blob: e26a513ed80cdfa540c5ab5c71ff2911bc6b8828 [file] [log] [blame]
/**
* f2fs_format.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* Dual licensed under the GPL or LGPL version 2 licenses.
*/
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <f2fs_fs.h>
#include <assert.h>
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_SYS_MOUNT_H
#include <sys/mount.h>
#endif
#include <time.h>
#ifdef HAVE_UUID_UUID_H
#include <uuid/uuid.h>
#endif
#ifndef HAVE_LIBUUID
#define uuid_parse(a, b) -1
#define uuid_generate(a)
#define uuid_unparse(a, b) -1
#endif
#include "quota.h"
#include "f2fs_format_utils.h"
extern struct f2fs_configuration c;
struct f2fs_super_block raw_sb;
struct f2fs_super_block *sb = &raw_sb;
struct f2fs_checkpoint *cp;
/* Return first segment number of each area */
#define prev_zone(cur) (c.cur_seg[cur] - c.segs_per_zone)
#define next_zone(cur) (c.cur_seg[cur] + c.segs_per_zone)
#define last_zone(cur) ((cur - 1) * c.segs_per_zone)
#define last_section(cur) (cur + (c.secs_per_zone - 1) * c.segs_per_sec)
/* Return time fixed by the user or current time by default */
#define mkfs_time ((c.fixed_time == -1) ? time(NULL) : c.fixed_time)
const char *media_ext_lists[] = {
/* common prefix */
"mp", // Covers mp3, mp4, mpeg, mpg
"wm", // Covers wma, wmb, wmv
"og", // Covers oga, ogg, ogm, ogv
"jp", // Covers jpg, jpeg, jp2
/* video */
"avi",
"m4v",
"m4p",
"mkv",
"mov",
"webm",
/* audio */
"wav",
"m4a",
"3gp",
"opus",
"flac",
/* image */
"gif",
"png",
"svg",
"webp",
/* archives */
"jar",
"deb",
"iso",
"gz",
"xz",
"zst",
/* others */
"pdf",
"pyc", // Python bytecode
"ttc",
"ttf",
"exe",
/* android */
"apk",
"cnt", // Image alias
"exo", // YouTube
"odex", // Android RunTime
"vdex", // Android RunTime
"so",
NULL
};
const char *hot_ext_lists[] = {
"db",
#ifndef WITH_ANDROID
/* Virtual machines */
"vmdk", // VMware or VirtualBox
"vdi", // VirtualBox
"qcow2", // QEMU
#endif
NULL
};
const char **default_ext_list[] = {
media_ext_lists,
hot_ext_lists
};
static bool is_extension_exist(const char *name)
{
int i;
for (i = 0; i < F2FS_MAX_EXTENSION; i++) {
char *ext = (char *)sb->extension_list[i];
if (!strcmp(ext, name))
return 1;
}
return 0;
}
static void cure_extension_list(void)
{
const char **extlist;
char *ext_str;
char *ue;
int name_len;
int i, pos = 0;
set_sb(extension_count, 0);
memset(sb->extension_list, 0, sizeof(sb->extension_list));
for (i = 0; i < 2; i++) {
ext_str = c.extension_list[i];
extlist = default_ext_list[i];
while (*extlist) {
name_len = strlen(*extlist);
memcpy(sb->extension_list[pos++], *extlist, name_len);
extlist++;
}
if (i == 0)
set_sb(extension_count, pos);
else
sb->hot_ext_count = pos - get_sb(extension_count);;
if (!ext_str)
continue;
/* add user ext list */
ue = strtok(ext_str, ", ");
while (ue != NULL) {
name_len = strlen(ue);
if (name_len >= F2FS_EXTENSION_LEN) {
MSG(0, "\tWarn: Extension name (%s) is too long\n", ue);
goto next;
}
if (!is_extension_exist(ue))
memcpy(sb->extension_list[pos++], ue, name_len);
next:
ue = strtok(NULL, ", ");
if (pos >= F2FS_MAX_EXTENSION)
break;
}
if (i == 0)
set_sb(extension_count, pos);
else
sb->hot_ext_count = pos - get_sb(extension_count);
free(c.extension_list[i]);
}
}
static void verify_cur_segs(void)
{
int i, j;
int reorder = 0;
for (i = 0; i < NR_CURSEG_TYPE; i++) {
for (j = i + 1; j < NR_CURSEG_TYPE; j++) {
if (c.cur_seg[i] == c.cur_seg[j]) {
reorder = 1;
break;
}
}
}
if (!reorder)
return;
c.cur_seg[0] = 0;
for (i = 1; i < NR_CURSEG_TYPE; i++)
c.cur_seg[i] = next_zone(i - 1);
}
static int f2fs_prepare_super_block(void)
{
uint32_t blk_size_bytes;
uint32_t log_sectorsize, log_sectors_per_block;
uint32_t log_blocksize, log_blks_per_seg;
uint32_t segment_size_bytes, zone_size_bytes;
uint32_t sit_segments, nat_segments;
uint32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa;
uint32_t total_valid_blks_available;
uint64_t zone_align_start_offset, diff;
uint64_t total_meta_zones, total_meta_segments;
uint32_t sit_bitmap_size, max_sit_bitmap_size;
uint32_t max_nat_bitmap_size, max_nat_segments;
uint32_t total_zones, avail_zones;
enum quota_type qtype;
int i;
set_sb(magic, F2FS_SUPER_MAGIC);
set_sb(major_ver, F2FS_MAJOR_VERSION);
set_sb(minor_ver, F2FS_MINOR_VERSION);
log_sectorsize = log_base_2(c.sector_size);
log_sectors_per_block = log_base_2(c.sectors_per_blk);
log_blocksize = log_sectorsize + log_sectors_per_block;
log_blks_per_seg = log_base_2(c.blks_per_seg);
set_sb(log_sectorsize, log_sectorsize);
set_sb(log_sectors_per_block, log_sectors_per_block);
set_sb(log_blocksize, log_blocksize);
set_sb(log_blocks_per_seg, log_blks_per_seg);
set_sb(segs_per_sec, c.segs_per_sec);
set_sb(secs_per_zone, c.secs_per_zone);
blk_size_bytes = 1 << log_blocksize;
segment_size_bytes = blk_size_bytes * c.blks_per_seg;
zone_size_bytes =
blk_size_bytes * c.secs_per_zone *
c.segs_per_sec * c.blks_per_seg;
set_sb(checksum_offset, 0);
set_sb(block_count, c.total_sectors >> log_sectors_per_block);
zone_align_start_offset =
((uint64_t) c.start_sector * DEFAULT_SECTOR_SIZE +
2 * F2FS_BLKSIZE + zone_size_bytes - 1) /
zone_size_bytes * zone_size_bytes -
(uint64_t) c.start_sector * DEFAULT_SECTOR_SIZE;
if (c.feature & F2FS_FEATURE_RO)
zone_align_start_offset = 8192;
if (c.start_sector % DEFAULT_SECTORS_PER_BLOCK) {
MSG(1, "\t%s: Align start sector number to the page unit\n",
c.zoned_mode ? "FAIL" : "WARN");
MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n",
