nicolai Haehnle.
* Copyright 2011 Tom Stellard <tstellar@gmail.com>
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "radeon_program_pair.h"
#include <stdio.h>
#include "main/glheader.h"
#include "program/register_allocate.h"
#include "ralloc.h"
#include "r300_fragprog_swizzle.h"
#include "radeon_compiler.h"
#include "radeon_compiler_util.h"
#include "radeon_dataflow.h"
#include "radeon_list.h"
#include "radeon_variable.h"
#define VERBOSE 0
#define DBG(...) do { if (VERBOSE) fprintf(stderr, __VA_ARGS__); } while(0)
struct register_info {
struct live_intervals Live[4];
unsigned int Used:1;
unsigned int Allocated:1;
unsigned int File:3;
unsigned int Index:RC_REGISTER_INDEX_BITS;
unsigned int Writemask;
};
struct regalloc_state {
struct radeon_compiler * C;
struct register_info * Input;
unsigned int NumInputs;
struct register_info * Temporary;
unsigned int NumTemporaries;
unsigned int Simple;
int LoopEnd;
};
enum rc_reg_class {
RC_REG_CLASS_SINGLE,
RC_REG_CLASS_DOUBLE,
RC_REG_CLASS_TRIPLE,
RC_REG_CLASS_ALPHA,
RC_REG_CLASS_SINGLE_PLUS_ALPHA,
RC_REG_CLASS_DOUBLE_PLUS_ALPHA,
RC_REG_CLASS_TRIPLE_PLUS_ALPHA,
RC_REG_CLASS_X,
RC_REG_CLASS_Y,
RC_REG_CLASS_Z,
RC_REG_CLASS_XY,
RC_REG_CLASS_YZ,
RC_REG_CLASS_XZ,
RC_REG_CLASS_XW,
RC_REG_CLASS_YW,
RC_REG_CLASS_ZW,
RC_REG_CLASS_XYW,
RC_REG_CLASS_YZW,
RC_REG_CLASS_XZW,
RC_REG_CLASS_COUNT
};
struct rc_class {
enum rc_reg_class Class;
unsigned int WritemaskCount;
/** This is 1 if this class is being used by the register allocator
* and 0 otherwise */
unsigned int Used;
/** This is the ID number assigned to this class by ra. */
unsigned int Id;
/** List of writemasks that belong to this class */
unsigned int Writemasks[3];
};
static void print_live_intervals(struct live_intervals * src)
{
if (!src || !src->Used) {
DBG("(null)");
return;
}
DBG("(%i,%i)", src->Start, src->End);
}
static int overlap_live_intervals(struct live_intervals * a, struct live_intervals * b)
{
if (VERBOSE) {
DBG("overlap_live_intervals: ");
print_live_intervals(a);
DBG(" to ");
print_live_intervals(b);
DBG("\n");
}
if (!a->Used || !b->Used) {
DBG(" unused interval\n");
return 0;
}
if (a->Start > b->Start) {
if (a->Start < b->End) {
DBG(" overlap\n");
return 1;
}
} else if (b->Start > a->Start) {
if (b->Start < a->End) {
DBG(" overlap\n");
return 1;
}
} else { /* a->Start == b->Start */
if (a->Start != a->End && b->Start != b->End) {
DBG(" overlap\n");
return 1;
}
}
DBG(" no overlap\n");
return 0;
}
static void scan_read_callback(void * data, struct rc_instruction * inst,
rc_register_file file, unsigned int index, unsigned int mask)
{
struct regalloc_state * s = data;
struct register_info * reg;
unsigned int i;
if (file != RC_FILE_INPUT)
return;
s->Input[index].Used = 1;
reg = &s->Input[index];
for (i = 0; i < 4; i++) {
if (!((mask >> i) & 0x1)) {
continue;
}
reg->Live[i].Used = 1;
reg->Live[i].Start = 0;
reg->Live[i].End =
s->LoopEnd > inst->IP ? s->LoopEnd : inst->IP;
}
}
static void remap_register(void * data, struct rc_instruction * inst,
rc_register_file * file, unsigned int * index)
{
struct regalloc_state * s = data;
const struct register_info * reg;
if (*file == RC_FILE_TEMPORARY && s->Simple)
reg = &s->Temporary[*index];
else if (*file == RC_FILE_INPUT)
reg = &s->Input[*index];
else
return;
if (reg->Allocated) {
*index = reg->Index;
}
}
static void alloc_input_simple(void * data, unsigned int input,
unsigned int hwreg)
{
struct regalloc_state * s = data;
if (input >= s->NumInputs)
return;
s->Input[input].Allocated = 1;
s->Input[input].File = RC_FILE_TEMPORARY;
s->Input[input].Index = hwreg;
}
/* This functions offsets the temporary register indices by the number
* of input registers, because input registers are actually temporaries and
* should not occupy the same space.
