blob: b3b649d73d162ab212338d1d9986d5ebe38a3e7f [file] [log] [blame]
/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.input;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.input.controls.*;
import com.jme3.math.FastMath;
import com.jme3.math.Vector3f;
import com.jme3.renderer.Camera;
import com.jme3.renderer.RenderManager;
import com.jme3.renderer.ViewPort;
import com.jme3.scene.Spatial;
import com.jme3.scene.control.Control;
import java.io.IOException;
/**
* A camera that follows a spatial and can turn around it by dragging the mouse
* @author nehon
*/
public class ChaseCamera implements ActionListener, AnalogListener, Control {
protected Spatial target = null;
protected float minVerticalRotation = 0.00f;
protected float maxVerticalRotation = FastMath.PI / 2;
protected float minDistance = 1.0f;
protected float maxDistance = 40.0f;
protected float distance = 20;
protected float zoomSpeed = 2f;
protected float rotationSpeed = 1.0f;
protected float rotation = 0;
protected float trailingRotationInertia = 0.05f;
protected float zoomSensitivity = 5f;
protected float rotationSensitivity = 5f;
protected float chasingSensitivity = 5f;
protected float trailingSensitivity = 0.5f;
protected float vRotation = FastMath.PI / 6;
protected boolean smoothMotion = false;
protected boolean trailingEnabled = true;
protected float rotationLerpFactor = 0;
protected float trailingLerpFactor = 0;
protected boolean rotating = false;
protected boolean vRotating = false;
protected float targetRotation = rotation;
protected InputManager inputManager;
protected Vector3f initialUpVec;
protected float targetVRotation = vRotation;
protected float vRotationLerpFactor = 0;
protected float targetDistance = distance;
protected float distanceLerpFactor = 0;
protected boolean zooming = false;
protected boolean trailing = false;
protected boolean chasing = false;
protected boolean canRotate;
protected float offsetDistance = 0.002f;
protected Vector3f prevPos;
protected boolean targetMoves = false;
protected boolean enabled = true;
protected Camera cam = null;
protected final Vector3f targetDir = new Vector3f();
protected float previousTargetRotation;
protected final Vector3f pos = new Vector3f();
protected Vector3f targetLocation = new Vector3f(0, 0, 0);
protected boolean dragToRotate = true;
protected Vector3f lookAtOffset = new Vector3f(0, 0, 0);
protected boolean leftClickRotate = true;
protected boolean rightClickRotate = true;
protected Vector3f temp = new Vector3f(0, 0, 0);
protected boolean invertYaxis = false;
protected boolean invertXaxis = false;
protected final static String ChaseCamDown = "ChaseCamDown";
protected final static String ChaseCamUp = "ChaseCamUp";
protected final static String ChaseCamZoomIn = "ChaseCamZoomIn";
protected final static String ChaseCamZoomOut = "ChaseCamZoomOut";
protected final static String ChaseCamMoveLeft = "ChaseCamMoveLeft";
protected final static String ChaseCamMoveRight = "ChaseCamMoveRight";
protected final static String ChaseCamToggleRotate = "ChaseCamToggleRotate";
/**
* Constructs the chase camera
* @param cam the application camera
* @param target the spatial to follow
*/
public ChaseCamera(Camera cam, final Spatial target) {
this(cam);
target.addControl(this);
}
/**
* Constructs the chase camera
* if you use this constructor you have to attach the cam later to a spatial
* doing spatial.addControl(chaseCamera);
* @param cam the application camera
*/
public ChaseCamera(Camera cam) {
this.cam = cam;
initialUpVec = cam.getUp().clone();
}
/**
* Constructs the chase camera, and registers inputs
* if you use this constructor you have to attach the cam later to a spatial
* doing spatial.addControl(chaseCamera);
* @param cam the application camera
* @param inputManager the inputManager of the application to register inputs
*/
public ChaseCamera(Camera cam, InputManager inputManager) {
this(cam);
registerWithInput(inputManager);
}
/**
* Constructs the chase camera, and registers inputs