c.start_sector,
c.start_sector % DEFAULT_SECTORS_PER_BLOCK,
DEFAULT_SECTORS_PER_BLOCK);
if (c.zoned_mode)
return -1;
}
if (c.zoned_mode && c.ndevs > 1)
zone_align_start_offset +=
(c.devices[0].total_sectors * c.sector_size) % zone_size_bytes;
set_sb(segment0_blkaddr, zone_align_start_offset / blk_size_bytes);
sb->cp_blkaddr = sb->segment0_blkaddr;
MSG(0, "Info: zone aligned segment0 blkaddr: %u\n",
get_sb(segment0_blkaddr));
if (c.zoned_mode &&
((c.ndevs == 1 &&
(get_sb(segment0_blkaddr) + c.start_sector /
DEFAULT_SECTORS_PER_BLOCK) % c.zone_blocks) ||
(c.ndevs > 1 &&
c.devices[1].start_blkaddr % c.zone_blocks))) {
MSG(1, "\tError: Unaligned segment0 block address %u\n",
get_sb(segment0_blkaddr));
return -1;
}
for (i = 0; i < c.ndevs; i++) {
if (i == 0) {
c.devices[i].total_segments =
(c.devices[i].total_sectors *
c.sector_size - zone_align_start_offset) /
segment_size_bytes;
c.devices[i].start_blkaddr = 0;
c.devices[i].end_blkaddr = c.devices[i].total_segments *
c.blks_per_seg - 1 +
sb->segment0_blkaddr;
} else {
c.devices[i].total_segments =
c.devices[i].total_sectors /
(c.sectors_per_blk * c.blks_per_seg);
c.devices[i].start_blkaddr =
c.devices[i - 1].end_blkaddr + 1;
c.devices[i].end_blkaddr = c.devices[i].start_blkaddr +
c.devices[i].total_segments *
c.blks_per_seg - 1;
}
if (c.ndevs > 1) {
memcpy(sb->devs[i].path, c.devices[i].path, MAX_PATH_LEN);
sb->devs[i].total_segments =
cpu_to_le32(c.devices[i].total_segments);
}
c.total_segments += c.devices[i].total_segments;
}
set_sb(segment_count, (c.total_segments / c.segs_per_zone *
c.segs_per_zone));
set_sb(segment_count_ckpt, F2FS_NUMBER_OF_CHECKPOINT_PACK);
set_sb(sit_blkaddr, get_sb(segment0_blkaddr) +
get_sb(segment_count_ckpt) * c.blks_per_seg);
blocks_for_sit = SIZE_ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK);
sit_segments = SEG_ALIGN(blocks_for_sit);
set_sb(segment_count_sit, sit_segments * 2);
set_sb(nat_blkaddr, get_sb(sit_blkaddr) + get_sb(segment_count_sit) *
c.blks_per_seg);
total_valid_blks_available = (get_sb(segment_count) -
(get_sb(segment_count_ckpt) +
get_sb(segment_count_sit))) * c.blks_per_seg;
blocks_for_nat = SIZE_ALIGN(total_valid_blks_available,
NAT_ENTRY_PER_BLOCK);
if (c.large_nat_bitmap) {
nat_segments = SEG_ALIGN(blocks_for_nat) *
DEFAULT_NAT_ENTRY_RATIO / 100;
set_sb(segment_count_nat, nat_segments ? nat_segments : 1);
max_nat_bitmap_size = (get_sb(segment_count_nat) <<
log_blks_per_seg) / 8;
set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
} else {
set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat));
max_nat_bitmap_size = 0;
}
/*
* The number of node segments should not be exceeded a "Threshold".
* This number resizes NAT bitmap area in a CP page.
* So the threshold is determined not to overflow one CP page
*/
sit_bitmap_size = ((get_sb(segment_count_sit) / 2) <<
log_blks_per_seg) / 8;
if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE)
max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE;
else
max_sit_bitmap_size = sit_bitmap_size;
if (c.large_nat_bitmap) {
/* use cp_payload if free space of f2fs_checkpoint is not enough */
if (max_sit_bitmap_size + max_nat_bitmap_size >
MAX_BITMAP_SIZE_IN_CKPT) {
uint32_t diff = max_sit_bitmap_size +
max_nat_bitmap_size -
MAX_BITMAP_SIZE_IN_CKPT;
set_sb(cp_payload, F2FS_BLK_ALIGN(diff));
} else {
set_sb(cp_payload, 0);
}
} else {
/*
* It should be reserved minimum 1 segment for nat.
* When sit is too large, we should expand cp area.
* It requires more pages for cp.
*/
if (max_sit_bitmap_size > MAX_SIT_BITMAP_SIZE_IN_CKPT) {
max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT;
set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size));
} else {
max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT -
max_sit_bitmap_size;
set_sb(cp_payload, 0);
}
max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg;
if (get_sb(segment_count_nat) > max_nat_segments)
set_sb(segment_count_nat, max_nat_segments);
set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
}
set_sb(ssa_blkaddr, get_sb(nat_blkaddr) + get_sb(segment_count_nat) *
c.blks_per_seg);
total_valid_blks_available = (get_sb(segment_count) -
(get_sb(segment_count_ckpt) +
get_sb(segment_count_sit) +
get_sb(segment_count_nat))) *
c.blks_per_seg;
if (c.feature & F2FS_FEATURE_RO)
blocks_for_ssa = 0;
else
blocks_for_ssa = total_valid_blks_available /
c.blks_per_seg + 1;
set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa));
total_meta_segments = get_sb(segment_count_ckpt) +
get_sb(segment_count_sit) +
get_sb(segment_count_nat) +
get_sb(segment_count_ssa);
diff = total_meta_segments % (c.segs_per_zone);
if (diff)
set_sb(segment_count_ssa, get_sb(segment_count_ssa) +
(c.segs_per_zone - diff));
total_meta_zones = ZONE_ALIGN(total_meta_segments *
c.blks_per_seg);
set_sb(main_blkaddr, get_sb(segment0_blkaddr) + total_meta_zones *
c.segs_per_zone * c.blks_per_seg);
if (c.zoned_mode) {
/*
* Make sure there is enough randomly writeable
* space at the beginning of the disk.
*/
unsigned long main_blkzone = get_sb(main_blkaddr) / c.zone_blocks;
if (c.devices[0].zoned_model == F2FS_ZONED_HM &&
c.devices[0].nr_rnd_zones < main_blkzone) {
MSG(0, "\tError: Device does not have enough random "
"write zones for F2FS volume (%lu needed)\n",
main_blkzone);
return -1;
}
/*
* Check if conventional device has enough space
* to accommodate all metadata, zoned device should
* not overlap to metadata area.
