blob: d6e7ad7e881f3aff1454f997c484ebfba02168df [file] [log] [blame]
/*
* Copyright (c) 2009-2010 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.math;
import com.jme3.export.*;
import java.io.IOException;
import java.util.logging.Logger;
/**
* <code>Vector4f</code> defines a Vector for a four float value tuple.
* <code>Vector4f</code> can represent any four dimensional value, such as a
* vertex, a normal, etc. Utility methods are also included to aid in
* mathematical calculations.
*
* @author Maarten Steur
*/
public final class Vector4f implements Savable, Cloneable, java.io.Serializable {
static final long serialVersionUID = 1;
private static final Logger logger = Logger.getLogger(Vector4f.class.getName());
public final static Vector4f ZERO = new Vector4f(0, 0, 0, 0);
public final static Vector4f NAN = new Vector4f(Float.NaN, Float.NaN, Float.NaN, Float.NaN);
public final static Vector4f UNIT_X = new Vector4f(1, 0, 0, 0);
public final static Vector4f UNIT_Y = new Vector4f(0, 1, 0, 0);
public final static Vector4f UNIT_Z = new Vector4f(0, 0, 1, 0);
public final static Vector4f UNIT_W = new Vector4f(0, 0, 0, 1);
public final static Vector4f UNIT_XYZW = new Vector4f(1, 1, 1, 1);
public final static Vector4f POSITIVE_INFINITY = new Vector4f(
Float.POSITIVE_INFINITY,
Float.POSITIVE_INFINITY,
Float.POSITIVE_INFINITY,
Float.POSITIVE_INFINITY);
public final static Vector4f NEGATIVE_INFINITY = new Vector4f(
Float.NEGATIVE_INFINITY,
Float.NEGATIVE_INFINITY,
Float.NEGATIVE_INFINITY,
Float.NEGATIVE_INFINITY);
/**
* the x value of the vector.
*/
public float x;
/**
* the y value of the vector.
*/
public float y;
/**
* the z value of the vector.
*/
public float z;
/**
* the w value of the vector.
*/
public float w;
/**
* Constructor instantiates a new <code>Vector3f</code> with default
* values of (0,0,0).
*
*/
public Vector4f() {
x = y = z = w = 0;
}
/**
* Constructor instantiates a new <code>Vector4f</code> with provides
* values.
*
* @param x
* the x value of the vector.
* @param y
* the y value of the vector.
* @param z
* the z value of the vector.
* @param w
* the w value of the vector.
*/
public Vector4f(float x, float y, float z, float w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
/**
* Constructor instantiates a new <code>Vector3f</code> that is a copy
* of the provided vector
* @param copy The Vector3f to copy
*/
public Vector4f(Vector4f copy) {
this.set(copy);
}
/**
* <code>set</code> sets the x,y,z,w values of the vector based on passed
* parameters.
*
* @param x
* the x value of the vector.
* @param y
* the y value of the vector.
* @param z
* the z value of the vector.
* @param w
* the w value of the vector.
* @return this vector
*/
public Vector4f set(float x, float y, float z, float w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
/**
* <code>set</code> sets the x,y,z values of the vector by copying the
* supplied vector.
*
* @param vect
* the vector to copy.
* @return this vector
*/
public Vector4f set(Vector4f vect) {
this.x = vect.x;
this.y = vect.y;
this.z = vect.z;
this.w = vect.w;
return this;
}
/**
*
* <code>add</code> adds a provided vector to this vector creating a
* resultant vector which is returned. If the provided vector is null, null
* is returned.
*
* @param vec
* the vector to add to this.
* @return the resultant vector.
*/
public Vector4f add(Vector4f vec) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
return new Vector4f(x + vec.x, y + vec.y, z + vec.z, w + vec.w);
}
/**
*
* <code>add</code> adds the values of a provided vector storing the
* values in the supplied vector.
*
* @param vec
* the vector to add to this
* @param result
* the vector to store the result in
* @return result returns the supplied result vector.
