blob: f86b6f9beaf2130acd4a824a7022b6a01da1a74b [file] [log] [blame]
"""
Tool to find wrong contour order between different masters, and
other interpolatability (or lack thereof) issues.
Call as:
$ fonttools varLib.interpolatable font1 font2 ...
"""
from fontTools.pens.basePen import AbstractPen, BasePen
from fontTools.pens.pointPen import SegmentToPointPen
from fontTools.pens.recordingPen import RecordingPen
from fontTools.pens.statisticsPen import StatisticsPen
from fontTools.pens.momentsPen import OpenContourError
from collections import OrderedDict
import itertools
import sys
def _rot_list(l, k):
"""Rotate list by k items forward. Ie. item at position 0 will be
at position k in returned list. Negative k is allowed."""
n = len(l)
k %= n
if not k: return l
return l[n-k:] + l[:n-k]
class PerContourPen(BasePen):
def __init__(self, Pen, glyphset=None):
BasePen.__init__(self, glyphset)
self._glyphset = glyphset
self._Pen = Pen
self._pen = None
self.value = []
def _moveTo(self, p0):
self._newItem()
self._pen.moveTo(p0)
def _lineTo(self, p1):
self._pen.lineTo(p1)
def _qCurveToOne(self, p1, p2):
self._pen.qCurveTo(p1, p2)
def _curveToOne(self, p1, p2, p3):
self._pen.curveTo(p1, p2, p3)
def _closePath(self):
self._pen.closePath()
self._pen = None
def _endPath(self):
self._pen.endPath()
self._pen = None
def _newItem(self):
self._pen = pen = self._Pen()
self.value.append(pen)
class PerContourOrComponentPen(PerContourPen):
def addComponent(self, glyphName, transformation):
self._newItem()
self.value[-1].addComponent(glyphName, transformation)
class RecordingPointPen(BasePen):
def __init__(self):
self.value = []
def beginPath(self, identifier = None, **kwargs):
pass
def endPath(self) -> None:
pass
def addPoint(self, pt, segmentType=None):
self.value.append((pt, False if segmentType is None else True))
def _vdiff(v0, v1):
return tuple(b - a for a, b in zip(v0, v1))
def _vlen(vec):
v = 0
for x in vec:
v += x * x
return v
def _complex_vlen(vec):
v = 0
for x in vec:
v += abs(x) * abs(x)
return v
def _matching_cost(G, matching):
return sum(G[i][j] for i, j in enumerate(matching))
def min_cost_perfect_bipartite_matching(G):
n = len(G)
try:
from scipy.optimize import linear_sum_assignment
rows, cols = linear_sum_assignment(G)
assert (rows == list(range(n))).all()
return list(cols), _matching_cost(G, cols)
except ImportError:
pass
try:
from munkres import Munkres
cols = [None] * n
for row, col in Munkres().compute(G):
cols[row] = col
return cols, _matching_cost(G, cols)
except ImportError:
pass
if n > 6:
raise Exception("Install Python module 'munkres' or 'scipy >= 0.17.0'")
# Otherwise just brute-force
permutations = itertools.permutations(range(n))
best = list(next(permutations))
best_cost = _matching_cost(G, best)
for p in permutations:
cost = _matching_cost(G, p)
if cost < best_cost:
best, best_cost = list(p), cost
return best, best_cost
def test(glyphsets, glyphs=None, names=None):
if names is None:
names = glyphsets
if glyphs is None:
glyphs = glyphsets[0].keys()
hist = []
problems = OrderedDict()
def add_problem(glyphname, problem):
problems.setdefault(glyphname, []).append(problem)
for glyph_name in glyphs:
# print()
# print(glyph_name)
try:
allVectors = []
allNodeTypes = []
allContourIsomorphisms = []
for glyphset, name in zip(glyphsets, names):
# print('.', end='')
if glyph_name not in glyphset:
add_problem(glyph_name, {"type": "missing", "master": name})
continue
glyph = glyphset[glyph_name]
perContourPen = PerContourOrComponentPen(
RecordingPen, glyphset=glyphset
)
try:
glyph.draw(perContourPen, outputImpliedClosingLine=True)
except TypeError:
glyph.draw(perContourPen)
contourPens = perContourPen.value
del perContourPen
contourVectors = []
contourIsomorphisms = []
nodeTypes = []
allNodeTypes.append(nodeTypes)
allVectors.append(contourVectors)
allContourIsomorphisms.append(contourIsomorphisms)
for ix, contour in enumerate(contourPens):
nodeVecs = tuple(instruction[0] for instruction in contour.value)
nodeTypes.append(nodeVecs)
stats = StatisticsPen(glyphset=glyphset)
try:
contour.replay(stats)
except OpenContourError as e:
add_problem(
glyph_name,
{"master": name, "contour": ix, "type": "open_path"},
)
continue
size = abs(stats.area) ** 0.5 * 0.5
vector = (
int(size),
int(stats.meanX),
int(stats.meanY),
int(stats.stddevX * 2),
int(stats.stddevY * 2),
int(stats.correlation * size),
)
contourVectors.append(vector)
# print(vector)
# Check starting point
if nodeVecs[0] == 'addComponent':
continue
assert nodeVecs[0] == 'moveTo'
assert nodeVecs[-1] in ('closePath', 'endPath')
points = RecordingPointPen()
converter = SegmentToPointPen(points, False)
contour.replay(converter)
