blob: 0d417981632b2598778851c81da08deea306f9b0 [file] [log] [blame]
/*
* Copyright (c) 2009-2010 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.bullet.objects;
import com.jme3.bullet.PhysicsSpace;
import com.jme3.bullet.collision.PhysicsCollisionObject;
import com.jme3.bullet.collision.shapes.CollisionShape;
import com.jme3.bullet.collision.shapes.MeshCollisionShape;
import com.jme3.bullet.joints.PhysicsJoint;
import com.jme3.bullet.objects.infos.RigidBodyMotionState;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.math.Matrix3f;
import com.jme3.math.Quaternion;
import com.jme3.math.Vector3f;
import com.jme3.scene.Geometry;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import com.jme3.scene.debug.Arrow;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
* <p>PhysicsRigidBody - Basic physics object</p>
* @author normenhansen
*/
public class PhysicsRigidBody extends PhysicsCollisionObject {
protected RigidBodyMotionState motionState = new RigidBodyMotionState();
protected float mass = 1.0f;
protected boolean kinematic = false;
protected ArrayList<PhysicsJoint> joints = new ArrayList<PhysicsJoint>();
public PhysicsRigidBody() {
}
/**
* Creates a new PhysicsRigidBody with the supplied collision shape
* @param child
* @param shape
*/
public PhysicsRigidBody(CollisionShape shape) {
collisionShape = shape;
rebuildRigidBody();
}
public PhysicsRigidBody(CollisionShape shape, float mass) {
collisionShape = shape;
this.mass = mass;
rebuildRigidBody();
}
/**
* Builds/rebuilds the phyiscs body when parameters have changed
*/
protected void rebuildRigidBody() {
boolean removed = false;
if (collisionShape instanceof MeshCollisionShape && mass != 0) {
throw new IllegalStateException("Dynamic rigidbody can not have mesh collision shape!");
}
if (objectId != 0) {
if (isInWorld(objectId)) {
PhysicsSpace.getPhysicsSpace().remove(this);
removed = true;
}
Logger.getLogger(this.getClass().getName()).log(Level.INFO, "Clearing RigidBody {0}", Long.toHexString(objectId));
finalizeNative(objectId);
}
preRebuild();
objectId = createRigidBody(mass, motionState.getObjectId(), collisionShape.getObjectId());
Logger.getLogger(this.getClass().getName()).log(Level.INFO, "Created RigidBody {0}", Long.toHexString(objectId));
postRebuild();
if (removed) {
PhysicsSpace.getPhysicsSpace().add(this);
}
}
protected void preRebuild() {
}
private native long createRigidBody(float mass, long motionStateId, long collisionShapeId);
protected void postRebuild() {
if (mass == 0.0f) {
setStatic(objectId, true);
} else {
setStatic(objectId, false);
}
initUserPointer();
}
/**
* @return the motionState
*/
public RigidBodyMotionState getMotionState() {
return motionState;
}
public boolean isInWorld() {
return isInWorld(objectId);
}
private native boolean isInWorld(long objectId);
/**
* Sets the physics object location
* @param location the location of the actual physics object
*/
public void setPhysicsLocation(Vector3f location) {
setPhysicsLocation(objectId, location);
}
private native void setPhysicsLocation(long objectId, Vector3f location);
/**
* Sets the physics object rotation
* @param rotation the rotation of the actual physics object
*/
public void setPhysicsRotation(Matrix3f rotation) {
setPhysicsRotation(objectId, rotation);
}
private native void setPhysicsRotation(long objectId, Matrix3f rotation);
/**
* Sets the physics object rotation
* @param rotation the rotation of the actual physics object
*/
public void setPhysicsRotation(Quaternion rotation) {
setPhysicsRotation(objectId, rotation);
}
private native void setPhysicsRotation(long objectId, Quaternion rotation);
/**