* @param cam the application camera
* @param target the spatial to follow
* @param inputManager the inputManager of the application to register inputs
*/
public ChaseCamera(Camera cam, final Spatial target, InputManager inputManager) {
this(cam, target);
registerWithInput(inputManager);
}
public void onAction(String name, boolean keyPressed, float tpf) {
if (dragToRotate) {
if (name.equals(ChaseCamToggleRotate) && enabled) {
if (keyPressed) {
canRotate = true;
inputManager.setCursorVisible(false);
} else {
canRotate = false;
inputManager.setCursorVisible(true);
}
}
}
}
private boolean zoomin;
public void onAnalog(String name, float value, float tpf) {
if (name.equals(ChaseCamMoveLeft)) {
rotateCamera(-value);
} else if (name.equals(ChaseCamMoveRight)) {
rotateCamera(value);
} else if (name.equals(ChaseCamUp)) {
vRotateCamera(value);
} else if (name.equals(ChaseCamDown)) {
vRotateCamera(-value);
} else if (name.equals(ChaseCamZoomIn)) {
zoomCamera(-value);
if (zoomin == false) {
distanceLerpFactor = 0;
}
zoomin = true;
} else if (name.equals(ChaseCamZoomOut)) {
zoomCamera(+value);
if (zoomin == true) {
distanceLerpFactor = 0;
}
zoomin = false;
}
}
/**
* Registers inputs with the input manager
* @param inputManager
*/
public final void registerWithInput(InputManager inputManager) {
String[] inputs = {ChaseCamToggleRotate,
ChaseCamDown,
ChaseCamUp,
ChaseCamMoveLeft,
ChaseCamMoveRight,
ChaseCamZoomIn,
ChaseCamZoomOut};
this.inputManager = inputManager;
if (!invertYaxis) {
inputManager.addMapping(ChaseCamDown, new MouseAxisTrigger(MouseInput.AXIS_Y, true));
inputManager.addMapping(ChaseCamUp, new MouseAxisTrigger(MouseInput.AXIS_Y, false));
} else {
inputManager.addMapping(ChaseCamDown, new MouseAxisTrigger(MouseInput.AXIS_Y, false));
inputManager.addMapping(ChaseCamUp, new MouseAxisTrigger(MouseInput.AXIS_Y, true));
}
inputManager.addMapping(ChaseCamZoomIn, new MouseAxisTrigger(MouseInput.AXIS_WHEEL, false));
inputManager.addMapping(ChaseCamZoomOut, new MouseAxisTrigger(MouseInput.AXIS_WHEEL, true));
if(!invertXaxis){
inputManager.addMapping(ChaseCamMoveLeft, new MouseAxisTrigger(MouseInput.AXIS_X, true));
inputManager.addMapping(ChaseCamMoveRight, new MouseAxisTrigger(MouseInput.AXIS_X, false));
}else{
inputManager.addMapping(ChaseCamMoveLeft, new MouseAxisTrigger(MouseInput.AXIS_X, false));
inputManager.addMapping(ChaseCamMoveRight, new MouseAxisTrigger(MouseInput.AXIS_X, true));
}
inputManager.addMapping(ChaseCamToggleRotate, new MouseButtonTrigger(MouseInput.BUTTON_LEFT));
inputManager.addMapping(ChaseCamToggleRotate, new MouseButtonTrigger(MouseInput.BUTTON_RIGHT));
inputManager.addListener(this, inputs);
}
/**
* Sets custom triggers for toggleing the rotation of the cam
* deafult are
* new MouseButtonTrigger(MouseInput.BUTTON_LEFT) left mouse button
* new MouseButtonTrigger(MouseInput.BUTTON_RIGHT) right mouse button
* @param triggers
*/
public void setToggleRotationTrigger(Trigger... triggers) {
inputManager.deleteMapping(ChaseCamToggleRotate);
inputManager.addMapping(ChaseCamToggleRotate, triggers);
inputManager.addListener(this, ChaseCamToggleRotate);
}
/**
* Sets custom triggers for zomming in the cam
* default is
* new MouseAxisTrigger(MouseInput.AXIS_WHEEL, true) mouse wheel up
* @param triggers
*/
public void setZoomInTrigger(Trigger... triggers) {
inputManager.deleteMapping(ChaseCamZoomIn);
inputManager.addMapping(ChaseCamZoomIn, triggers);
inputManager.addListener(this, ChaseCamZoomIn);
}
/**
* Sets custom triggers for zomming out the cam
* default is
* new MouseAxisTrigger(MouseInput.AXIS_WHEEL, false) mouse wheel down
* @param triggers
*/
public void setZoomOutTrigger(Trigger... triggers) {
inputManager.deleteMapping(ChaseCamZoomOut);
inputManager.addMapping(ChaseCamZoomOut, triggers);
inputManager.addListener(this, ChaseCamZoomOut);
}
private void computePosition() {
float hDistance = (distance) * FastMath.sin((FastMath.PI / 2) - vRotation);