# points.value is a list of pt,bool where bool is true if on-curve and false if off-curve;
# now check all rotations and mirror-rotations of the contour and build list of isomorphic
# possible starting points.
bits = 0
for pt,b in points.value:
bits = (bits << 1) | b
n = len(points.value)
mask = (1 << n ) - 1
isomorphisms = []
contourIsomorphisms.append(isomorphisms)
for i in range(n):
b = ((bits << i) & mask) | ((bits >> (n - i)))
if b == bits:
isomorphisms.append(_rot_list ([complex(*pt) for pt,bl in points.value], i))
# Add mirrored rotations
mirrored = list(reversed(points.value))
reversed_bits = 0
for pt,b in mirrored:
reversed_bits = (reversed_bits << 1) | b
for i in range(n):
b = ((reversed_bits << i) & mask) | ((reversed_bits >> (n - i)))
if b == bits:
isomorphisms.append(_rot_list ([complex(*pt) for pt,bl in mirrored], i))
# Check each master against the next one in the list.
for i, (m0, m1) in enumerate(zip(allNodeTypes[:-1], allNodeTypes[1:])):
if len(m0) != len(m1):
add_problem(
glyph_name,
{
"type": "path_count",
"master_1": names[i],
"master_2": names[i + 1],
"value_1": len(m0),
"value_2": len(m1),
},
)
if m0 == m1:
continue
for pathIx, (nodes1, nodes2) in enumerate(zip(m0, m1)):
if nodes1 == nodes2:
continue
if len(nodes1) != len(nodes2):
add_problem(
glyph_name,
{
"type": "node_count",
"path": pathIx,
"master_1": names[i],
"master_2": names[i + 1],
"value_1": len(nodes1),
"value_2": len(nodes2),
},
)
continue
for nodeIx, (n1, n2) in enumerate(zip(nodes1, nodes2)):
if n1 != n2:
add_problem(
glyph_name,
{
"type": "node_incompatibility",
"path": pathIx,
"node": nodeIx,
"master_1": names[i],
"master_2": names[i + 1],
"value_1": n1,
"value_2": n2,
},
)
continue
for i, (m0, m1) in enumerate(zip(allVectors[:-1], allVectors[1:])):
if len(m0) != len(m1):
# We already reported this
continue
if not m0:
continue
costs = [[_vlen(_vdiff(v0, v1)) for v1 in m1] for v0 in m0]
matching, matching_cost = min_cost_perfect_bipartite_matching(costs)
identity_matching = list(range(len(m0)))
identity_cost = sum(costs[i][i] for i in range(len(m0)))
if matching != identity_matching and matching_cost < identity_cost * .95:
add_problem(
glyph_name,
{
"type": "contour_order",
"master_1": names[i],
"master_2": names[i + 1],
"value_1": list(range(len(m0))),
"value_2": matching,
},
)
break
for i, (m0, m1) in enumerate(zip(allContourIsomorphisms[:-1], allContourIsomorphisms[1:])):
if len(m0) != len(m1):
# We already reported this
continue
if not m0:
continue
for contour0,contour1 in zip(m0,m1):
c0 = contour0[0]
costs = [v for v in (_complex_vlen(_vdiff(c0, c1)) for c1 in contour1)]
min_cost = min(costs)
first_cost = costs[0]
if min_cost < first_cost * .95:
add_problem(
glyph_name,
{
"type": "wrong_start_point",
"master_1": names[i],
"master_2": names[i + 1],
},
)
except ValueError as e:
add_problem(
glyph_name,
{"type": "math_error", "master": name, "error": e},
)
return problems
def main(args=None):
"""Test for interpolatability issues between fonts"""
import argparse
parser = argparse.ArgumentParser(
"fonttools varLib.interpolatable",
description=main.__doc__,
)
parser.add_argument(
"--json",
action="store_true",
help="Output report in JSON format",
)