*
* This pass is supposed to be used to maintain correct allocation of inputs
* if the standard register allocation is disabled. */
static void do_regalloc_inputs_only(struct regalloc_state * s)
{
for (unsigned i = 0; i < s->NumTemporaries; i++) {
s->Temporary[i].Allocated = 1;
s->Temporary[i].File = RC_FILE_TEMPORARY;
s->Temporary[i].Index = i + s->NumInputs;
}
}
static unsigned int is_derivative(rc_opcode op)
{
return (op == RC_OPCODE_DDX || op == RC_OPCODE_DDY);
}
static int find_class(
struct rc_class * classes,
unsigned int writemask,
unsigned int max_writemask_count)
{
unsigned int i;
for (i = 0; i < RC_REG_CLASS_COUNT; i++) {
unsigned int j;
if (classes[i].WritemaskCount > max_writemask_count) {
continue;
}
for (j = 0; j < 3; j++) {
if (classes[i].Writemasks[j] == writemask) {
return i;
}
}
}
return -1;
}
struct variable_get_class_cb_data {
unsigned int * can_change_writemask;
unsigned int conversion_swizzle;
};
static void variable_get_class_read_cb(
void * userdata,
struct rc_instruction * inst,
struct rc_pair_instruction_arg * arg,
struct rc_pair_instruction_source * src)
{
struct variable_get_class_cb_data * d = userdata;
unsigned int new_swizzle = rc_adjust_channels(arg->Swizzle,
d->conversion_swizzle);
if (!r300_swizzle_is_native_basic(new_swizzle)) {
*d->can_change_writemask = 0;
}
}
static enum rc_reg_class variable_get_class(
struct rc_variable * variable,
struct rc_class * classes)
{
unsigned int i;
unsigned int can_change_writemask= 1;
unsigned int writemask = rc_variable_writemask_sum(variable);
struct rc_list * readers = rc_variable_readers_union(variable);
int class_index;
if (!variable->C->is_r500) {
struct rc_class c;
struct rc_variable * var_ptr;
/* The assumption here is that if an instruction has type
* RC_INSTRUCTION_NORMAL then it is a TEX instruction.
* r300 and r400 can't swizzle the result of a TEX lookup. */
for (var_ptr = variable; var_ptr; var_ptr = var_ptr->Friend) {
if (var_ptr->Inst->Type == RC_INSTRUCTION_NORMAL) {
writemask = RC_MASK_XYZW;
}
}
/* Check if it is possible to do swizzle packing for r300/r400
* without creating non-native swizzles. */
class_index = find_class(classes, writemask, 3);
if (class_index < 0) {
goto error;
}
c = classes[class_index];
if (c.WritemaskCount == 1) {
goto done;
}
for (i = 0; i < c.WritemaskCount; i++) {
struct rc_variable * var_ptr;
for (var_ptr = variable; var_ptr;
var_ptr = var_ptr->Friend) {
int j;
unsigned int conversion_swizzle =
rc_make_conversion_swizzle(
writemask, c.Writemasks[i]);
struct variable_get_class_cb_data d;
d.can_change_writemask = &can_change_writemask;
d.conversion_swizzle = conversion_swizzle;
/* If we get this far var_ptr->Inst has to
* be a pair instruction. If variable or any
* of its friends are normal instructions,
* then the writemask will be set to RC_MASK_XYZW
* and the function will return before it gets
* here. */
rc_pair_for_all_reads_arg(var_ptr->Inst,
variable_get_class_read_cb, &d);
for (j = 0; j < var_ptr->ReaderCount; j++) {
unsigned int old_swizzle;
unsigned int new_swizzle;
struct rc_reader r = var_ptr->Readers[j];
if (r.Inst->Type ==
RC_INSTRUCTION_PAIR ) {
old_swizzle = r.U.P.Arg->Swizzle;
} else {
old_swizzle = r.U.I.Src->Swizzle;
}
new_swizzle = rc_adjust_channels(
old_swizzle, conversion_swizzle);
if (!r300_swizzle_is_native_basic(
new_swizzle)) {
can_change_writemask = 0;
break;
}
}