pos.set(hDistance * FastMath.cos(rotation), (distance) * FastMath.sin(vRotation), hDistance * FastMath.sin(rotation));
pos.addLocal(target.getWorldTranslation());
}
//rotate the camera around the target on the horizontal plane
private void rotateCamera(float value) {
if (!canRotate || !enabled) {
return;
}
rotating = true;
targetRotation += value * rotationSpeed;
}
//move the camera toward or away the target
private void zoomCamera(float value) {
if (!enabled) {
return;
}
zooming = true;
targetDistance += value * zoomSpeed;
if (targetDistance > maxDistance) {
targetDistance = maxDistance;
}
if (targetDistance < minDistance) {
targetDistance = minDistance;
}
if ((targetVRotation < minVerticalRotation) && (targetDistance > (minDistance + 1.0f))) {
targetVRotation = minVerticalRotation;
}
}
//rotate the camera around the target on the vertical plane
private void vRotateCamera(float value) {
if (!canRotate || !enabled) {
return;
}
vRotating = true;
targetVRotation += value * rotationSpeed;
if (targetVRotation > maxVerticalRotation) {
targetVRotation = maxVerticalRotation;
}
if ((targetVRotation < minVerticalRotation) && (targetDistance > (minDistance + 1.0f))) {
targetVRotation = minVerticalRotation;
}
}
/**
* Updates the camera, should only be called internally
*/
protected void updateCamera(float tpf) {
if (enabled) {
targetLocation.set(target.getWorldTranslation()).addLocal(lookAtOffset);
if (smoothMotion) {
//computation of target direction
targetDir.set(targetLocation).subtractLocal(prevPos);
float dist = targetDir.length();
//Low pass filtering on the target postition to avoid shaking when physics are enabled.
if (offsetDistance < dist) {
//target moves, start chasing.
chasing = true;
//target moves, start trailing if it has to.
if (trailingEnabled) {
trailing = true;
}
//target moves...
targetMoves = true;
} else {
//if target was moving, we compute a slight offset in rotation to avoid a rought stop of the cam
//We do not if the player is rotationg the cam
if (targetMoves && !canRotate) {
if (targetRotation - rotation > trailingRotationInertia) {
targetRotation = rotation + trailingRotationInertia;
} else if (targetRotation - rotation < -trailingRotationInertia) {
targetRotation = rotation - trailingRotationInertia;
}
}
//Target stops
targetMoves = false;
}
//the user is rotating the cam by dragging the mouse
if (canRotate) {
//reseting the trailing lerp factor
trailingLerpFactor = 0;
//stop trailing user has the control
trailing = false;
}
if (trailingEnabled && trailing) {
if (targetMoves) {
//computation if the inverted direction of the target
Vector3f a = targetDir.negate().normalizeLocal();
//the x unit vector
Vector3f b = Vector3f.UNIT_X;
//2d is good enough
a.y = 0;
//computation of the rotation angle between the x axis and the trail
if (targetDir.z > 0) {
targetRotation = FastMath.TWO_PI - FastMath.acos(a.dot(b));
} else {
targetRotation = FastMath.acos(a.dot(b));
}
if (targetRotation - rotation > FastMath.PI || targetRotation - rotation < -FastMath.PI) {
targetRotation -= FastMath.TWO_PI;
}
//if there is an important change in the direction while trailing reset of the lerp factor to avoid jumpy movements
if (targetRotation != previousTargetRotation && FastMath.abs(targetRotation - previousTargetRotation) > FastMath.PI / 8) {
trailingLerpFactor = 0;
}
previousTargetRotation = targetRotation;
}
//computing lerp factor
trailingLerpFactor = Math.min(trailingLerpFactor + tpf * tpf * trailingSensitivity, 1);
//computing rotation by linear interpolation
rotation = FastMath.interpolateLinear(trailingLerpFactor, rotation, targetRotation);
//if the rotation is near the target rotation we're good, that's over
if (targetRotation + 0.01f >= rotation && targetRotation - 0.01f <= rotation) {
trailing = false;
trailingLerpFactor = 0;
}
}
//linear interpolation of the distance while chasing
if (chasing) {
distance = temp.set(targetLocation).subtractLocal(cam.getLocation()).length();
distanceLerpFactor = Math.min(distanceLerpFactor + (tpf * tpf * chasingSensitivity * 0.05f), 1);