* @return the physicsLocation
*/
public Vector3f getPhysicsLocation(Vector3f trans) {
if (trans == null) {
trans = new Vector3f();
}
getPhysicsLocation(objectId, trans);
return trans;
}
private native void getPhysicsLocation(long objectId, Vector3f vector);
/**
* @return the physicsLocation
*/
public Quaternion getPhysicsRotation(Quaternion rot) {
if (rot == null) {
rot = new Quaternion();
}
getPhysicsRotation(objectId, rot);
return rot;
}
private native void getPhysicsRotation(long objectId, Quaternion rot);
/**
* @return the physicsLocation
*/
public Matrix3f getPhysicsRotationMatrix(Matrix3f rot) {
if (rot == null) {
rot = new Matrix3f();
}
getPhysicsRotationMatrix(objectId, rot);
return rot;
}
private native void getPhysicsRotationMatrix(long objectId, Matrix3f rot);
/**
* @return the physicsLocation
*/
public Vector3f getPhysicsLocation() {
Vector3f vec = new Vector3f();
getPhysicsLocation(objectId, vec);
return vec;
}
/**
* @return the physicsLocation
*/
public Quaternion getPhysicsRotation() {
Quaternion quat = new Quaternion();
getPhysicsRotation(objectId, quat);
return quat;
}
public Matrix3f getPhysicsRotationMatrix() {
Matrix3f mtx = new Matrix3f();
getPhysicsRotationMatrix(objectId, mtx);
return mtx;
}
// /**
// * Gets the physics object location
// * @param location the location of the actual physics object is stored in this Vector3f
// */
// public Vector3f getInterpolatedPhysicsLocation(Vector3f location) {
// if (location == null) {
// location = new Vector3f();
// }
// rBody.getInterpolationWorldTransform(tempTrans);
// return Converter.convert(tempTrans.origin, location);
// }
//
// /**
// * Gets the physics object rotation
// * @param rotation the rotation of the actual physics object is stored in this Matrix3f
// */
// public Matrix3f getInterpolatedPhysicsRotation(Matrix3f rotation) {
// if (rotation == null) {
// rotation = new Matrix3f();
// }
// rBody.getInterpolationWorldTransform(tempTrans);
// return Converter.convert(tempTrans.basis, rotation);
// }
/**
* Sets the node to kinematic mode. in this mode the node is not affected by physics
* but affects other physics objects. Iits kinetic force is calculated by the amount
* of movement it is exposed to and its weight.
* @param kinematic
*/
public void setKinematic(boolean kinematic) {
this.kinematic = kinematic;
setKinematic(objectId, kinematic);
}
private native void setKinematic(long objectId, boolean kinematic);
public boolean isKinematic() {
return kinematic;
}
public void setCcdSweptSphereRadius(float radius) {
setCcdSweptSphereRadius(objectId, radius);
}
private native void setCcdSweptSphereRadius(long objectId, float radius);
/**
* Sets the amount of motion that has to happen in one physics tick to trigger the continuous motion detection<br/>
* This avoids the problem of fast objects moving through other objects, set to zero to disable (default)
* @param threshold
*/
public void setCcdMotionThreshold(float threshold) {
setCcdMotionThreshold(objectId, threshold);
}
private native void setCcdMotionThreshold(long objectId, float threshold);
public float getCcdSweptSphereRadius() {
return getCcdSweptSphereRadius(objectId);
}
private native float getCcdSweptSphereRadius(long objectId);
public float getCcdMotionThreshold() {
return getCcdMotionThreshold(objectId);
}
private native float getCcdMotionThreshold(long objectId);
public float getCcdSquareMotionThreshold() {
return getCcdSquareMotionThreshold(objectId);
}
private native float getCcdSquareMotionThreshold(long objectId);
public float getMass() {
return mass;
}
/**
* Sets the mass of this PhysicsRigidBody, objects with mass=0 are static.