if (!can_change_writemask) {
break;
}
}
if (!can_change_writemask) {
break;
}
}
}
if (variable->Inst->Type == RC_INSTRUCTION_PAIR) {
/* DDX/DDY seem to always fail when their writemasks are
* changed.*/
if (is_derivative(variable->Inst->U.P.RGB.Opcode)
|| is_derivative(variable->Inst->U.P.Alpha.Opcode)) {
can_change_writemask = 0;
}
}
for ( ; readers; readers = readers->Next) {
struct rc_reader * r = readers->Item;
if (r->Inst->Type == RC_INSTRUCTION_PAIR) {
if (r->U.P.Arg->Source == RC_PAIR_PRESUB_SRC) {
can_change_writemask = 0;
break;
}
/* DDX/DDY also fail when their swizzles are changed. */
if (is_derivative(r->Inst->U.P.RGB.Opcode)
|| is_derivative(r->Inst->U.P.Alpha.Opcode)) {
can_change_writemask = 0;
break;
}
}
}
class_index = find_class(classes, writemask,
can_change_writemask ? 3 : 1);
done:
if (class_index > -1) {
return classes[class_index].Class;
} else {
error:
rc_error(variable->C,
"Could not find class for index=%u mask=%u\n",
variable->Dst.Index, writemask);
return 0;
}
}
static unsigned int overlap_live_intervals_array(
struct live_intervals * a,
struct live_intervals * b)
{
unsigned int a_chan, b_chan;
for (a_chan = 0; a_chan < 4; a_chan++) {
for (b_chan = 0; b_chan < 4; b_chan++) {
if (overlap_live_intervals(&a[a_chan], &b[b_chan])) {
return 1;
}
}
}
return 0;
}
static unsigned int reg_get_index(int reg)
{
return reg / RC_MASK_XYZW;
}
static unsigned int reg_get_writemask(int reg)
{
return (reg % RC_MASK_XYZW) + 1;
}
static int get_reg_id(unsigned int index, unsigned int writemask)
{
assert(writemask);
if (writemask == 0) {
return 0;
}
return (index * RC_MASK_XYZW) + (writemask - 1);
}
#if VERBOSE
static void print_reg(int reg)
{
unsigned int index = reg_get_index(reg);
unsigned int mask = reg_get_writemask(reg);
fprintf(stderr, "Temp[%u].%c%c%c%c", index,
mask & RC_MASK_X ? 'x' : '_',
mask & RC_MASK_Y ? 'y' : '_',
mask & RC_MASK_Z ? 'z' : '_',
mask & RC_MASK_W ? 'w' : '_');
}
#endif
static void add_register_conflicts(
struct ra_regs * regs,
unsigned int max_temp_regs)
{
unsigned int index, a_mask, b_mask;
for (index = 0; index < max_temp_regs; index++) {
for(a_mask = 1; a_mask <= RC_MASK_XYZW; a_mask++) {
for (b_mask = a_mask + 1; b_mask <= RC_MASK_XYZW;
b_mask++) {
if (a_mask & b_mask) {
ra_add_reg_conflict(regs,
get_reg_id(index, a_mask),
get_reg_id(index, b_mask));
}
}
}
}
}
static void do_advanced_regalloc(struct regalloc_state * s)
{
struct rc_class rc_class_list [] = {
{RC_REG_CLASS_SINGLE, 3, 0, 0,
{RC_MASK_X,
RC_MASK_Y,
RC_MASK_Z}},
{RC_REG_CLASS_DOUBLE, 3, 0, 0,
{RC_MASK_X | RC_MASK_Y,
RC_MASK_X | RC_MASK_Z,
RC_MASK_Y | RC_MASK_Z}},
{RC_REG_CLASS_TRIPLE, 1, 0, 0,
{RC_MASK_X | RC_MASK_Y | RC_MASK_Z,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_ALPHA, 1, 0, 0,
{RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_SINGLE_PLUS_ALPHA, 3, 0, 0,
{RC_MASK_X | RC_MASK_W,
RC_MASK_Y | RC_MASK_W,
RC_MASK_Z | RC_MASK_W}},
{RC_REG_CLASS_DOUBLE_PLUS_ALPHA, 3, 0, 0,
{RC_MASK_X | RC_MASK_Y | RC_MASK_W,
RC_MASK_X | RC_MASK_Z | RC_MASK_W,
RC_MASK_Y | RC_MASK_Z | RC_MASK_W}},
{RC_REG_CLASS_TRIPLE_PLUS_ALPHA, 1, 0, 0,
{RC_MASK_X | RC_MASK_Y | RC_MASK_Z | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_X, 1, 0, 0,
{RC_MASK_X,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_Y, 1, 0, 0,
{RC_MASK_Y,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_Z, 1, 0, 0,
