blob: 7d56e27c19f43c9757cff75b64cc4e4274f6554e [file] [log] [blame]
// mtmagicserver.cpp
// Multi-threaded magic squares server
// Runs as CGI (not multi-threaded) or multi-threaded standalone
// Computation of the magic square has been deliberately slowed down to
// demonstrate work load issues (see SLEEP constant)
// Run from the command line with arguments IP (which must be the
// IP of the current machine you are using) and PORT to run this as a
// multi-threaded stand-alone server on a port. For example:
// > mtmagicserver.cgi 18081
// To let 'magic' client talk to this service, change the URL in code magic.cpp
// into "localhost:18081"
// This example illustrates two alternative server implementations with threads.
// The first implementation recycles gSOAP resources but is bounded to a maximum
// number of threads. Each thread needs to be joined, so runaway processes will
// halt the server at some point.
// The second implementation has no thread limitation. Runaway threads are not
// controlled.
#include "soapH.h"
#include "magic.nsmap"
#include <unistd.h> // import sleep()
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
#define MAX_THR (8) // Max. threads to serve requests
#define SLEEP (0) // use this to make each thread sleep to mimic work load latency
////////////////////////////////////////////////////////////////////////////////
//
// Multi-Threaded Magic Squares Server
//
////////////////////////////////////////////////////////////////////////////////
void *process_request(void*);
int main(int argc, char **argv)
{ struct soap soap;
soap_init(&soap);
// soap.accept_timeout = 60; // die if no requests are made within 1 minute
if (argc < 2) // no args: assume this is a CGI application
{ soap_serve(&soap); // serve request
soap_destroy(&soap);// cleanup class instances
soap_end(&soap); // cleanup
}
else
{ pthread_t tid;
int port;
int m, s, i;
port = atoi(argv[1]);
m = soap_bind(&soap, NULL, port, BACKLOG);
if (m < 0)
{ soap_print_fault(&soap, stderr);
exit(1);
}
fprintf(stderr, "Socket connection successful %d\n", m);
for (i = 0; ; i++)
{ s = soap_accept(&soap);
if (s < 0)
{ if (soap.errnum)
soap_print_fault(&soap, stderr);
else
fprintf(stderr, "Server timed out\n");
break;
}
fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n", i, s, (int)(soap.ip>>24)&0xFF, (int)(soap.ip>>16)&0xFF, (int)(soap.ip>>8)&0xFF, (int)soap.ip&0xFF);
pthread_create(&tid, NULL, (void*(*)(void*))process_request, (void*)soap_copy(&soap));
}
}
soap_done(&soap);
return 0;
}
void *process_request(void *soap)
{ pthread_detach(pthread_self());
soap_serve((struct soap*)soap);
soap_destroy((struct soap*)soap);
soap_end((struct soap*)soap);
soap_done((struct soap*)soap);
free(soap);
return NULL;
}
////////////////////////////////////////////////////////////////////////////////
//
// Magic Square Algorithm
//
////////////////////////////////////////////////////////////////////////////////
int ns1__magic(struct soap *soap, int n, matrix *square)
{ int i, j, k, l, key = 2;
if (n < 1)
return soap_sender_fault(soap, "Negative or zero size", "<error xmlns=\"http://tempuri.org/\">The input parameter must be positive</error>");
if (n > 100)
return soap_sender_fault(soap, "size > 100", "<error xmlns=\"http://tempuri.org/\">The input parameter must not be too large</error>");
square->resize(n, n);
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
(*square)[i][j] = 0;
i = 0;
j = (n-1)/2;
(*square)[i][j] = 1;
while (key <= n*n)
{ if (i-1 < 0)
k = n-1;
else
k = i-1;
if (j-1 < 0)
l = n-1;
else
l = j-1;
if ((*square)[k][l])
i = (i+1) % n;
else
{ i = k;
j = l;
}
(*square)[i][j] = key;
key++;
}
sleep(SLEEP); // mimic work load latency
return SOAP_OK;
}
////////////////////////////////////////////////////////////////////////////////
//
// Class vector Methods
//
////////////////////////////////////////////////////////////////////////////////
vector::vector()
{ __ptr = 0;
__size = 0;
}
vector::vector(int n)
{ __ptr = (int*)soap_malloc(soap, n*sizeof(int));
__size = n;
}
vector::~vector()
{ soap_unlink(soap, this); // not required, but just to make sure if someone calls delete on this
}
void vector::resize(int n)
{ int *p;
if (__size == n)
return;
p = (int*)soap_malloc(soap, n*sizeof(int));
if (__ptr)
{ for (int i = 0; i < (n <= __size ? n : __size); i++)
p[i] = __ptr[i];
soap_unlink(soap, __ptr);
free(__ptr);
}
__size = n;
__ptr = p;
}
int& vector::operator[](int i) const
{ if (!__ptr || i < 0 || i >= __size)
fprintf(stderr, "Array index out of bounds\n");
return __ptr[i];
}
////////////////////////////////////////////////////////////////////////////////
//
// Class matrix Methods
//
////////////////////////////////////////////////////////////////////////////////
matrix::matrix()
{ __ptr = 0;
__size = 0;
}
matrix::matrix(int rows, int cols)
{ __ptr = soap_new_vector(soap, rows);
for (int i = 0; i < cols; i++)
__ptr[i].resize(cols);
__size = rows;
}
matrix::~matrix()
{ soap_unlink(soap, this); // not required, but just to make sure if someone calls delete on this
}
void matrix::resize(int rows, int cols)
{ int i;
vector *p;
if (__size != rows)
{ if (__ptr)
{ p = soap_new_vector(soap, rows);
for (i = 0; i < (rows <= __size ? rows : __size); i++)
{ if (this[i].__size != cols)
(*this)[i].resize(cols);
(p+i)->__ptr = __ptr[i].__ptr;
(p+i)->__size = cols;
}
for (; i < rows; i++)
__ptr[i].resize(cols);
}
else
{ __ptr = soap_new_vector(soap, rows);
for (i = 0; i < rows; i++)
__ptr[i].resize(cols);
__size = rows;
}
}
else
for (i = 0; i < __size; i++)
__ptr[i].resize(cols);
}
vector& matrix::operator[](int i) const
{ if (!__ptr || i < 0 || i >= __size)
fprintf(stderr, "Array index out of bounds\n");
return __ptr[i];
}