distance = FastMath.interpolateLinear(distanceLerpFactor, distance, targetDistance);
if (targetDistance + 0.01f >= distance && targetDistance - 0.01f <= distance) {
distanceLerpFactor = 0;
chasing = false;
}
}
//linear interpolation of the distance while zooming
if (zooming) {
distanceLerpFactor = Math.min(distanceLerpFactor + (tpf * tpf * zoomSensitivity), 1);
distance = FastMath.interpolateLinear(distanceLerpFactor, distance, targetDistance);
if (targetDistance + 0.1f >= distance && targetDistance - 0.1f <= distance) {
zooming = false;
distanceLerpFactor = 0;
}
}
//linear interpolation of the rotation while rotating horizontally
if (rotating) {
rotationLerpFactor = Math.min(rotationLerpFactor + tpf * tpf * rotationSensitivity, 1);
rotation = FastMath.interpolateLinear(rotationLerpFactor, rotation, targetRotation);
if (targetRotation + 0.01f >= rotation && targetRotation - 0.01f <= rotation) {
rotating = false;
rotationLerpFactor = 0;
}
}
//linear interpolation of the rotation while rotating vertically
if (vRotating) {
vRotationLerpFactor = Math.min(vRotationLerpFactor + tpf * tpf * rotationSensitivity, 1);
vRotation = FastMath.interpolateLinear(vRotationLerpFactor, vRotation, targetVRotation);
if (targetVRotation + 0.01f >= vRotation && targetVRotation - 0.01f <= vRotation) {
vRotating = false;
vRotationLerpFactor = 0;
}
}
//computing the position
computePosition();
//setting the position at last
cam.setLocation(pos.addLocal(lookAtOffset));
} else {
//easy no smooth motion
vRotation = targetVRotation;
rotation = targetRotation;
distance = targetDistance;
computePosition();
cam.setLocation(pos.addLocal(lookAtOffset));
}
//keeping track on the previous position of the target
prevPos.set(targetLocation);
//the cam looks at the target
cam.lookAt(targetLocation, initialUpVec);
}
}
/**
* Return the enabled/disabled state of the camera
* @return true if the camera is enabled
*/
public boolean isEnabled() {
return enabled;
}
/**
* Enable or disable the camera
* @param enabled true to enable
*/
public void setEnabled(boolean enabled) {
this.enabled = enabled;
if (!enabled) {
canRotate = false; // reset this flag in-case it was on before
}
}
/**
* Returns the max zoom distance of the camera (default is 40)
* @return maxDistance
*/
public float getMaxDistance() {
return maxDistance;
}
/**
* Sets the max zoom distance of the camera (default is 40)
* @param maxDistance
*/
public void setMaxDistance(float maxDistance) {
this.maxDistance = maxDistance;
}
/**
* Returns the min zoom distance of the camera (default is 1)
* @return minDistance
*/
public float getMinDistance() {
return minDistance;
}
/**
* Sets the min zoom distance of the camera (default is 1)
* @return minDistance
*/
public void setMinDistance(float minDistance) {
this.minDistance = minDistance;
}
/**
* clone this camera for a spatial
* @param spatial
* @return
*/
public Control cloneForSpatial(Spatial spatial) {
ChaseCamera cc = new ChaseCamera(cam, spatial, inputManager);
cc.setMaxDistance(getMaxDistance());
cc.setMinDistance(getMinDistance());
return cc;
}
/**
* Sets the spacial for the camera control, should only be used internally
* @param spatial
*/
public void setSpatial(Spatial spatial) {
target = spatial;
if (spatial == null) {
return;
}
computePosition();
prevPos = new Vector3f(target.getWorldTranslation());
cam.setLocation(pos);
}
/**
* update the camera control, should only be used internally
* @param tpf
*/
public void update(float tpf) {
updateCamera(tpf);
}
/**
* renders the camera control, should only be used internally
* @param rm
* @param vp
*/
public void render(RenderManager rm, ViewPort vp) {
//nothing to render
}
/**
* Write the camera
* @param ex the exporter
* @throws IOException
*/
public void write(JmeExporter ex) throws IOException {
OutputCapsule capsule = ex.getCapsule(this);
capsule.write(maxDistance, "maxDistance", 40);
capsule.write(minDistance, "minDistance", 1);
}
/**
* Read the camera
* @param im