{RC_MASK_Z,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_XY, 1, 0, 0,
{RC_MASK_X | RC_MASK_Y,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_YZ, 1, 0, 0,
{RC_MASK_Y | RC_MASK_Z,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_XZ, 1, 0, 0,
{RC_MASK_X | RC_MASK_Z,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_XW, 1, 0, 0,
{RC_MASK_X | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_YW, 1, 0, 0,
{RC_MASK_Y | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_ZW, 1, 0, 0,
{RC_MASK_Z | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_XYW, 1, 0, 0,
{RC_MASK_X | RC_MASK_Y | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_YZW, 1, 0, 0,
{RC_MASK_Y | RC_MASK_Z | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_XZW, 1, 0, 0,
{RC_MASK_X | RC_MASK_Z | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}}
};
unsigned int i, j, index, input_node, node_count, node_index;
unsigned int * node_classes;
unsigned int * input_classes;
struct rc_instruction * inst;
struct rc_list * var_ptr;
struct rc_list * variables;
struct ra_regs * regs;
struct ra_graph * graph;
/* Allocate the main ra data structure */
regs = ra_alloc_reg_set(NULL, s->C->max_temp_regs * RC_MASK_XYZW);
/* Get list of program variables */
variables = rc_get_variables(s->C);
node_count = rc_list_count(variables);
node_classes = memory_pool_malloc(&s->C->Pool,
node_count * sizeof(unsigned int));
input_classes = memory_pool_malloc(&s->C->Pool,
s->NumInputs * sizeof(unsigned int));
for (var_ptr = variables, node_index = 0; var_ptr;
var_ptr = var_ptr->Next, node_index++) {
unsigned int class_index;
/* Compute the live intervals */
rc_variable_compute_live_intervals(var_ptr->Item);
class_index = variable_get_class(var_ptr->Item, rc_class_list);
/* If we haven't used this register class yet, mark it
* as used and allocate space for it. */
if (!rc_class_list[class_index].Used) {
rc_class_list[class_index].Used = 1;
rc_class_list[class_index].Id = ra_alloc_reg_class(regs);
}
node_classes[node_index] = rc_class_list[class_index].Id;
}
/* Assign registers to the classes */
for (i = 0; i < RC_REG_CLASS_COUNT; i++) {
struct rc_class class = rc_class_list[i];
if (!class.Used) {
continue;
}
for (index = 0; index < s->C->max_temp_regs; index++) {
for (j = 0; j < class.WritemaskCount; j++) {
int reg_id = get_reg_id(index,
class.Writemasks[j]);
ra_class_add_reg(regs, class.Id, reg_id);
}
}
}
/* Add register conflicts */
add_register_conflicts(regs, s->C->max_temp_regs);
/* Calculate live intervals for input registers */
for (inst = s->C->Program.Instructions.Next;
inst != &s->C->Program.Instructions;
inst = inst->Next) {
rc_opcode op = rc_get_flow_control_inst(inst);
if (op == RC_OPCODE_BGNLOOP) {
struct rc_instruction * endloop =
rc_match_bgnloop(inst);
if (endloop->IP > s->LoopEnd) {
s->LoopEnd = endloop->IP;
}
}
rc_for_all_reads_mask(inst, scan_read_callback, s);
}
/* Create classes for input registers */
for (i = 0; i < s->NumInputs; i++) {
unsigned int chan, class_id, writemask = 0;
for (chan = 0; chan < 4; chan++) {
if (s->Input[i].Live[chan].Used) {
writemask |= (1 << chan);
}
}
s->Input[i].Writemask = writemask;
if (!writemask) {
continue;
}
class_id = ra_alloc_reg_class(regs);
input_classes[i] = class_id;
ra_class_add_reg(regs, class_id,
get_reg_id(s->Input[i].Index, writemask));
}
ra_set_finalize(regs);
graph = ra_alloc_interference_graph(regs, node_count + s->NumInputs);