*/
for (i = 1; i < c.ndevs; i++) {
if (c.devices[i].zoned_model != F2FS_ZONED_NONE &&
c.devices[i].start_blkaddr < get_sb(main_blkaddr)) {
MSG(0, "\tError: Conventional device %s is too small,"
" (%"PRIu64" MiB needed).\n", c.devices[0].path,
(get_sb(main_blkaddr) -
c.devices[i].start_blkaddr) >> 8);
return -1;
}
}
}
total_zones = get_sb(segment_count) / (c.segs_per_zone) -
total_meta_zones;
if (total_zones == 0)
goto too_small;
set_sb(section_count, total_zones * c.secs_per_zone);
set_sb(segment_count_main, get_sb(section_count) * c.segs_per_sec);
/*
* Let's determine the best reserved and overprovisioned space.
* For Zoned device, if zone capacity less than zone size, the segments
* starting after the zone capacity are unusable in each zone. So get
* overprovision ratio and reserved seg count based on avg usable
* segs_per_sec.
*/
if (c.overprovision == 0)
c.overprovision = get_best_overprovision(sb);
c.reserved_segments = get_reserved(sb, c.overprovision);
if (c.feature & F2FS_FEATURE_RO) {
c.overprovision = 0;
c.reserved_segments = 0;
}
if ((!(c.feature & F2FS_FEATURE_RO) &&
c.overprovision == 0) ||
c.total_segments < F2FS_MIN_SEGMENTS ||
(c.devices[0].total_sectors *
c.sector_size < zone_align_start_offset) ||
(get_sb(segment_count_main) - NR_CURSEG_TYPE) <
c.reserved_segments) {
goto too_small;
}
if (c.vol_uuid) {
if (uuid_parse(c.vol_uuid, sb->uuid)) {
MSG(0, "\tError: supplied string is not a valid UUID\n");
return -1;
}
} else {
uuid_generate(sb->uuid);
}
/* precompute checksum seed for metadata */
if (c.feature & F2FS_FEATURE_INODE_CHKSUM)
c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid));
utf8_to_utf16((char *)sb->volume_name, (const char *)c.vol_label,
MAX_VOLUME_NAME, strlen(c.vol_label));
set_sb(node_ino, 1);
set_sb(meta_ino, 2);
set_sb(root_ino, 3);
c.next_free_nid = 4;
for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
if (!((1 << qtype) & c.quota_bits))
continue;
sb->qf_ino[qtype] = cpu_to_le32(c.next_free_nid++);
MSG(0, "Info: add quota type = %u => %u\n",
qtype, c.next_free_nid - 1);
}
if (c.feature & F2FS_FEATURE_LOST_FOUND)
c.lpf_ino = c.next_free_nid++;
if (c.feature & F2FS_FEATURE_RO)
avail_zones = 2;
else
avail_zones = 6;
if (total_zones <= avail_zones) {
MSG(1, "\tError: %d zones: Need more zones "
"by shrinking zone size\n", total_zones);
return -1;
}
if (c.feature & F2FS_FEATURE_RO) {
c.cur_seg[CURSEG_HOT_NODE] = last_section(last_zone(total_zones));
c.cur_seg[CURSEG_WARM_NODE] = 0;
c.cur_seg[CURSEG_COLD_NODE] = 0;
c.cur_seg[CURSEG_HOT_DATA] = 0;
c.cur_seg[CURSEG_COLD_DATA] = 0;
c.cur_seg[CURSEG_WARM_DATA] = 0;
} else if (c.zoned_mode) {
c.cur_seg[CURSEG_HOT_NODE] = 0;
if (c.zoned_model == F2FS_ZONED_HM) {
uint32_t conv_zones =
c.devices[0].total_segments / c.segs_per_zone
- total_meta_zones;
if (total_zones - conv_zones >= avail_zones)
c.cur_seg[CURSEG_HOT_NODE] =
(c.devices[1].start_blkaddr -
get_sb(main_blkaddr)) / c.blks_per_seg;
}
c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_HOT_DATA);
c.cur_seg[CURSEG_COLD_DATA] = next_zone(CURSEG_WARM_DATA);
} else {
c.cur_seg[CURSEG_HOT_NODE] = 0;
c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
c.cur_seg[CURSEG_COLD_DATA] =
max(last_zone((total_zones >> 2)),
next_zone(CURSEG_HOT_DATA));
c.cur_seg[CURSEG_WARM_DATA] =
max(last_zone((total_zones >> 1)),
next_zone(CURSEG_COLD_DATA));
}
/* if there is redundancy, reassign it */
if (!(c.feature & F2FS_FEATURE_RO))
verify_cur_segs();
cure_extension_list();
/* get kernel version */
if (c.kd >= 0) {
dev_read_version(c.version, 0, VERSION_LEN);
get_kernel_version(c.version);
} else {
get_kernel_uname_version(c.version);
}
MSG(0, "Info: format version with\n \"%s\"\n", c.version);
memcpy(sb->version, c.version, VERSION_LEN);
memcpy(sb->init_version, c.version, VERSION_LEN);
if (c.feature & F2FS_FEATURE_CASEFOLD) {
set_sb(s_encoding, c.s_encoding);
set_sb(s_encoding_flags, c.s_encoding_flags);
}
sb->feature = cpu_to_le32(c.feature);
if (c.feature & F2FS_FEATURE_SB_CHKSUM) {
set_sb(checksum_offset, SB_CHKSUM_OFFSET);
set_sb(crc, f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb,
SB_CHKSUM_OFFSET));
MSG(1, "Info: SB CRC is set: offset (%d), crc (0x%x)\n",
get_sb(checksum_offset), get_sb(crc));
}
return 0;
too_small:
MSG(0, "\tError: Device size is not sufficient for F2FS volume\n");
return -1;
}
static int f2fs_init_sit_area(void)
{
uint32_t blk_size, seg_size;
uint32_t index = 0;
uint64_t sit_seg_addr = 0;
uint8_t *zero_buf = NULL;
blk_size = 1 << get_sb(log_blocksize);
seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
zero_buf = calloc(sizeof(uint8_t), seg_size);
if(zero_buf == NULL) {
MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n");
return -1;
}
sit_seg_addr = get_sb(sit_blkaddr);
sit_seg_addr *= blk_size;
DBG(1, "\tFilling sit area at offset 0x%08"PRIx64"\n", sit_seg_addr);
for (index = 0; index < (get_sb(segment_count_sit) / 2); index++) {
if (dev_fill(zero_buf, sit_seg_addr, seg_size)) {
MSG(1, "\tError: While zeroing out the sit area "
"on disk!!!\n");
free(zero_buf);
return -1;
}
sit_seg_addr += seg_size;
}
free(zero_buf);
return 0 ;
}
static int f2fs_init_nat_area(void)
{
uint32_t blk_size, seg_size;
uint32_t index = 0;
uint64_t nat_seg_addr = 0;
uint8_t *nat_buf = NULL;
blk_size = 1 << get_sb(log_blocksize);
seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
nat_buf = calloc(sizeof(uint8_t), seg_size);
if (nat_buf == NULL) {
MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n");