* @throws IOException
*/
public void read(JmeImporter im) throws IOException {
InputCapsule ic = im.getCapsule(this);
maxDistance = ic.readFloat("maxDistance", 40);
minDistance = ic.readFloat("minDistance", 1);
}
/**
* returns the maximal vertical rotation angle of the camera around the target
* @return
*/
public float getMaxVerticalRotation() {
return maxVerticalRotation;
}
/**
* sets the maximal vertical rotation angle of the camera around the target default is Pi/2;
* @param maxVerticalRotation
*/
public void setMaxVerticalRotation(float maxVerticalRotation) {
this.maxVerticalRotation = maxVerticalRotation;
}
/**
* returns the minimal vertical rotation angle of the camera around the target
* @return
*/
public float getMinVerticalRotation() {
return minVerticalRotation;
}
/**
* sets the minimal vertical rotation angle of the camera around the target default is 0;
* @param minHeight
*/
public void setMinVerticalRotation(float minHeight) {
this.minVerticalRotation = minHeight;
}
/**
* returns true is smmoth motion is enabled for this chase camera
* @return
*/
public boolean isSmoothMotion() {
return smoothMotion;
}
/**
* Enables smooth motion for this chase camera
* @param smoothMotion
*/
public void setSmoothMotion(boolean smoothMotion) {
this.smoothMotion = smoothMotion;
}
/**
* returns the chasing sensitivity
* @return
*/
public float getChasingSensitivity() {
return chasingSensitivity;
}
/**
*
* Sets the chasing sensitivity, the lower the value the slower the camera will follow the target when it moves
* default is 5
* Only has an effect if smoothMotion is set to true and trailing is enabled
* @param chasingSensitivity
*/
public void setChasingSensitivity(float chasingSensitivity) {
this.chasingSensitivity = chasingSensitivity;
}
/**
* Returns the rotation sensitivity
* @return
*/
public float getRotationSensitivity() {
return rotationSensitivity;
}
/**
* Sets the rotation sensitivity, the lower the value the slower the camera will rotates around the target when draging with the mouse
* default is 5, values over 5 should have no effect.
* If you want a significant slow down try values below 1.
* Only has an effect if smoothMotion is set to true
* @param rotationSensitivity
*/
public void setRotationSensitivity(float rotationSensitivity) {
this.rotationSensitivity = rotationSensitivity;
}
/**
* returns true if the trailing is enabled
* @return
*/
public boolean isTrailingEnabled() {
return trailingEnabled;
}
/**
* Enable the camera trailing : The camera smoothly go in the targets trail when it moves.
* Only has an effect if smoothMotion is set to true
* @param trailingEnabled
*/
public void setTrailingEnabled(boolean trailingEnabled) {
this.trailingEnabled = trailingEnabled;
}
/**
*
* returns the trailing rotation inertia
* @return
*/
public float getTrailingRotationInertia() {
return trailingRotationInertia;
}
/**
* Sets the trailing rotation inertia : default is 0.1. This prevent the camera to roughtly stop when the target stops moving
* before the camera reached the trail position.
* Only has an effect if smoothMotion is set to true and trailing is enabled
* @param trailingRotationInertia
*/
public void setTrailingRotationInertia(float trailingRotationInertia) {
this.trailingRotationInertia = trailingRotationInertia;
}
/**
* returns the trailing sensitivity
* @return
*/
public float getTrailingSensitivity() {
return trailingSensitivity;
}
/**
* Only has an effect if smoothMotion is set to true and trailing is enabled
* Sets the trailing sensitivity, the lower the value, the slower the camera will go in the target trail when it moves.
* default is 0.5;
* @param trailingSensitivity
*/
public void setTrailingSensitivity(float trailingSensitivity) {
this.trailingSensitivity = trailingSensitivity;
}
/**
* returns the zoom sensitivity
* @return
*/
public float getZoomSensitivity() {
return zoomSensitivity;
}
/**
* Sets the zoom sensitivity, the lower the value, the slower the camera will zoom in and out.