/* Build the interference graph */
for (var_ptr = variables, node_index = 0; var_ptr;
var_ptr = var_ptr->Next,node_index++) {
struct rc_list * a, * b;
unsigned int b_index;
ra_set_node_class(graph, node_index, node_classes[node_index]);
for (a = var_ptr, b = var_ptr->Next, b_index = node_index + 1;
b; b = b->Next, b_index++) {
struct rc_variable * var_a = a->Item;
while (var_a) {
struct rc_variable * var_b = b->Item;
while (var_b) {
if (overlap_live_intervals_array(var_a->Live, var_b->Live)) {
ra_add_node_interference(graph,
node_index, b_index);
}
var_b = var_b->Friend;
}
var_a = var_a->Friend;
}
}
}
/* Add input registers to the interference graph */
for (i = 0, input_node = 0; i< s->NumInputs; i++) {
if (!s->Input[i].Writemask) {
continue;
}
ra_set_node_class(graph, node_count + input_node,
input_classes[i]);
for (var_ptr = variables, node_index = 0;
var_ptr; var_ptr = var_ptr->Next, node_index++) {
struct rc_variable * var = var_ptr->Item;
if (overlap_live_intervals_array(s->Input[i].Live,
var->Live)) {
ra_add_node_interference(graph, node_index,
node_count + input_node);
}
}
/* Manually allocate a register for this input */
ra_set_node_reg(graph, node_count + input_node, get_reg_id(
s->Input[i].Index, s->Input[i].Writemask));
input_node++;
}
if (!ra_allocate_no_spills(graph)) {
rc_error(s->C, "Ran out of hardware temporaries\n");
return;
}
/* Rewrite the registers */
for (var_ptr = variables, node_index = 0; var_ptr;
var_ptr = var_ptr->Next, node_index++) {
int reg = ra_get_node_reg(graph, node_index);
unsigned int writemask = reg_get_writemask(reg);
unsigned int index = reg_get_index(reg);
struct rc_variable * var = var_ptr->Item;
if (!s->C->is_r500 && var->Inst->Type == RC_INSTRUCTION_NORMAL) {
writemask = rc_variable_writemask_sum(var);
}
if (var->Dst.File == RC_FILE_INPUT) {
continue;
}
rc_variable_change_dst(var, index, writemask);
}
ralloc_free(graph);
ralloc_free(regs);
}
/**
* @param user This parameter should be a pointer to an integer value. If this
* integer value is zero, then a simple register allocator will be used that
* only allocates space for input registers (\sa do_regalloc_inputs_only). If
* user is non-zero, then the regular register allocator will be used
* (\sa do_regalloc).
*/
void rc_pair_regalloc(struct radeon_compiler *cc, void *user)
{
struct r300_fragment_program_compiler *c =
(struct r300_fragment_program_compiler*)cc;
struct regalloc_state s;
int * do_full_regalloc = (int*)user;
memset(&s, 0, sizeof(s));
s.C = cc;
s.NumInputs = rc_get_max_index(cc, RC_FILE_INPUT) + 1;
s.Input = memory_pool_malloc(&cc->Pool,
s.NumInputs * sizeof(struct register_info));
memset(s.Input, 0, s.NumInputs * sizeof(struct register_info));
s.NumTemporaries = rc_get_max_index(cc, RC_FILE_TEMPORARY) + 1;
s.Temporary = memory_pool_malloc(&cc->Pool,
s.NumTemporaries * sizeof(struct register_info));
memset(s.Temporary, 0, s.NumTemporaries * sizeof(struct register_info));
rc_recompute_ips(s.C);
c->AllocateHwInputs(c, &alloc_input_simple, &s);
if (*do_full_regalloc) {
do_advanced_regalloc(&s);
} else {
s.Simple = 1;
do_regalloc_inputs_only(&s);
}
/* Rewrite inputs and if we are doing the simple allocation, rewrite
* temporaries too. */
for (struct rc_instruction *inst = s.C->Program.Instructions.Next;
inst != &s.C->Program.Instructions;
inst = inst->Next) {
rc_remap_registers(inst, &remap_register, &s);
}
}