return -1;
}
nat_seg_addr = get_sb(nat_blkaddr);
nat_seg_addr *= blk_size;
DBG(1, "\tFilling nat area at offset 0x%08"PRIx64"\n", nat_seg_addr);
for (index = 0; index < get_sb(segment_count_nat) / 2; index++) {
if (dev_fill(nat_buf, nat_seg_addr, seg_size)) {
MSG(1, "\tError: While zeroing out the nat area "
"on disk!!!\n");
free(nat_buf);
return -1;
}
nat_seg_addr = nat_seg_addr + (2 * seg_size);
}
free(nat_buf);
return 0 ;
}
static int f2fs_write_check_point_pack(void)
{
struct f2fs_summary_block *sum;
struct f2fs_journal *journal;
uint32_t blk_size_bytes;
uint32_t nat_bits_bytes, nat_bits_blocks;
unsigned char *nat_bits = NULL, *empty_nat_bits;
uint64_t cp_seg_blk = 0;
uint32_t crc = 0, flags;
unsigned int i;
char *cp_payload = NULL;
char *sum_compact, *sum_compact_p;
struct f2fs_summary *sum_entry;
unsigned short vblocks;
int ret = -1;
cp = calloc(F2FS_BLKSIZE, 1);
if (cp == NULL) {
MSG(1, "\tError: Calloc failed for f2fs_checkpoint!!!\n");
return ret;
}
sum = calloc(F2FS_BLKSIZE, 1);
if (sum == NULL) {
MSG(1, "\tError: Calloc failed for summary_node!!!\n");
goto free_cp;
}
sum_compact = calloc(F2FS_BLKSIZE, 1);
if (sum_compact == NULL) {
MSG(1, "\tError: Calloc failed for summary buffer!!!\n");
goto free_sum;
}
sum_compact_p = sum_compact;
nat_bits_bytes = get_sb(segment_count_nat) << 5;
nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
F2FS_BLKSIZE - 1);
nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
if (nat_bits == NULL) {
MSG(1, "\tError: Calloc failed for nat bits buffer!!!\n");
goto free_sum_compact;
}
cp_payload = calloc(F2FS_BLKSIZE, 1);
if (cp_payload == NULL) {
MSG(1, "\tError: Calloc failed for cp_payload!!!\n");
goto free_nat_bits;
}
/* 1. cp page 1 of checkpoint pack 1 */
srand((c.fake_seed) ? 0 : time(NULL));
cp->checkpoint_ver = cpu_to_le64(rand() | 0x1);
set_cp(cur_node_segno[0], c.cur_seg[CURSEG_HOT_NODE]);
set_cp(cur_node_segno[1], c.cur_seg[CURSEG_WARM_NODE]);
set_cp(cur_node_segno[2], c.cur_seg[CURSEG_COLD_NODE]);
set_cp(cur_data_segno[0], c.cur_seg[CURSEG_HOT_DATA]);
set_cp(cur_data_segno[1], c.cur_seg[CURSEG_WARM_DATA]);
set_cp(cur_data_segno[2], c.cur_seg[CURSEG_COLD_DATA]);
for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) {
set_cp(cur_node_segno[i], 0xffffffff);
set_cp(cur_data_segno[i], 0xffffffff);
}
set_cp(cur_node_blkoff[0], c.curseg_offset[CURSEG_HOT_NODE]);
set_cp(cur_data_blkoff[0], c.curseg_offset[CURSEG_HOT_DATA]);
set_cp(valid_block_count, c.curseg_offset[CURSEG_HOT_NODE] +
c.curseg_offset[CURSEG_HOT_DATA]);
set_cp(rsvd_segment_count, c.reserved_segments);
/*
* For zoned devices, if zone capacity less than zone size, get
* overprovision segment count based on usable segments in the device.
*/
set_cp(overprov_segment_count, (f2fs_get_usable_segments(sb) -
get_cp(rsvd_segment_count)) *
c.overprovision / 100);
if (!(c.conf_reserved_sections) &&
get_cp(overprov_segment_count) < get_cp(rsvd_segment_count))
set_cp(overprov_segment_count, get_cp(rsvd_segment_count));
/*
* If conf_reserved_sections has a non zero value, overprov_segment_count
* is set to overprov_segment_count + rsvd_segment_count.
*/
if (c.conf_reserved_sections) {
/*
* Overprovision segments must be bigger than two sections.
* In non configurable reserved section case, overprovision
* segments are always bigger than two sections.
*/
if (get_cp(overprov_segment_count) <
overprovision_segment_buffer(sb)) {
MSG(0, "\tError: Not enough overprovision segments (%u)\n",
get_cp(overprov_segment_count));
goto free_cp_payload;
}
set_cp(overprov_segment_count, get_cp(overprov_segment_count) +
get_cp(rsvd_segment_count));
} else {
set_cp(overprov_segment_count, get_cp(overprov_segment_count) +
overprovision_segment_buffer(sb));
}
if (f2fs_get_usable_segments(sb) <= get_cp(overprov_segment_count)) {
MSG(0, "\tError: Not enough segments to create F2FS Volume\n");
goto free_cp_payload;
}
MSG(0, "Info: Overprovision ratio = %.3lf%%\n", c.overprovision);
MSG(0, "Info: Overprovision segments = %u (GC reserved = %u)\n",
get_cp(overprov_segment_count),
c.reserved_segments);
/* main segments - reserved segments - (node + data segments) */
if (c.feature & F2FS_FEATURE_RO) {
set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 2);
set_cp(user_block_count, ((get_cp(free_segment_count) + 2 -
get_cp(overprov_segment_count)) * c.blks_per_seg));
} else {
set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 6);
set_cp(user_block_count, ((get_cp(free_segment_count) + 6 -
get_cp(overprov_segment_count)) * c.blks_per_seg));
}
/* cp page (2), data summaries (1), node summaries (3) */
set_cp(cp_pack_total_block_count, 6 + get_sb(cp_payload));
flags = CP_UMOUNT_FLAG | CP_COMPACT_SUM_FLAG;
if (get_cp(cp_pack_total_block_count) <=
(1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks)
flags |= CP_NAT_BITS_FLAG;
if (c.trimmed)
flags |= CP_TRIMMED_FLAG;
if (c.large_nat_bitmap)
flags |= CP_LARGE_NAT_BITMAP_FLAG;
set_cp(ckpt_flags, flags);
set_cp(cp_pack_start_sum, 1 + get_sb(cp_payload));
set_cp(valid_node_count, c.curseg_offset[CURSEG_HOT_NODE]);
set_cp(valid_inode_count, c.curseg_offset[CURSEG_HOT_NODE]);
set_cp(next_free_nid, c.next_free_nid);
set_cp(sit_ver_bitmap_bytesize, ((get_sb(segment_count_sit) / 2) <<
get_sb(log_blocks_per_seg)) / 8);
set_cp(nat_ver_bitmap_bytesize, ((get_sb(segment_count_nat) / 2) <<
get_sb(log_blocks_per_seg)) / 8);
if (c.large_nat_bitmap)
set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET);
else