* default is 5.
* @param zoomSensitivity
*/
public void setZoomSensitivity(float zoomSensitivity) {
this.zoomSensitivity = zoomSensitivity;
}
/**
* Sets the default distance at start of applicaiton
* @param defaultDistance
*/
public void setDefaultDistance(float defaultDistance) {
distance = defaultDistance;
targetDistance = distance;
}
/**
* sets the default horizontal rotation of the camera at start of the application
* @param angle
*/
public void setDefaultHorizontalRotation(float angle) {
rotation = angle;
targetRotation = angle;
}
/**
* sets the default vertical rotation of the camera at start of the application
* @param angle
*/
public void setDefaultVerticalRotation(float angle) {
vRotation = angle;
targetVRotation = angle;
}
/**
* @return If drag to rotate feature is enabled.
*
* @see FlyByCamera#setDragToRotate(boolean)
*/
public boolean isDragToRotate() {
return dragToRotate;
}
/**
* @param dragToRotate When true, the user must hold the mouse button
* and drag over the screen to rotate the camera, and the cursor is
* visible until dragged. Otherwise, the cursor is invisible at all times
* and holding the mouse button is not needed to rotate the camera.
* This feature is disabled by default.
*/
public void setDragToRotate(boolean dragToRotate) {
this.dragToRotate = dragToRotate;
this.canRotate = !dragToRotate;
inputManager.setCursorVisible(dragToRotate);
}
/**
* return the current distance from the camera to the target
* @return
*/
public float getDistanceToTarget() {
return distance;
}
/**
* returns the current horizontal rotation around the target in radians
* @return
*/
public float getHorizontalRotation() {
return rotation;
}
/**
* returns the current vertical rotation around the target in radians.
* @return
*/
public float getVerticalRotation() {
return vRotation;
}
/**
* returns the offset from the target's position where the camera looks at
* @return
*/
public Vector3f getLookAtOffset() {
return lookAtOffset;
}
/**
* Sets the offset from the target's position where the camera looks at
* @param lookAtOffset
*/
public void setLookAtOffset(Vector3f lookAtOffset) {
this.lookAtOffset = lookAtOffset;
}
/**
* Sets the up vector of the camera used for the lookAt on the target
* @param up
*/
public void setUpVector(Vector3f up){
initialUpVec=up;
}
/**
* Returns the up vector of the camera used for the lookAt on the target
* @return
*/
public Vector3f getUpVector(){
return initialUpVec;
}
/**
* invert the vertical axis movement of the mouse
* @param invertYaxis
*/
public void setInvertVerticalAxis(boolean invertYaxis) {
this.invertYaxis = invertYaxis;
inputManager.deleteMapping(ChaseCamDown);
inputManager.deleteMapping(ChaseCamUp);
if (!invertYaxis) {
inputManager.addMapping(ChaseCamDown, new MouseAxisTrigger(MouseInput.AXIS_Y, true));
inputManager.addMapping(ChaseCamUp, new MouseAxisTrigger(MouseInput.AXIS_Y, false));
} else {
inputManager.addMapping(ChaseCamDown, new MouseAxisTrigger(MouseInput.AXIS_Y, false));
inputManager.addMapping(ChaseCamUp, new MouseAxisTrigger(MouseInput.AXIS_Y, true));
}
inputManager.addListener(this, ChaseCamDown, ChaseCamUp);
}
/**
* invert the Horizontal axis movement of the mouse
* @param invertXaxis
*/
public void setInvertHorizontalAxis(boolean invertXaxis) {
this.invertXaxis = invertXaxis;
inputManager.deleteMapping(ChaseCamMoveLeft);
inputManager.deleteMapping(ChaseCamMoveRight);
if(!invertXaxis){
inputManager.addMapping(ChaseCamMoveLeft, new MouseAxisTrigger(MouseInput.AXIS_X, true));
inputManager.addMapping(ChaseCamMoveRight, new MouseAxisTrigger(MouseInput.AXIS_X, false));
}else{
inputManager.addMapping(ChaseCamMoveLeft, new MouseAxisTrigger(MouseInput.AXIS_X, false));
inputManager.addMapping(ChaseCamMoveRight, new MouseAxisTrigger(MouseInput.AXIS_X, true));
}
inputManager.addListener(this, ChaseCamMoveLeft, ChaseCamMoveRight);
}
}