*/
public Vector4f add(Vector4f vec, Vector4f result) {
result.x = x + vec.x;
result.y = y + vec.y;
result.z = z + vec.z;
result.w = w + vec.w;
return result;
}
/**
* <code>addLocal</code> adds a provided vector to this vector internally,
* and returns a handle to this vector for easy chaining of calls. If the
* provided vector is null, null is returned.
*
* @param vec
* the vector to add to this vector.
* @return this
*/
public Vector4f addLocal(Vector4f vec) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
x += vec.x;
y += vec.y;
z += vec.z;
w += vec.w;
return this;
}
/**
*
* <code>add</code> adds the provided values to this vector, creating a
* new vector that is then returned.
*
* @param addX
* the x value to add.
* @param addY
* the y value to add.
* @param addZ
* the z value to add.
* @return the result vector.
*/
public Vector4f add(float addX, float addY, float addZ, float addW) {
return new Vector4f(x + addX, y + addY, z + addZ, w + addW);
}
/**
* <code>addLocal</code> adds the provided values to this vector
* internally, and returns a handle to this vector for easy chaining of
* calls.
*
* @param addX
* value to add to x
* @param addY
* value to add to y
* @param addZ
* value to add to z
* @return this
*/
public Vector4f addLocal(float addX, float addY, float addZ, float addW) {
x += addX;
y += addY;
z += addZ;
w += addW;
return this;
}
/**
*
* <code>scaleAdd</code> multiplies this vector by a scalar then adds the
* given Vector3f.
*
* @param scalar
* the value to multiply this vector by.
* @param add
* the value to add
*/
public Vector4f scaleAdd(float scalar, Vector4f add) {
x = x * scalar + add.x;
y = y * scalar + add.y;
z = z * scalar + add.z;
w = w * scalar + add.w;
return this;
}
/**
*
* <code>scaleAdd</code> multiplies the given vector by a scalar then adds
* the given vector.
*
* @param scalar
* the value to multiply this vector by.
* @param mult
* the value to multiply the scalar by
* @param add
* the value to add
*/
public Vector4f scaleAdd(float scalar, Vector4f mult, Vector4f add) {
this.x = mult.x * scalar + add.x;
this.y = mult.y * scalar + add.y;
this.z = mult.z * scalar + add.z;
this.w = mult.w * scalar + add.w;
return this;
}
/**
*
* <code>dot</code> calculates the dot product of this vector with a
* provided vector. If the provided vector is null, 0 is returned.
*
* @param vec
* the vector to dot with this vector.
* @return the resultant dot product of this vector and a given vector.
*/
public float dot(Vector4f vec) {
if (null == vec) {
logger.warning("Provided vector is null, 0 returned.");
return 0;
}
return x * vec.x + y * vec.y + z * vec.z + w * vec.w;
}
public Vector4f project(Vector4f other){
float n = this.dot(other); // A . B
float d = other.lengthSquared(); // |B|^2
return new Vector4f(other).normalizeLocal().multLocal(n/d);
}
/**
* Returns true if this vector is a unit vector (length() ~= 1),
* returns false otherwise.
*
* @return true if this vector is a unit vector (length() ~= 1),
* or false otherwise.
*/
public boolean isUnitVector(){
float len = length();
return 0.99f < len && len < 1.01f;
}
/**
* <code>length</code> calculates the magnitude of this vector.
*
* @return the length or magnitude of the vector.
*/
public float length() {
return FastMath.sqrt(lengthSquared());
}
/**
* <code>lengthSquared</code> calculates the squared value of the
* magnitude of the vector.
*
* @return the magnitude squared of the vector.
*/
public float lengthSquared() {
return x * x + y * y + z * z + w * w;
}
/**
* <code>distanceSquared</code> calculates the distance squared between
* this vector and vector v.
*
* @param v the second vector to determine the distance squared.
* @return the distance squared between the two vectors.