set_cp(checksum_offset, CP_CHKSUM_OFFSET);
crc = f2fs_checkpoint_chksum(cp);
*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
cpu_to_le32(crc);
blk_size_bytes = 1 << get_sb(log_blocksize);
if (blk_size_bytes != F2FS_BLKSIZE) {
MSG(1, "\tError: Wrong block size %d / %d!!!\n",
blk_size_bytes, F2FS_BLKSIZE);
goto free_cp_payload;
}
cp_seg_blk = get_sb(segment0_blkaddr);
DBG(1, "\tWriting main segments, cp at offset 0x%08"PRIx64"\n",
cp_seg_blk);
if (dev_write_block(cp, cp_seg_blk)) {
MSG(1, "\tError: While writing the cp to disk!!!\n");
goto free_cp_payload;
}
for (i = 0; i < get_sb(cp_payload); i++) {
cp_seg_blk++;
if (dev_fill_block(cp_payload, cp_seg_blk)) {
MSG(1, "\tError: While zeroing out the sit bitmap area "
"on disk!!!\n");
goto free_cp_payload;
}
}
/* Prepare and write Segment summary for HOT/WARM/COLD DATA
*
* The structure of compact summary
* +-------------------+
* | nat_journal |
* +-------------------+
* | sit_journal |
* +-------------------+
* | hot data summary |
* +-------------------+
* | warm data summary |
* +-------------------+
* | cold data summary |
* +-------------------+
*/
/* nat_sjournal */
journal = &c.nat_jnl;
memcpy(sum_compact_p, &journal->n_nats, SUM_JOURNAL_SIZE);
sum_compact_p += SUM_JOURNAL_SIZE;
/* sit_journal */
journal = &c.sit_jnl;
if (c.feature & F2FS_FEATURE_RO) {
i = CURSEG_RO_HOT_DATA;
vblocks = le16_to_cpu(journal->sit_j.entries[i].se.vblocks);
journal->sit_j.entries[i].segno = cp->cur_data_segno[0];
journal->sit_j.entries[i].se.vblocks =
cpu_to_le16(vblocks | (CURSEG_HOT_DATA << 10));
i = CURSEG_RO_HOT_NODE;
vblocks = le16_to_cpu(journal->sit_j.entries[i].se.vblocks);
journal->sit_j.entries[i].segno = cp->cur_node_segno[0];
journal->sit_j.entries[i].se.vblocks |=
cpu_to_le16(vblocks | (CURSEG_HOT_NODE << 10));
journal->n_sits = cpu_to_le16(2);
} else {
for (i = CURSEG_HOT_DATA; i < NR_CURSEG_TYPE; i++) {
if (i < NR_CURSEG_DATA_TYPE)
journal->sit_j.entries[i].segno =
cp->cur_data_segno[i];
else
journal->sit_j.entries[i].segno =
cp->cur_node_segno[i - NR_CURSEG_DATA_TYPE];
vblocks =
le16_to_cpu(journal->sit_j.entries[i].se.vblocks);
journal->sit_j.entries[i].se.vblocks =
cpu_to_le16(vblocks | (i << 10));
}
journal->n_sits = cpu_to_le16(6);
}
memcpy(sum_compact_p, &journal->n_sits, SUM_JOURNAL_SIZE);
sum_compact_p += SUM_JOURNAL_SIZE;
/* hot data summary */
memset(sum, 0, F2FS_BLKSIZE);
SET_SUM_TYPE(sum, SUM_TYPE_DATA);
sum_entry = (struct f2fs_summary *)sum_compact_p;
memcpy(sum_entry, c.sum[CURSEG_HOT_DATA],
sizeof(struct f2fs_summary) * MAX_CACHE_SUMS);
/* warm data summary, nothing to do */
/* cold data summary, nothing to do */
cp_seg_blk++;
DBG(1, "\tWriting Segment summary for HOT/WARM/COLD_DATA, at offset 0x%08"PRIx64"\n",
cp_seg_blk);
if (dev_write_block(sum_compact, cp_seg_blk)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
goto free_cp_payload;
}
/* Prepare and write Segment summary for HOT_NODE */
memset(sum, 0, F2FS_BLKSIZE);
SET_SUM_TYPE(sum, SUM_TYPE_NODE);
memcpy(sum->entries, c.sum[CURSEG_HOT_NODE],
sizeof(struct f2fs_summary) * MAX_CACHE_SUMS);
cp_seg_blk++;
DBG(1, "\tWriting Segment summary for HOT_NODE, at offset 0x%08"PRIx64"\n",
cp_seg_blk);
if (dev_write_block(sum, cp_seg_blk)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
goto free_cp_payload;
}
/* Fill segment summary for WARM_NODE to zero. */
memset(sum, 0, F2FS_BLKSIZE);
SET_SUM_TYPE(sum, SUM_TYPE_NODE);
cp_seg_blk++;
DBG(1, "\tWriting Segment summary for WARM_NODE, at offset 0x%08"PRIx64"\n",
cp_seg_blk);
if (dev_write_block(sum, cp_seg_blk)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
goto free_cp_payload;
}
/* Fill segment summary for COLD_NODE to zero. */
memset(sum, 0, F2FS_BLKSIZE);
SET_SUM_TYPE(sum, SUM_TYPE_NODE);
cp_seg_blk++;
DBG(1, "\tWriting Segment summary for COLD_NODE, at offset 0x%08"PRIx64"\n",
cp_seg_blk);
if (dev_write_block(sum, cp_seg_blk)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
goto free_cp_payload;
}
/* cp page2 */
cp_seg_blk++;
DBG(1, "\tWriting cp page2, at offset 0x%08"PRIx64"\n", cp_seg_blk);
if (dev_write_block(cp, cp_seg_blk)) {
MSG(1, "\tError: While writing the cp to disk!!!\n");
goto free_cp_payload;
}
/* write NAT bits, if possible */
if (flags & CP_NAT_BITS_FLAG) {
uint32_t i;
*(__le64 *)nat_bits = get_cp_crc(cp);
empty_nat_bits = nat_bits + 8 + nat_bits_bytes;
memset(empty_nat_bits, 0xff, nat_bits_bytes);
test_and_clear_bit_le(0, empty_nat_bits);
/* write the last blocks in cp pack */
cp_seg_blk = get_sb(segment0_blkaddr) + (1 <<
get_sb(log_blocks_per_seg)) - nat_bits_blocks;
DBG(1, "\tWriting NAT bits pages, at offset 0x%08"PRIx64"\n",
cp_seg_blk);
for (i = 0; i < nat_bits_blocks; i++) {
if (dev_write_block(nat_bits + i *
F2FS_BLKSIZE, cp_seg_blk + i)) {
MSG(1, "\tError: write NAT bits to disk!!!\n");
goto free_cp_payload;
}
}
}
/* cp page 1 of check point pack 2
* Initialize other checkpoint pack with version zero
*/
cp->checkpoint_ver = 0;
crc = f2fs_checkpoint_chksum(cp);
*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
cpu_to_le32(crc);
cp_seg_blk = get_sb(segment0_blkaddr) + c.blks_per_seg;
DBG(1, "\tWriting cp page 1 of checkpoint pack 2, at offset 0x%08"PRIx64"\n",
cp_seg_blk);
if (dev_write_block(cp, cp_seg_blk)) {
MSG(1, "\tError: While writing the cp to disk!!!\n");
goto free_cp_payload;
}
for (i = 0; i < get_sb(cp_payload); i++) {
cp_seg_blk++;
if (dev_fill_block(cp_payload, cp_seg_blk)) {
MSG(1, "\tError: While zeroing out the sit bitmap area "
"on disk!!!\n");