parser.add_argument(
"inputs", metavar="FILE", type=str, nargs="+", help="Input TTF/UFO files"
)
args = parser.parse_args(args)
glyphs = None
# glyphs = ['uni08DB', 'uniFD76']
# glyphs = ['uni08DE', 'uni0034']
# glyphs = ['uni08DE', 'uni0034', 'uni0751', 'uni0753', 'uni0754', 'uni08A4', 'uni08A4.fina', 'uni08A5.fina']
from os.path import basename
fonts = []
names = []
if len(args.inputs) == 1:
if args.inputs[0].endswith('.designspace'):
from fontTools.designspaceLib import DesignSpaceDocument
designspace = DesignSpaceDocument.fromfile(args.inputs[0])
args.inputs = [master.path for master in designspace.sources]
elif args.inputs[0].endswith('.glyphs'):
from glyphsLib import GSFont, to_ufos
gsfont = GSFont(args.inputs[0])
fonts.extend(to_ufos(gsfont))
names = ['%s-%s' % (f.info.familyName, f.info.styleName) for f in fonts]
args.inputs = []
elif args.inputs[0].endswith('.ttf'):
from fontTools.ttLib import TTFont
font = TTFont(args.inputs[0])
if 'gvar' in font:
# Is variable font
gvar = font['gvar']
# Gather all "master" locations
locs = set()
for variations in gvar.variations.values():
for var in variations:
loc = []
for tag,val in sorted(var.axes.items()):
loc.append((tag,val[1]))
locs.add(tuple(loc))
# Rebuild locs as dictionaries
new_locs = [{}]
for loc in sorted(locs, key=lambda v: (len(v), v)):
names.append(str(loc))
l = {}
for tag,val in loc:
l[tag] = val
new_locs.append(l)
locs = new_locs
del new_locs
# locs is all master locations now
for loc in locs:
fonts.append(font.getGlyphSet(location=loc, normalized=True))
args.inputs = []
for filename in args.inputs:
if filename.endswith(".ufo"):
from fontTools.ufoLib import UFOReader
fonts.append(UFOReader(filename))
else:
from fontTools.ttLib import TTFont
fonts.append(TTFont(filename))
names.append(basename(filename).rsplit(".", 1)[0])
if hasattr(fonts[0], 'getGlyphSet'):
glyphsets = [font.getGlyphSet() for font in fonts]
else:
glyphsets = fonts
problems = test(glyphsets, glyphs=glyphs, names=names)
if args.json:
import json
print(json.dumps(problems))
else:
for glyph, glyph_problems in problems.items():
print(f"Glyph {glyph} was not compatible: ")
for p in glyph_problems:
if p["type"] == "missing":
print(" Glyph was missing in master %s" % p["master"])
if p["type"] == "open_path":
print(" Glyph has an open path in master %s" % p["master"])
if p["type"] == "path_count":
print(
" Path count differs: %i in %s, %i in %s"
% (p["value_1"], p["master_1"], p["value_2"], p["master_2"])
)
if p["type"] == "node_count":
print(
" Node count differs in path %i: %i in %s, %i in %s"
% (
p["path"],
p["value_1"],
p["master_1"],
p["value_2"],
p["master_2"],
)
)
if p["type"] == "node_incompatibility":
print(
" Node %o incompatible in path %i: %s in %s, %s in %s"
% (
p["node"],
p["path"],
p["value_1"],
p["master_1"],
p["value_2"],
p["master_2"],
)
)
if p["type"] == "contour_order":
print(
" Contour order differs: %s in %s, %s in %s"
% (
p["value_1"],
p["master_1"],
p["value_2"],
p["master_2"],
)
)
if p["type"] == "wrong_start_point":
print(
" Contour start point differs: %s, %s"
% (
p["master_1"],
p["master_2"],
)
)
if problems:
return problems
if __name__ == "__main__":
import sys
problems = main()
sys.exit(int(bool(problems)))