*/
public float distanceSquared(Vector4f v) {
double dx = x - v.x;
double dy = y - v.y;
double dz = z - v.z;
double dw = w - v.w;
return (float) (dx * dx + dy * dy + dz * dz + dw * dw);
}
/**
* <code>distance</code> calculates the distance between this vector and
* vector v.
*
* @param v the second vector to determine the distance.
* @return the distance between the two vectors.
*/
public float distance(Vector4f v) {
return FastMath.sqrt(distanceSquared(v));
}
/**
*
* <code>mult</code> multiplies this vector by a scalar. The resultant
* vector is returned.
*
* @param scalar
* the value to multiply this vector by.
* @return the new vector.
*/
public Vector4f mult(float scalar) {
return new Vector4f(x * scalar, y * scalar, z * scalar, w * scalar);
}
/**
*
* <code>mult</code> multiplies this vector by a scalar. The resultant
* vector is supplied as the second parameter and returned.
*
* @param scalar the scalar to multiply this vector by.
* @param product the product to store the result in.
* @return product
*/
public Vector4f mult(float scalar, Vector4f product) {
if (null == product) {
product = new Vector4f();
}
product.x = x * scalar;
product.y = y * scalar;
product.z = z * scalar;
product.w = w * scalar;
return product;
}
/**
* <code>multLocal</code> multiplies this vector by a scalar internally,
* and returns a handle to this vector for easy chaining of calls.
*
* @param scalar
* the value to multiply this vector by.
* @return this
*/
public Vector4f multLocal(float scalar) {
x *= scalar;
y *= scalar;
z *= scalar;
w *= scalar;
return this;
}
/**
* <code>multLocal</code> multiplies a provided vector to this vector
* internally, and returns a handle to this vector for easy chaining of
* calls. If the provided vector is null, null is returned.
*
* @param vec
* the vector to mult to this vector.
* @return this
*/
public Vector4f multLocal(Vector4f vec) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
x *= vec.x;
y *= vec.y;
z *= vec.z;
w *= vec.w;
return this;
}
/**
* <code>multLocal</code> multiplies this vector by 3 scalars
* internally, and returns a handle to this vector for easy chaining of
* calls.
*
* @param x
* @param y
* @param z
* @param w
* @return this
*/
public Vector4f multLocal(float x, float y, float z, float w) {
this.x *= x;
this.y *= y;
this.z *= z;
this.w *= w;
return this;
}
/**
* <code>multLocal</code> multiplies a provided vector to this vector
* internally, and returns a handle to this vector for easy chaining of
* calls. If the provided vector is null, null is returned.
*
* @param vec
* the vector to mult to this vector.
* @return this
*/
public Vector4f mult(Vector4f vec) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
return mult(vec, null);
}
/**
* <code>multLocal</code> multiplies a provided vector to this vector
* internally, and returns a handle to this vector for easy chaining of
* calls. If the provided vector is null, null is returned.
*
* @param vec
* the vector to mult to this vector.
* @param store result vector (null to create a new vector)
* @return this
*/
public Vector4f mult(Vector4f vec, Vector4f store) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
if (store == null) store = new Vector4f();
return store.set(x * vec.x, y * vec.y, z * vec.z, w * vec.w);
}
/**
* <code>divide</code> divides the values of this vector by a scalar and
* returns the result. The values of this vector remain untouched.
*
* @param scalar
* the value to divide this vectors attributes by.
* @return the result <code>Vector</code>.
*/
public Vector4f divide(float scalar) {
scalar = 1f/scalar;
return new Vector4f(x * scalar, y * scalar, z * scalar, w * scalar);
}
/**
* <code>divideLocal</code> divides this vector by a scalar internally,
* and returns a handle to this vector for easy chaining of calls. Dividing
* by zero will result in an exception.
*
* @param scalar
* the value to divides this vector by.
* @return this
*/
public Vector4f divideLocal(float scalar) {
scalar = 1f/scalar;
x *= scalar;
y *= scalar;
z *= scalar;
w *= scalar;
return this;
}
/**
* <code>divide</code> divides the values of this vector by a scalar and
* returns the result. The values of this vector remain untouched.