goto free_cp_payload;
}
}
/* cp page 2 of check point pack 2 */
cp_seg_blk += (le32_to_cpu(cp->cp_pack_total_block_count) -
get_sb(cp_payload) - 1);
DBG(1, "\tWriting cp page 2 of checkpoint pack 2, at offset 0x%08"PRIx64"\n",
cp_seg_blk);
if (dev_write_block(cp, cp_seg_blk)) {
MSG(1, "\tError: While writing the cp to disk!!!\n");
goto free_cp_payload;
}
ret = 0;
free_cp_payload:
free(cp_payload);
free_nat_bits:
free(nat_bits);
free_sum_compact:
free(sum_compact);
free_sum:
free(sum);
free_cp:
free(cp);
return ret;
}
static int f2fs_write_super_block(void)
{
int index;
uint8_t *zero_buff;
zero_buff = calloc(F2FS_BLKSIZE, 1);
if (zero_buff == NULL) {
MSG(1, "\tError: Calloc Failed for super_blk_zero_buf!!!\n");
return -1;
}
memcpy(zero_buff + F2FS_SUPER_OFFSET, sb, sizeof(*sb));
DBG(1, "\tWriting super block, at offset 0x%08x\n", 0);
for (index = 0; index < 2; index++) {
if (dev_write_block(zero_buff, index)) {
MSG(1, "\tError: While while writing super_blk "
"on disk!!! index : %d\n", index);
free(zero_buff);
return -1;
}
}
free(zero_buff);
return 0;
}
#ifndef WITH_ANDROID
static int f2fs_discard_obsolete_dnode(void)
{
struct f2fs_node *raw_node;
uint64_t next_blkaddr = 0, offset;
u64 end_blkaddr = (get_sb(segment_count_main) <<
get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr);
uint64_t start_inode_pos = get_sb(main_blkaddr);
uint64_t last_inode_pos;
if (c.zoned_mode || c.feature & F2FS_FEATURE_RO)
return 0;
raw_node = calloc(F2FS_BLKSIZE, 1);
if (raw_node == NULL) {
MSG(1, "\tError: Calloc Failed for discard_raw_node!!!\n");
return -1;
}
/* avoid power-off-recovery based on roll-forward policy */
offset = get_sb(main_blkaddr);
offset += c.cur_seg[CURSEG_WARM_NODE] * c.blks_per_seg;
last_inode_pos = start_inode_pos +
c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg +
c.curseg_offset[CURSEG_COLD_NODE] - 1;
do {
if (offset < get_sb(main_blkaddr) || offset >= end_blkaddr)
break;
if (dev_read_block(raw_node, offset)) {
MSG(1, "\tError: While traversing direct node!!!\n");
free(raw_node);
return -1;
}
next_blkaddr = le32_to_cpu(F2FS_NODE_FOOTER(raw_node)->next_blkaddr);
memset(raw_node, 0, F2FS_BLKSIZE);
DBG(1, "\tDiscard dnode, at offset 0x%08"PRIx64"\n", offset);
if (dev_write_block(raw_node, offset)) {
MSG(1, "\tError: While discarding direct node!!!\n");
free(raw_node);
return -1;
}
offset = next_blkaddr;
/* should avoid recursive chain due to stale data */
if (offset >= start_inode_pos || offset <= last_inode_pos)
break;
} while (1);
free(raw_node);
return 0;
}
#endif
static block_t alloc_next_free_block(int curseg_type)
{
block_t blkaddr;
blkaddr = get_sb(main_blkaddr) +
c.cur_seg[curseg_type] * c.blks_per_seg +
c.curseg_offset[curseg_type];
c.curseg_offset[curseg_type]++;
return blkaddr;
}
void update_sit_journal(int curseg_type)
{
struct f2fs_journal *sit_jnl = &c.sit_jnl;
unsigned short vblocks;
int idx = curseg_type;
if (c.feature & F2FS_FEATURE_RO) {
if (curseg_type < NR_CURSEG_DATA_TYPE)
idx = CURSEG_RO_HOT_DATA;
else
idx = CURSEG_RO_HOT_NODE;
}
f2fs_set_bit(c.curseg_offset[curseg_type] - 1,
(char *)sit_jnl->sit_j.entries[idx].se.valid_map);
vblocks = le16_to_cpu(sit_jnl->sit_j.entries[idx].se.vblocks);
sit_jnl->sit_j.entries[idx].se.vblocks = cpu_to_le16(vblocks + 1);
}
void update_nat_journal(nid_t nid, block_t blkaddr)
{
struct f2fs_journal *nat_jnl = &c.nat_jnl;
unsigned short n_nats = le16_to_cpu(nat_jnl->n_nats);
nat_jnl->nat_j.entries[n_nats].nid = cpu_to_le32(nid);
nat_jnl->nat_j.entries[n_nats].ne.version = 0;
nat_jnl->nat_j.entries[n_nats].ne.ino = cpu_to_le32(nid);
nat_jnl->nat_j.entries[n_nats].ne.block_addr = cpu_to_le32(blkaddr);
nat_jnl->n_nats = cpu_to_le16(n_nats + 1);
}
void update_summary_entry(int curseg_type, nid_t nid,
unsigned short ofs_in_node)
{
struct f2fs_summary *sum;
unsigned int curofs = c.curseg_offset[curseg_type] - 1;
assert(curofs < MAX_CACHE_SUMS);
sum = c.sum[curseg_type] + curofs;
sum->nid = cpu_to_le32(nid);
sum->ofs_in_node = cpu_to_le16(ofs_in_node);
}
static block_t f2fs_add_default_dentry_root(void)
{
struct f2fs_dentry_block *dent_blk = NULL;
block_t data_blkaddr;
dent_blk = calloc(F2FS_BLKSIZE, 1);
if(dent_blk == NULL) {
MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
return 0;
}
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).hash_code = 0;
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).ino = sb->root_ino;
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).name_len = cpu_to_le16(1);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).file_type = F2FS_FT_DIR;
memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 0), ".", 1);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).hash_code = 0;
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).ino = sb->root_ino;
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).name_len = cpu_to_le16(2);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).file_type = F2FS_FT_DIR;
memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 1), "..", 2);
/* bitmap for . and .. */
test_and_set_bit_le(0, dent_blk->dentry_bitmap);
test_and_set_bit_le(1, dent_blk->dentry_bitmap);
if (c.lpf_ino) {
int len = strlen(LPF);
f2fs_hash_t hash = f2fs_dentry_hash(0, 0, (unsigned char *)LPF, len);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 2).hash_code = cpu_to_le32(hash);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 2).ino = cpu_to_le32(c.lpf_ino);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 2).name_len = cpu_to_le16(len);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 2).file_type = F2FS_FT_DIR;
memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 2), LPF, F2FS_SLOT_LEN);
memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 3), &LPF[F2FS_SLOT_LEN],
len - F2FS_SLOT_LEN);
test_and_set_bit_le(2, dent_blk->dentry_bitmap);
test_and_set_bit_le(3, dent_blk->dentry_bitmap);
}
data_blkaddr = alloc_next_free_block(CURSEG_HOT_DATA);
DBG(1, "\tWriting default dentry root, at offset 0x%x\n", data_blkaddr);
if (dev_write_block(dent_blk, data_blkaddr)) {
MSG(1, "\tError: While writing the dentry_blk to disk!!!\n");
free(dent_blk);
return 0;
}
update_sit_journal(CURSEG_HOT_DATA);
update_summary_entry(CURSEG_HOT_DATA, le32_to_cpu(sb->root_ino), 0);
free(dent_blk);
return data_blkaddr;
}
static int f2fs_write_root_inode(void)
{
struct f2fs_node *raw_node = NULL;
block_t data_blkaddr;
block_t node_blkaddr;
raw_node = calloc(F2FS_BLKSIZE, 1);
if (raw_node == NULL) {
MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
return -1;
}
f2fs_init_inode(sb, raw_node, le32_to_cpu(sb->root_ino),
mkfs_time, 0x41ed);
if (c.lpf_ino)
raw_node->i.i_links = cpu_to_le32(3);
data_blkaddr = f2fs_add_default_dentry_root();
if (data_blkaddr == 0) {
MSG(1, "\tError: Failed to add default dentries for root!!!\n");
free(raw_node);
return -1;
}
raw_node->i.i_addr[get_extra_isize(raw_node)] =
cpu_to_le32(data_blkaddr);
node_blkaddr = alloc_next_free_block(CURSEG_HOT_NODE);
F2FS_NODE_FOOTER(raw_node)->next_blkaddr = cpu_to_le32(node_blkaddr + 1);
DBG(1, "\tWriting root inode (hot node), offset 0x%x\n", node_blkaddr);
if (write_inode(raw_node, node_blkaddr) < 0) {
MSG(1, "\tError: While writing the raw_node to disk!!!\n");
free(raw_node);
return -1;
}
update_nat_journal(le32_to_cpu(sb->root_ino), node_blkaddr);
update_sit_journal(CURSEG_HOT_NODE);
update_summary_entry(CURSEG_HOT_NODE, le32_to_cpu(sb->root_ino), 0);
free(raw_node);
return 0;
}
static int f2fs_write_default_quota(int qtype, __le32 raw_id)
{
char *filebuf = calloc(F2FS_BLKSIZE, 2);
int file_magics[] = INITQMAGICS;
struct v2_disk_dqheader ddqheader;
struct v2_disk_dqinfo ddqinfo;
struct v2r1_disk_dqblk dqblk;
block_t blkaddr;
int i;
if (filebuf == NULL) {
MSG(1, "\tError: Calloc Failed for filebuf!!!\n");
return 0;
}
/* Write basic quota header */
ddqheader.dqh_magic = cpu_to_le32(file_magics[qtype]);
/* only support QF_VFSV1 */
ddqheader.dqh_version = cpu_to_le32(1);
memcpy(filebuf, &ddqheader, sizeof(ddqheader));
/* Fill Initial quota file content */
ddqinfo.dqi_bgrace = cpu_to_le32(MAX_DQ_TIME);
ddqinfo.dqi_igrace = cpu_to_le32(MAX_IQ_TIME);
ddqinfo.dqi_flags = cpu_to_le32(0);
ddqinfo.dqi_blocks = cpu_to_le32(QT_TREEOFF + 5);
ddqinfo.dqi_free_blk = cpu_to_le32(0);
ddqinfo.dqi_free_entry = cpu_to_le32(5);
memcpy(filebuf + V2_DQINFOOFF, &ddqinfo, sizeof(ddqinfo));
filebuf[1024] = 2;
filebuf[2048] = 3;
filebuf[3072] = 4;
filebuf[4096] = 5;
filebuf[5120 + 8] = 1;
dqblk.dqb_id = raw_id;
dqblk.dqb_pad = cpu_to_le32(0);
dqblk.dqb_ihardlimit = cpu_to_le64(0);
dqblk.dqb_isoftlimit = cpu_to_le64(0);
if (c.lpf_ino)
dqblk.dqb_curinodes = cpu_to_le64(2);
else
dqblk.dqb_curinodes = cpu_to_le64(1);
dqblk.dqb_bhardlimit = cpu_to_le64(0);
dqblk.dqb_bsoftlimit = cpu_to_le64(0);
if (c.lpf_ino)
dqblk.dqb_curspace = cpu_to_le64(F2FS_BLKSIZE * 2);
else
dqblk.dqb_curspace = cpu_to_le64(F2FS_BLKSIZE);
dqblk.dqb_btime = cpu_to_le64(0);
dqblk.dqb_itime = cpu_to_le64(0);
memcpy(filebuf + 5136, &dqblk, sizeof(struct v2r1_disk_dqblk));
/* Write quota blocks */
for (i = 0; i < QUOTA_DATA; i++) {
blkaddr = alloc_next_free_block(CURSEG_HOT_DATA);
if (dev_write_block(filebuf + i * F2FS_BLKSIZE, blkaddr)) {
MSG(1, "\tError: While writing the quota_blk to disk!!!\n");
free(filebuf);
return 0;
}
update_sit_journal(CURSEG_HOT_DATA);
update_summary_entry(CURSEG_HOT_DATA,
le32_to_cpu(sb->qf_ino[qtype]), i);
DBG(1, "\tWriting quota data, at offset %08x (%d/%d)\n",
blkaddr, i + 1, QUOTA_DATA);
}
free(filebuf);
return blkaddr + 1 - QUOTA_DATA;
}
static int f2fs_write_qf_inode(int qtype)
{
struct f2fs_node *raw_node = NULL;
block_t data_blkaddr;
block_t node_blkaddr;
__le32 raw_id;
int i;
raw_node = calloc(F2FS_BLKSIZE, 1);
if (raw_node == NULL) {
MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
return -1;
}
f2fs_init_inode(sb, raw_node,
le32_to_cpu(sb->qf_ino[qtype]), mkfs_time, 0x8180);
raw_node->i.i_size = cpu_to_le64(1024 * 6);
raw_node->i.i_blocks = cpu_to_le64(1 + QUOTA_DATA);
raw_node->i.i_flags = F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
node_blkaddr = alloc_next_free_block(CURSEG_HOT_NODE);
F2FS_NODE_FOOTER(raw_node)->next_blkaddr = cpu_to_le32(node_blkaddr + 1);
if (qtype == 0)
raw_id = raw_node->i.i_uid;
else if (qtype == 1)
raw_id = raw_node->i.i_gid;
else if (qtype == 2)
raw_id = raw_node->i.i_projid;
else
ASSERT(0);
/* write quota blocks */
data_blkaddr = f2fs_write_default_quota(qtype, raw_id);
if (data_blkaddr == 0) {
free(raw_node);
return -1;
}
for (i = 0; i < QUOTA_DATA; i++)
raw_node->i.i_addr[get_extra_isize(raw_node) + i] =
cpu_to_le32(data_blkaddr + i);
DBG(1, "\tWriting quota inode (hot node), offset 0x%x\n", node_blkaddr);
if (write_inode(raw_node, node_blkaddr) < 0) {
MSG(1, "\tError: While writing the raw_node to disk!!!\n");
free(raw_node);
return -1;
}
update_nat_journal(le32_to_cpu(sb->qf_ino[qtype]), node_blkaddr);
update_sit_journal(CURSEG_HOT_NODE);
update_summary_entry(CURSEG_HOT_NODE, le32_to_cpu(sb->qf_ino[qtype]), 0);
