blob: 2bf1211bcd7073b028bff405a336d7cef8baee19 [file] [log] [blame]
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helpers for emiting intrinsic calls.
*
* LLVM vanilla IR doesn't represent all basic arithmetic operations we care
* about, and it is often necessary to resort target-specific intrinsics for
* performance, convenience.
*
* Ideally we would like to stay away from target specific intrinsics and
* move all the instruction selection logic into upstream LLVM where it belongs.
*
* These functions are also used for calling C functions provided by us from
* generated LLVM code.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_debug.h"
#include "lp_bld_const.h"
#include "lp_bld_intr.h"
#include "lp_bld_type.h"
#include "lp_bld_pack.h"
LLVMValueRef
lp_declare_intrinsic(LLVMModuleRef module,
const char *name,
LLVMTypeRef ret_type,
LLVMTypeRef *arg_types,
unsigned num_args)
{
LLVMTypeRef function_type;
LLVMValueRef function;
assert(!LLVMGetNamedFunction(module, name));
function_type = LLVMFunctionType(ret_type, arg_types, num_args, 0);
function = LLVMAddFunction(module, name, function_type);
LLVMSetFunctionCallConv(function, LLVMCCallConv);
LLVMSetLinkage(function, LLVMExternalLinkage);
assert(LLVMIsDeclaration(function));
return function;
}
LLVMValueRef
lp_build_intrinsic(LLVMBuilderRef builder,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef *args,
unsigned num_args)
{
LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder)));
LLVMValueRef function;
function = LLVMGetNamedFunction(module, name);
if(!function) {
LLVMTypeRef arg_types[LP_MAX_FUNC_ARGS];
unsigned i;
assert(num_args <= LP_MAX_FUNC_ARGS);
for(i = 0; i < num_args; ++i) {
assert(args[i]);
arg_types[i] = LLVMTypeOf(args[i]);
}
function = lp_declare_intrinsic(module, name, ret_type, arg_types, num_args);
}
return LLVMBuildCall(builder, function, args, num_args, "");
}
LLVMValueRef
lp_build_intrinsic_unary(LLVMBuilderRef builder,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef a)
{
return lp_build_intrinsic(builder, name, ret_type, &a, 1);
}
LLVMValueRef
lp_build_intrinsic_binary(LLVMBuilderRef builder,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMValueRef args[2];
args[0] = a;
args[1] = b;
return lp_build_intrinsic(builder, name, ret_type, args, 2);
}
/**
* Call intrinsic with arguments adapted to intrinsic vector length.
*
* Split vectors which are too large for the hw, or expand them if they
* are too small, so a caller calling a function which might use intrinsics
* doesn't need to do splitting/expansion on its own.
* This only supports intrinsics where src and dst types match.
*/
LLVMValueRef
lp_build_intrinsic_binary_anylength(struct gallivm_state *gallivm,
const char *name,
struct lp_type src_type,
unsigned intr_size,
LLVMValueRef a,
LLVMValueRef b)
{
unsigned i;
struct lp_type intrin_type = src_type;
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef i32undef = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
LLVMValueRef anative, bnative;
unsigned intrin_length = intr_size / src_type.width;
intrin_type.length = intrin_length;
if (intrin_length > src_type.length) {
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
LLVMValueRef constvec, tmp;
for (i = 0; i < src_type.length; i++) {
elems[i] = lp_build_const_int32(gallivm, i);
}
for (; i < intrin_length; i++) {
elems[i] = i32undef;
}
if (src_type.length == 1) {
LLVMTypeRef elem_type = lp_build_elem_type(gallivm, intrin_type);
a = LLVMBuildBitCast(builder, a, LLVMVectorType(elem_type, 1), "");
b = LLVMBuildBitCast(builder, b, LLVMVectorType(elem_type, 1), "");
}
constvec = LLVMConstVector(elems, intrin_length);
anative = LLVMBuildShuffleVector(builder, a, a, constvec, "");
bnative = LLVMBuildShuffleVector(builder, b, b, constvec, "");
tmp = lp_build_intrinsic_binary(builder, name,
lp_build_vec_type(gallivm, intrin_type),
anative, bnative);
if (src_type.length > 1) {
constvec = LLVMConstVector(elems, src_type.length);
return LLVMBuildShuffleVector(builder, tmp, tmp, constvec, "");
}
else {
return LLVMBuildExtractElement(builder, tmp, elems[0], "");
}
}
else if (intrin_length < src_type.length) {
unsigned num_vec = src_type.length / intrin_length;
LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
/* don't support arbitrary size here as this is so yuck */
if (src_type.length % intrin_length) {
/* FIXME: This is something which should be supported
* but there doesn't seem to be any need for it currently
* so crash and burn.
*/
debug_printf("%s: should handle arbitrary vector size\n",
__FUNCTION__);
assert(0);
return NULL;
}
for (i = 0; i < num_vec; i++) {
anative = lp_build_extract_range(gallivm, a, i*intrin_length,
intrin_length);
bnative = lp_build_extract_range(gallivm, b, i*intrin_length,
intrin_length);
tmp[i] = lp_build_intrinsic_binary(builder, name,
lp_build_vec_type(gallivm, intrin_type),
anative, bnative);
}
return lp_build_concat(gallivm, tmp, intrin_type, num_vec);
}
else {
return lp_build_intrinsic_binary(builder, name,
lp_build_vec_type(gallivm, src_type),
a, b);
}
}
LLVMValueRef
lp_build_intrinsic_map(struct gallivm_state *gallivm,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef *args,
unsigned num_args)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMTypeRef ret_elem_type = LLVMGetElementType(ret_type);
unsigned n = LLVMGetVectorSize(ret_type);
unsigned i, j;
LLVMValueRef res;
assert(num_args <= LP_MAX_FUNC_ARGS);
res = LLVMGetUndef(ret_type);
for(i = 0; i < n; ++i) {
LLVMValueRef index = lp_build_const_int32(gallivm, i);
LLVMValueRef arg_elems[LP_MAX_FUNC_ARGS];
LLVMValueRef res_elem;
for(j = 0; j < num_args; ++j)
arg_elems[j] = LLVMBuildExtractElement(builder, args[j], index, "");
res_elem = lp_build_intrinsic(builder, name, ret_elem_type, arg_elems, num_args);
res = LLVMBuildInsertElement(builder, res, res_elem, index, "");
}
return res;
}
LLVMValueRef
lp_build_intrinsic_map_unary(struct gallivm_state *gallivm,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef a)
{
return lp_build_intrinsic_map(gallivm, name, ret_type, &a, 1);
}
LLVMValueRef
lp_build_intrinsic_map_binary(struct gallivm_state *gallivm,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMValueRef args[2];
args[0] = a;
args[1] = b;
return lp_build_intrinsic_map(gallivm, name, ret_type, args, 2);
}