*
* @param scalar
* the value to divide this vectors attributes by.
* @return the result <code>Vector</code>.
*/
public Vector4f divide(Vector4f scalar) {
return new Vector4f(x / scalar.x, y / scalar.y, z / scalar.z, w / scalar.w);
}
/**
* <code>divideLocal</code> divides this vector by a scalar internally,
* and returns a handle to this vector for easy chaining of calls. Dividing
* by zero will result in an exception.
*
* @param scalar
* the value to divides this vector by.
* @return this
*/
public Vector4f divideLocal(Vector4f scalar) {
x /= scalar.x;
y /= scalar.y;
z /= scalar.z;
w /= scalar.w;
return this;
}
/**
*
* <code>negate</code> returns the negative of this vector. All values are
* negated and set to a new vector.
*
* @return the negated vector.
*/
public Vector4f negate() {
return new Vector4f(-x, -y, -z, -w);
}
/**
*
* <code>negateLocal</code> negates the internal values of this vector.
*
* @return this.
*/
public Vector4f negateLocal() {
x = -x;
y = -y;
z = -z;
w = -w;
return this;
}
/**
*
* <code>subtract</code> subtracts the values of a given vector from those
* of this vector creating a new vector object. If the provided vector is
* null, null is returned.
*
* @param vec
* the vector to subtract from this vector.
* @return the result vector.
*/
public Vector4f subtract(Vector4f vec) {
return new Vector4f(x - vec.x, y - vec.y, z - vec.z, w - vec.w);
}
/**
* <code>subtractLocal</code> subtracts a provided vector to this vector
* internally, and returns a handle to this vector for easy chaining of
* calls. If the provided vector is null, null is returned.
*
* @param vec
* the vector to subtract
* @return this
*/
public Vector4f subtractLocal(Vector4f vec) {
if (null == vec) {
logger.warning("Provided vector is null, null returned.");
return null;
}
x -= vec.x;
y -= vec.y;
z -= vec.z;
w -= vec.w;
return this;
}
/**
*
* <code>subtract</code>
*
* @param vec
* the vector to subtract from this
* @param result
* the vector to store the result in
* @return result
*/
public Vector4f subtract(Vector4f vec, Vector4f result) {
if(result == null) {
result = new Vector4f();
}
result.x = x - vec.x;
result.y = y - vec.y;
result.z = z - vec.z;
result.w = w - vec.w;
return result;
}
/**
*
* <code>subtract</code> subtracts the provided values from this vector,
* creating a new vector that is then returned.
*
* @param subtractX
* the x value to subtract.
* @param subtractY
* the y value to subtract.
* @param subtractZ
* the z value to subtract.
* @param subtractW
* the w value to subtract.
* @return the result vector.
*/
public Vector4f subtract(float subtractX, float subtractY, float subtractZ, float subtractW) {
return new Vector4f(x - subtractX, y - subtractY, z - subtractZ, w - subtractW);
}
/**
* <code>subtractLocal</code> subtracts the provided values from this vector
* internally, and returns a handle to this vector for easy chaining of
* calls.
*
* @param subtractX
* the x value to subtract.
* @param subtractY
* the y value to subtract.
* @param subtractZ
* the z value to subtract.
* @param subtractW
* the w value to subtract.
* @return this
*/
public Vector4f subtractLocal(float subtractX, float subtractY, float subtractZ, float subtractW) {
x -= subtractX;
y -= subtractY;
z -= subtractZ;
w -= subtractW;
return this;
}
/**
* <code>normalize</code> returns the unit vector of this vector.
*
* @return unit vector of this vector.
*/
public Vector4f normalize() {
// float length = length();
// if (length != 0) {
// return divide(length);
// }
//
// return divide(1);
float length = x * x + y * y + z * z + w * w;
if (length != 1f && length != 0f){
length = 1.0f / FastMath.sqrt(length);
return new Vector4f(x * length, y * length, z * length, w * length);
}
return clone();
}
/**
* <code>normalizeLocal</code> makes this vector into a unit vector of
* itself.