* @param mass
*/
public void setMass(float mass) {
this.mass = mass;
if (collisionShape instanceof MeshCollisionShape && mass != 0) {
throw new IllegalStateException("Dynamic rigidbody can not have mesh collision shape!");
}
if (objectId != 0) {
if (collisionShape != null) {
updateMassProps(objectId, collisionShape.getObjectId(), mass);
}
if (mass == 0.0f) {
setStatic(objectId, true);
} else {
setStatic(objectId, false);
}
}
}
private native void setStatic(long objectId, boolean state);
private native long updateMassProps(long objectId, long collisionShapeId, float mass);
public Vector3f getGravity() {
return getGravity(null);
}
public Vector3f getGravity(Vector3f gravity) {
if (gravity == null) {
gravity = new Vector3f();
}
getGravity(objectId, gravity);
return gravity;
}
private native void getGravity(long objectId, Vector3f gravity);
/**
* Set the local gravity of this PhysicsRigidBody<br/>
* Set this after adding the node to the PhysicsSpace,
* the PhysicsSpace assigns its current gravity to the physics node when its added.
* @param gravity the gravity vector to set
*/
public void setGravity(Vector3f gravity) {
setGravity(objectId, gravity);
}
private native void setGravity(long objectId, Vector3f gravity);
public float getFriction() {
return getFriction(objectId);
}
private native float getFriction(long objectId);
/**
* Sets the friction of this physics object
* @param friction the friction of this physics object
*/
public void setFriction(float friction) {
setFriction(objectId, friction);
}
private native void setFriction(long objectId, float friction);
public void setDamping(float linearDamping, float angularDamping) {
setDamping(objectId, linearDamping, angularDamping);
}
private native void setDamping(long objectId, float linearDamping, float angularDamping);
// private native void setRestitution(long objectId, float factor);
//
// public void setLinearDamping(float linearDamping) {
// constructionInfo.linearDamping = linearDamping;
// rBody.setDamping(linearDamping, constructionInfo.angularDamping);
// }
//
// private native void setRestitution(long objectId, float factor);
//
public void setLinearDamping(float linearDamping) {
setDamping(objectId, linearDamping, getAngularDamping());
}
public void setAngularDamping(float angularDamping) {
setAngularDamping(objectId, angularDamping);
}
private native void setAngularDamping(long objectId, float factor);
public float getLinearDamping() {
return getLinearDamping(objectId);
}
private native float getLinearDamping(long objectId);
public float getAngularDamping() {
return getAngularDamping(objectId);
}
private native float getAngularDamping(long objectId);
public float getRestitution() {
return getRestitution(objectId);
}
private native float getRestitution(long objectId);
/**
* The "bouncyness" of the PhysicsRigidBody, best performance if restitution=0
* @param restitution
*/
public void setRestitution(float restitution) {
setRestitution(objectId, restitution);
}
private native void setRestitution(long objectId, float factor);
/**
* Get the current angular velocity of this PhysicsRigidBody
* @return the current linear velocity
*/
public Vector3f getAngularVelocity() {
Vector3f vec = new Vector3f();
getAngularVelocity(objectId, vec);
return vec;
}
private native void getAngularVelocity(long objectId, Vector3f vec);
/**
* Get the current angular velocity of this PhysicsRigidBody
* @param vec the vector to store the velocity in
*/
public void getAngularVelocity(Vector3f vec) {
getAngularVelocity(objectId, vec);
}
/**
* Sets the angular velocity of this PhysicsRigidBody
* @param vec the angular velocity of this PhysicsRigidBody
*/
public void setAngularVelocity(Vector3f vec) {
setAngularVelocity(objectId, vec);
activate();
}
private native void setAngularVelocity(long objectId, Vector3f vec);
/**
* Get the current linear velocity of this PhysicsRigidBody
* @return the current linear velocity
*/
public Vector3f getLinearVelocity() {
Vector3f vec = new Vector3f();
getLinearVelocity(objectId, vec);
return vec;
}
private native void getLinearVelocity(long objectId, Vector3f vec);
/**
* Get the current linear velocity of this PhysicsRigidBody
* @param vec the vector to store the velocity in
*/
public void getLinearVelocity(Vector3f vec) {
getLinearVelocity(objectId, vec);
}
/**
* Sets the linear velocity of this PhysicsRigidBody
* @param vec the linear velocity of this PhysicsRigidBody
*/
public void setLinearVelocity(Vector3f vec) {
setLinearVelocity(objectId, vec);
activate();
}
private native void setLinearVelocity(long objectId, Vector3f vec);
/**
* Apply a force to the PhysicsRigidBody, only applies force if the next physics update call
* updates the physics space.<br>
* To apply an impulse, use applyImpulse, use applyContinuousForce to apply continuous force.