free(raw_node);
return 0;
}
static int f2fs_update_nat_default(void)
{
struct f2fs_nat_block *nat_blk = NULL;
uint64_t nat_seg_blk_offset = 0;
nat_blk = calloc(F2FS_BLKSIZE, 1);
if(nat_blk == NULL) {
MSG(1, "\tError: Calloc Failed for nat_blk!!!\n");
return -1;
}
/* update node nat */
nat_blk->entries[get_sb(node_ino)].block_addr = cpu_to_le32(1);
nat_blk->entries[get_sb(node_ino)].ino = sb->node_ino;
/* update meta nat */
nat_blk->entries[get_sb(meta_ino)].block_addr = cpu_to_le32(1);
nat_blk->entries[get_sb(meta_ino)].ino = sb->meta_ino;
nat_seg_blk_offset = get_sb(nat_blkaddr);
DBG(1, "\tWriting nat root, at offset 0x%08"PRIx64"\n",
nat_seg_blk_offset);
if (dev_write_block(nat_blk, nat_seg_blk_offset)) {
MSG(1, "\tError: While writing the nat_blk set0 to disk!\n");
free(nat_blk);
return -1;
}
free(nat_blk);
return 0;
}
static block_t f2fs_add_default_dentry_lpf(void)
{
struct f2fs_dentry_block *dent_blk;
block_t data_blkaddr;
dent_blk = calloc(F2FS_BLKSIZE, 1);
if (dent_blk == NULL) {
MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
return 0;
}
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).hash_code = 0;
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).ino = cpu_to_le32(c.lpf_ino);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).name_len = cpu_to_le16(1);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).file_type = F2FS_FT_DIR;
memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 0), ".", 1);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).hash_code = 0;
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).ino = sb->root_ino;
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).name_len = cpu_to_le16(2);
F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).file_type = F2FS_FT_DIR;
memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 1), "..", 2);
test_and_set_bit_le(0, dent_blk->dentry_bitmap);
test_and_set_bit_le(1, dent_blk->dentry_bitmap);
data_blkaddr = alloc_next_free_block(CURSEG_HOT_DATA);
DBG(1, "\tWriting default dentry lost+found, at offset 0x%x\n",
data_blkaddr);
if (dev_write_block(dent_blk, data_blkaddr)) {
MSG(1, "\tError While writing the dentry_blk to disk!!!\n");
free(dent_blk);
return 0;
}
update_sit_journal(CURSEG_HOT_DATA);
update_summary_entry(CURSEG_HOT_DATA, c.lpf_ino, 0);
free(dent_blk);
return data_blkaddr;
}
static int f2fs_write_lpf_inode(void)
{
struct f2fs_node *raw_node;
block_t data_blkaddr;
block_t node_blkaddr;
int err = 0;
ASSERT(c.lpf_ino);
raw_node = calloc(F2FS_BLKSIZE, 1);
if (raw_node == NULL) {
MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
return -1;
}
f2fs_init_inode(sb, raw_node, c.lpf_ino, mkfs_time, 0x41c0);
raw_node->i.i_pino = le32_to_cpu(sb->root_ino);
raw_node->i.i_namelen = le32_to_cpu(strlen(LPF));
memcpy(raw_node->i.i_name, LPF, strlen(LPF));
node_blkaddr = alloc_next_free_block(CURSEG_HOT_NODE);
F2FS_NODE_FOOTER(raw_node)->next_blkaddr = cpu_to_le32(node_blkaddr + 1);
data_blkaddr = f2fs_add_default_dentry_lpf();
if (data_blkaddr == 0) {
MSG(1, "\tError: Failed to add default dentries for lost+found!!!\n");
err = -1;
goto exit;
}
raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blkaddr);
DBG(1, "\tWriting lost+found inode (hot node), offset 0x%x\n",
node_blkaddr);
if (write_inode(raw_node, node_blkaddr) < 0) {
MSG(1, "\tError: While writing the raw_node to disk!!!\n");
err = -1;
goto exit;
}
update_nat_journal(c.lpf_ino, node_blkaddr);
update_sit_journal(CURSEG_HOT_NODE);
update_summary_entry(CURSEG_HOT_NODE, c.lpf_ino, 0);
exit:
free(raw_node);
return err;
}
static int f2fs_create_root_dir(void)
{
enum quota_type qtype;
int err = 0;
err = f2fs_write_root_inode();
if (err < 0) {
MSG(1, "\tError: Failed to write root inode!!!\n");
goto exit;
}
for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
if (!((1 << qtype) & c.quota_bits))
continue;
err = f2fs_write_qf_inode(qtype);
if (err < 0) {
MSG(1, "\tError: Failed to write quota inode!!!\n");
goto exit;
}
}
if (c.feature & F2FS_FEATURE_LOST_FOUND) {
err = f2fs_write_lpf_inode();
if (err < 0) {
MSG(1, "\tError: Failed to write lost+found inode!!!\n");
goto exit;
}
}
#ifndef WITH_ANDROID
err = f2fs_discard_obsolete_dnode();
if (err < 0) {
MSG(1, "\tError: Failed to discard obsolete dnode!!!\n");
goto exit;
}
#endif
err = f2fs_update_nat_default();
if (err < 0) {
MSG(1, "\tError: Failed to update NAT for root!!!\n");
goto exit;
}
exit:
if (err)
MSG(1, "\tError: Could not create the root directory!!!\n");
return err;
}
int f2fs_format_device(void)
{
int err = 0;
err= f2fs_prepare_super_block();
if (err < 0) {
MSG(0, "\tError: Failed to prepare a super block!!!\n");
goto exit;
}
if (c.trim) {
err = f2fs_trim_devices();
if (err < 0) {
MSG(0, "\tError: Failed to trim whole device!!!\n");
goto exit;
}
}
err = f2fs_init_sit_area();
if (err < 0) {
MSG(0, "\tError: Failed to initialise the SIT AREA!!!\n");
goto exit;
}
err = f2fs_init_nat_area();
if (err < 0) {
MSG(0, "\tError: Failed to initialise the NAT AREA!!!\n");
goto exit;
}
err = f2fs_create_root_dir();
if (err < 0) {
MSG(0, "\tError: Failed to create the root directory!!!\n");
goto exit;
}
err = f2fs_write_check_point_pack();
if (err < 0) {
MSG(0, "\tError: Failed to write the check point pack!!!\n");
goto exit;
}
err = f2fs_write_super_block();
if (err < 0) {
MSG(0, "\tError: Failed to write the super block!!!\n");
goto exit;
}
exit:
if (err)
MSG(0, "\tError: Could not format the device!!!\n");
return err;
}