*
* @return this.
*/
public Vector4f normalizeLocal() {
// NOTE: this implementation is more optimized
// than the old jme normalize as this method
// is commonly used.
float length = x * x + y * y + z * z + w * w;
if (length != 1f && length != 0f){
length = 1.0f / FastMath.sqrt(length);
x *= length;
y *= length;
z *= length;
w *= length;
}
return this;
}
/**
* <code>maxLocal</code> computes the maximum value for each
* component in this and <code>other</code> vector. The result is stored
* in this vector.
* @param other
*/
public void maxLocal(Vector4f other){
x = other.x > x ? other.x : x;
y = other.y > y ? other.y : y;
z = other.z > z ? other.z : z;
w = other.w > w ? other.w : w;
}
/**
* <code>minLocal</code> computes the minimum value for each
* component in this and <code>other</code> vector. The result is stored
* in this vector.
* @param other
*/
public void minLocal(Vector4f other){
x = other.x < x ? other.x : x;
y = other.y < y ? other.y : y;
z = other.z < z ? other.z : z;
w = other.w < w ? other.w : w;
}
/**
* <code>zero</code> resets this vector's data to zero internally.
*/
public Vector4f zero() {
x = y = z = w = 0;
return this;
}
/**
* <code>angleBetween</code> returns (in radians) the angle between two vectors.
* It is assumed that both this vector and the given vector are unit vectors (iow, normalized).
*
* @param otherVector a unit vector to find the angle against
* @return the angle in radians.
*/
public float angleBetween(Vector4f otherVector) {
float dotProduct = dot(otherVector);
float angle = FastMath.acos(dotProduct);
return angle;
}
/**
* Sets this vector to the interpolation by changeAmnt from this to the finalVec
* this=(1-changeAmnt)*this + changeAmnt * finalVec
* @param finalVec The final vector to interpolate towards
* @param changeAmnt An amount between 0.0 - 1.0 representing a precentage
* change from this towards finalVec
*/
public Vector4f interpolate(Vector4f finalVec, float changeAmnt) {
this.x=(1-changeAmnt)*this.x + changeAmnt*finalVec.x;
this.y=(1-changeAmnt)*this.y + changeAmnt*finalVec.y;
this.z=(1-changeAmnt)*this.z + changeAmnt*finalVec.z;
this.w=(1-changeAmnt)*this.w + changeAmnt*finalVec.w;
return this;
}
/**
* Sets this vector to the interpolation by changeAmnt from beginVec to finalVec
* this=(1-changeAmnt)*beginVec + changeAmnt * finalVec
* @param beginVec the beging vector (changeAmnt=0)
* @param finalVec The final vector to interpolate towards
* @param changeAmnt An amount between 0.0 - 1.0 representing a precentage
* change from beginVec towards finalVec
*/
public Vector4f interpolate(Vector4f beginVec,Vector4f finalVec, float changeAmnt) {
this.x=(1-changeAmnt)*beginVec.x + changeAmnt*finalVec.x;
this.y=(1-changeAmnt)*beginVec.y + changeAmnt*finalVec.y;
this.z=(1-changeAmnt)*beginVec.z + changeAmnt*finalVec.z;
this.w=(1-changeAmnt)*beginVec.w + changeAmnt*finalVec.w;
return this;
}
/**
* Check a vector... if it is null or its floats are NaN or infinite,
* return false. Else return true.
* @param vector the vector to check
* @return true or false as stated above.