* @param force the force
* @param location the location of the force
*/
public void applyForce(Vector3f force, Vector3f location) {
applyForce(objectId, force, location);
activate();
}
private native void applyForce(long objectId, Vector3f force, Vector3f location);
/**
* Apply a force to the PhysicsRigidBody, only applies force if the next physics update call
* updates the physics space.<br>
* To apply an impulse, use applyImpulse.
*
* @param force the force
*/
public void applyCentralForce(Vector3f force) {
applyCentralForce(objectId, force);
activate();
}
private native void applyCentralForce(long objectId, Vector3f force);
/**
* Apply a force to the PhysicsRigidBody, only applies force if the next physics update call
* updates the physics space.<br>
* To apply an impulse, use applyImpulse.
*
* @param torque the torque
*/
public void applyTorque(Vector3f torque) {
applyTorque(objectId, torque);
activate();
}
private native void applyTorque(long objectId, Vector3f vec);
/**
* Apply an impulse to the PhysicsRigidBody in the next physics update.
* @param impulse applied impulse
* @param rel_pos location relative to object
*/
public void applyImpulse(Vector3f impulse, Vector3f rel_pos) {
applyImpulse(objectId, impulse, rel_pos);
activate();
}
private native void applyImpulse(long objectId, Vector3f impulse, Vector3f rel_pos);
/**
* Apply a torque impulse to the PhysicsRigidBody in the next physics update.
* @param vec
*/
public void applyTorqueImpulse(Vector3f vec) {
applyTorqueImpulse(objectId, vec);
activate();
}
private native void applyTorqueImpulse(long objectId, Vector3f vec);
/**
* Clear all forces from the PhysicsRigidBody
*
*/
public void clearForces() {
clearForces(objectId);
}
private native void clearForces(long objectId);
public void setCollisionShape(CollisionShape collisionShape) {
super.setCollisionShape(collisionShape);
if (collisionShape instanceof MeshCollisionShape && mass != 0) {
throw new IllegalStateException("Dynamic rigidbody can not have mesh collision shape!");
}
if (objectId == 0) {
rebuildRigidBody();
} else {
setCollisionShape(objectId, collisionShape.getObjectId());
updateMassProps(objectId, collisionShape.getObjectId(), mass);
}
}
private native void setCollisionShape(long objectId, long collisionShapeId);
/**
* reactivates this PhysicsRigidBody when it has been deactivated because it was not moving
*/
public void activate() {
activate(objectId);
}
private native void activate(long objectId);
public boolean isActive() {
return isActive(objectId);
}
private native boolean isActive(long objectId);
/**
* sets the sleeping thresholds, these define when the object gets deactivated
* to save ressources. Low values keep the object active when it barely moves
* @param linear the linear sleeping threshold
* @param angular the angular sleeping threshold
*/
public void setSleepingThresholds(float linear, float angular) {
setSleepingThresholds(objectId, linear, angular);
}
private native void setSleepingThresholds(long objectId, float linear, float angular);
public void setLinearSleepingThreshold(float linearSleepingThreshold) {
setLinearSleepingThreshold(objectId, linearSleepingThreshold);
}
private native void setLinearSleepingThreshold(long objectId, float linearSleepingThreshold);
public void setAngularSleepingThreshold(float angularSleepingThreshold) {
setAngularSleepingThreshold(objectId, angularSleepingThreshold);
}
private native void setAngularSleepingThreshold(long objectId, float angularSleepingThreshold);
public float getLinearSleepingThreshold() {
return getLinearSleepingThreshold(objectId);
}
private native float getLinearSleepingThreshold(long objectId);
public float getAngularSleepingThreshold() {
return getAngularSleepingThreshold(objectId);
}
private native float getAngularSleepingThreshold(long objectId);
public float getAngularFactor() {
return getAngularFactor(objectId);
}
private native float getAngularFactor(long objectId);
public void setAngularFactor(float factor) {
setAngularFactor(objectId, factor);
}
private native void setAngularFactor(long objectId, float factor);
/**
* do not use manually, joints are added automatically
*/
public void addJoint(PhysicsJoint joint) {
if (!joints.contains(joint)) {
joints.add(joint);
}
updateDebugShape();
}
/**
*
*/
public void removeJoint(PhysicsJoint joint) {
joints.remove(joint);
}
/**
* Returns a list of connected joints. This list is only filled when
* the PhysicsRigidBody is actually added to the physics space or loaded from disk.