*/
public static boolean isValidVector(Vector4f vector) {
if (vector == null) return false;
if (Float.isNaN(vector.x) ||
Float.isNaN(vector.y) ||
Float.isNaN(vector.z)||
Float.isNaN(vector.w)) return false;
if (Float.isInfinite(vector.x) ||
Float.isInfinite(vector.y) ||
Float.isInfinite(vector.z) ||
Float.isInfinite(vector.w)) return false;
return true;
}
@Override
public Vector4f clone() {
try {
return (Vector4f) super.clone();
} catch (CloneNotSupportedException e) {
throw new AssertionError(); // can not happen
}
}
/**
* Saves this Vector3f into the given float[] object.
*
* @param floats
* The float[] to take this Vector3f. If null, a new float[3] is
* created.
* @return The array, with X, Y, Z float values in that order
*/
public float[] toArray(float[] floats) {
if (floats == null) {
floats = new float[4];
}
floats[0] = x;
floats[1] = y;
floats[2] = z;
floats[3] = w;
return floats;
}
/**
* are these two vectors the same? they are is they both have the same x,y,
* and z values.
*
* @param o
* the object to compare for equality
* @return true if they are equal
*/
public boolean equals(Object o) {
if (!(o instanceof Vector4f)) { return false; }
if (this == o) { return true; }
Vector4f comp = (Vector4f) o;
if (Float.compare(x,comp.x) != 0) return false;
if (Float.compare(y,comp.y) != 0) return false;
if (Float.compare(z,comp.z) != 0) return false;
if (Float.compare(w,comp.w) != 0) return false;
return true;
}
/**
* <code>hashCode</code> returns a unique code for this vector object based
* on it's values. If two vectors are logically equivalent, they will return
* the same hash code value.
* @return the hash code value of this vector.
*/
public int hashCode() {
int hash = 37;
hash += 37 * hash + Float.floatToIntBits(x);
hash += 37 * hash + Float.floatToIntBits(y);
hash += 37 * hash + Float.floatToIntBits(z);
hash += 37 * hash + Float.floatToIntBits(w);
return hash;
}
/**
* <code>toString</code> returns the string representation of this vector.
* The format is:
*
* org.jme.math.Vector3f [X=XX.XXXX, Y=YY.YYYY, Z=ZZ.ZZZZ, W=WW.WWWW]
*
* @return the string representation of this vector.
*/
public String toString() {
return "(" + x + ", " + y + ", " + z + ", " + w + ")";
}
public void write(JmeExporter e) throws IOException {
OutputCapsule capsule = e.getCapsule(this);
capsule.write(x, "x", 0);
capsule.write(y, "y", 0);
capsule.write(z, "z", 0);
capsule.write(w, "w", 0);
}
public void read(JmeImporter e) throws IOException {
InputCapsule capsule = e.getCapsule(this);
x = capsule.readFloat("x", 0);
y = capsule.readFloat("y", 0);
z = capsule.readFloat("z", 0);
w = capsule.readFloat("w", 0);
}
public float getX() {
return x;
}
public Vector4f setX(float x) {
this.x = x;
return this;
}
public float getY() {
return y;
}
public Vector4f setY(float y) {
this.y = y;
return this;
}
public float getZ() {
return z;
}
public Vector4f setZ(float z) {
this.z = z;
return this;
}
public float getW() {
return w;
}
public Vector4f setW(float w) {
this.w = w;
return this;
}
/**
* @param index
* @return x value if index == 0, y value if index == 1 or z value if index ==
* 2
* @throws IllegalArgumentException
* if index is not one of 0, 1, 2.
*/
public float get(int index) {
switch (index) {
case 0:
return x;
case 1:
return y;
case 2:
return z;
case 3:
return w;
}
throw new IllegalArgumentException("index must be either 0, 1, 2 or 3");
}
/**
* @param index
* which field index in this vector to set.
* @param value
* to set to one of x, y, z or w.
* @throws IllegalArgumentException
* if index is not one of 0, 1, 2, 3.
*/
public void set(int index, float value) {
switch (index) {
case 0:
x = value;
return;
case 1:
y = value;
return;
case 2:
z = value;
return;
case 3:
w = value;
return;
}
throw new IllegalArgumentException("index must be either 0, 1, 2 or 3");
}
}