* @return list of active joints connected to this PhysicsRigidBody
*/
public List<PhysicsJoint> getJoints() {
return joints;
}
@Override
protected Spatial getDebugShape() {
//add joints
Spatial shape = super.getDebugShape();
Node node = null;
if (shape instanceof Node) {
node = (Node) shape;
} else {
node = new Node("DebugShapeNode");
node.attachChild(shape);
}
int i = 0;
for (Iterator<PhysicsJoint> it = joints.iterator(); it.hasNext();) {
PhysicsJoint physicsJoint = it.next();
Vector3f pivot = null;
if (physicsJoint.getBodyA() == this) {
pivot = physicsJoint.getPivotA();
} else {
pivot = physicsJoint.getPivotB();
}
Arrow arrow = new Arrow(pivot);
Geometry geom = new Geometry("DebugBone" + i, arrow);
geom.setMaterial(debugMaterialGreen);
node.attachChild(geom);
i++;
}
return node;
}
@Override
public void write(JmeExporter e) throws IOException {
super.write(e);
OutputCapsule capsule = e.getCapsule(this);
capsule.write(getMass(), "mass", 1.0f);
capsule.write(getGravity(), "gravity", Vector3f.ZERO);
capsule.write(getFriction(), "friction", 0.5f);
capsule.write(getRestitution(), "restitution", 0);
capsule.write(getAngularFactor(), "angularFactor", 1);
capsule.write(kinematic, "kinematic", false);
capsule.write(getLinearDamping(), "linearDamping", 0);
capsule.write(getAngularDamping(), "angularDamping", 0);
capsule.write(getLinearSleepingThreshold(), "linearSleepingThreshold", 0.8f);
capsule.write(getAngularSleepingThreshold(), "angularSleepingThreshold", 1.0f);
capsule.write(getCcdMotionThreshold(), "ccdMotionThreshold", 0);
capsule.write(getCcdSweptSphereRadius(), "ccdSweptSphereRadius", 0);
capsule.write(getPhysicsLocation(new Vector3f()), "physicsLocation", new Vector3f());
capsule.write(getPhysicsRotationMatrix(new Matrix3f()), "physicsRotation", new Matrix3f());
capsule.writeSavableArrayList(joints, "joints", null);
}
@Override
public void read(JmeImporter e) throws IOException {
super.read(e);
InputCapsule capsule = e.getCapsule(this);
float mass = capsule.readFloat("mass", 1.0f);
this.mass = mass;
rebuildRigidBody();
setGravity((Vector3f) capsule.readSavable("gravity", Vector3f.ZERO.clone()));
setFriction(capsule.readFloat("friction", 0.5f));
setKinematic(capsule.readBoolean("kinematic", false));
setRestitution(capsule.readFloat("restitution", 0));
setAngularFactor(capsule.readFloat("angularFactor", 1));
setDamping(capsule.readFloat("linearDamping", 0), capsule.readFloat("angularDamping", 0));
setSleepingThresholds(capsule.readFloat("linearSleepingThreshold", 0.8f), capsule.readFloat("angularSleepingThreshold", 1.0f));
setCcdMotionThreshold(capsule.readFloat("ccdMotionThreshold", 0));
setCcdSweptSphereRadius(capsule.readFloat("ccdSweptSphereRadius", 0));
setPhysicsLocation((Vector3f) capsule.readSavable("physicsLocation", new Vector3f()));
setPhysicsRotation((Matrix3f) capsule.readSavable("physicsRotation", new Matrix3f()));
joints = capsule.readSavableArrayList("joints", null);
}
}